畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3610-3620.doi: 10.11843/j.issn.0366-6964.2025.08.005
杨宇翔(), 王朋朋, 李斌, 谢留威, 修福晓, 刘成武*(
)
收稿日期:
2025-01-03
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
刘成武
E-mail:yyxiang2018@126.com;liuchengwu212450@163.com
作者简介:
杨宇翔(1995-),男,内蒙古包头人,助理研究员,硕士生,主要从事警犬疾病防治及营养的研究工作,E-mail:yyxiang2018@126.com
基金资助:
YANG Yuxiang(), WANG Pengpeng, LI Bin, XIE Liuwei, XIU Fuxiao, LIU Chengwu*(
)
Received:
2025-01-03
Online:
2025-08-23
Published:
2025-08-28
Contact:
LIU Chengwu
E-mail:yyxiang2018@126.com;liuchengwu212450@163.com
摘要:
肠道疾病与肠道菌群失衡之间存在直接的联系,而恢复肠道微环境的稳定状态是治疗这些疾病的关键所在。利用益生菌治疗肠道疾病已经成为一种新兴的治疗策略。本文回顾了近年来国内外在益生菌治疗肠道疾病方面的应用进展、益生菌在维护肠道健康方面的作用以及其潜在的作用机制,目的是指导益生菌在饲料添加剂和治疗药物中的应用,以治疗肠道疾病并确保动物的健康福利。
中图分类号:
杨宇翔, 王朋朋, 李斌, 谢留威, 修福晓, 刘成武. 益生菌在犬肠道疾病中作用及机制的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3610-3620.
YANG Yuxiang, WANG Pengpeng, LI Bin, XIE Liuwei, XIU Fuxiao, LIU Chengwu. Research Progress on the Application and Mechanism of Probiotics in Canine Intestinal Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3610-3620.
表 1
犬肠道疾病中菌群的变化情况"
疾病类型 Disease type | 肠道菌群 Gut microbiota | 来源 Reference |
急性腹泻 AD | 放线菌↑、假诺卡氏菌↑、普罗威登斯菌↑、大肠杆菌↑、乳酸菌↓、粪杆菌↓、乳球菌↓、双歧杆菌↓ | [ |
普罗威登斯菌阳性检出率高达41% | [ | |
产气荚膜梭菌↑、拟杆菌↓、粪杆菌↓、瘤胃球菌科↓ | [ | |
产气荚膜梭菌↑、梭杆菌门↓、瘤胃球菌属↓、布劳特氏菌属↓、普拉梭菌↓ | [ | |
普罗威登斯菌↑、产气荚膜梭菌↑、普氏粪杆菌↓、布劳特氏菌属↓ | [ | |
炎症性肠病 IBD | 粪杆菌属↓、梭杆菌属↓ | [ |
拟杆菌属↓、普雷沃氏菌属↓ | [ | |
乳酸菌↓ | [ |
表 2
益生菌在治疗犬肠道疾病方面的应用"
疾病类型 Disease type | 益生菌种类 Probiotic species | 使用效果 Application effect | 来源 Reference |
急性腹泻 AD | 双歧杆菌AHC7 | 益生菌治疗缩短AD病程 | [ |
屎肠球菌4B1707 | 益生菌治疗缩短AD病程,病情恢复速度比接受安慰剂治疗的犬只快1.60倍 | [ | |
屎肠球菌NCIMB 10415 4b1707 | 提高犬粪便评分,降低犬群腹泻率 | [ | |
约翰氏乳杆菌CRL1693、鼠联合乳杆菌CRL1695、黏膜黏液乳杆菌CRL1696、唾液乳杆菌CRL1702 | 提高犬粪便评分,使其显著高于对照组,AD病情被迅速改善,而且粪便中的乳酸菌丰度显著提升。 | [ | |
发酵乳杆菌VET 9A、鼠李糖乳杆菌VET 16A、植物乳杆菌VET 14A | 治疗组粪便评分显著增加,治疗组大肠杆菌、产气英膜梭菌丰度降低,犬呕吐、腹泻率下降,食欲增加。 | [ | |
屎肠球菌SF68、凝结芽孢杆菌、嗜酸乳杆菌 | 腹泻病程显著缩短,粪便乳酸杆菌丰度增加和丁酸盐含量显著增加。 | [ | |
Vivomixx® | 产气荚膜梭菌的丰度显著降低,产气荚膜梭菌表达成孔毒素基因NetF迅速降低。 | [ | |
炎症性肠病 IBD | 枯草芽孢杆菌C-3102 | 缓解肠道炎症,促进产SCFAs的普罗威登斯菌和肠球菌属的菌群丰度,并提升了肠道内醋酸盐的浓度。 | [ |
乳杆菌DSM24730、副干酪乳杆菌DSM24733、德氏乳杆菌保加利亚亚种DSM24734、嗜酸乳杆菌DSM 24735、嗜热链球菌DSM24731、短双歧杆菌DSM24732、长双歧杆菌DSM24736、婴儿双歧杆菌DSM24737 | 提高肠道病理组织学评分,促进肠屏障紧密连接蛋白表达,增加产SCFAs的乳酸菌属、双歧杆菌属丰度。 | [ | |
益生菌VSL#3 | 减少促炎性CD3+ T细胞浸润,增加FoxP3+和TGF-β+免疫抑制细胞和粪杆菌属的相对丰度。 | [ |
1 |
AN J U , MUN S H , KIM W H , et al. Dynamics of the canine gut microbiota of a military dog birth cohort[J]. Front Microbiol, 2025, 16, 1481567.
doi: 10.3389/fmicb.2025.1481567 |
2 |
HU Q , CHENG L , CAO X , et al. Comparative analysis of gut microbiota of Chinese Kunming dog, German Shepherd dog, and Belgian Malinois dog[J]. J Vet Sci, 2024, 25 (6): e85.
doi: 10.4142/jvs.24181 |
3 |
LI K , XIAO X , LI Y , et al. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines[J]. J Anim Sci Biotechnol, 2024, 15 (1): 114.
doi: 10.1186/s40104-024-01073-w |
4 | 韩冰, 孙笑非, 邓风雷, 等. 益生菌和益生元在犬猫应用中的研究进展[J]. 饲料研究, 2023, 46 (2): 117- 121. |
HAN B , SUN X F , DENG F L , et al. Research Progress on the Application of Probiotics and Prebiotics in Dogs and Cats[J]. Feed Research, 2023, 46 (2): 117- 121. | |
5 |
BAI H , LIU T , WANG S , et al. Variations in gut microbiome and metabolites of dogs with acute diarrhea in poodles and Labrador retrievers[J]. Arch Microbiol, 2023, 205 (3): 97.
doi: 10.1007/s00203-023-03439-6 |
6 |
BULACH D , CARTER G P , ALBERT M J . Enteropathogenic Providencia alcalifaciens: A subgroup of P. alcalifaciens that causes diarrhea[J]. Microorganisms, 2024, 12 (7): 1479.
doi: 10.3390/microorganisms12071479 |
7 | JØRGENSEN H J , VALHEIM M , SEKSE C , et al. An official outbreak investigation of acute haemorrhagic diarrhoea in dogs in Norway points to Providencia alcalifaciens as a likely cause[J]. Animals (Basel), 2021, 11 (11): 3201. |
8 | GUARD B C , BARR J W , REDDIVARI L , et al. Characterization of microbial dysbiosis and metabolomic changes in dogs with acute diarrhea[J]. PLoS One, 2015, 10 (5): e127259. |
9 |
MINAMOTO Y , DHANANI N , MARKEL M E , et al. Prevalence of Clostridium perfringens, Clostridium perfringens enterotoxin and dysbiosis in fecal samples of dogs with diarrhea[J]. Vet Microbiol, 2014, 174 (3-4): 463- 473.
doi: 10.1016/j.vetmic.2014.10.005 |
10 |
HERSTAD K , TROSVIK P , HAALAND A H , et al. Changes in the fecal microbiota in dogs with acute hemorrhagic diarrhea during an outbreak in Norway[J]. J Vet Intern Med, 2021, 35 (5): 2177- 2186.
doi: 10.1111/jvim.16201 |
11 |
BUSCH K , SUCHODOLSKI J S , KVHNER K A , et al. Clostridium perfringens enterotoxin and Clostridium difficile toxin A/B do not play a role in acute haemorrhagic diarrhoea syndrome in dogs[J]. Vet Rec, 2015, 176 (10): 253.
doi: 10.1136/vr.102738 |
12 |
UNTERER S , BUSCH K . Acute hemorrhagic diarrhea syndrome in dogs[J]. Vet Clin North Am Small Anim Pract, 2021, 51 (1): 79- 92.
doi: 10.1016/j.cvsm.2020.09.007 |
13 |
GIARETTA P R , SUCHODOLSKI J S , JERGENS A E , et al. Bacterial Biogeography of the colon in dogs with chronic inflammatory Enteropathy[J]. Vet Pathol, 2020, 57 (2): 258- 265.
doi: 10.1177/0300985819891259 |
14 | DÍAZ-REGAÑÓN D , GARCÍA-SANCHO M , VILLAESCUSA A , et al. Characterization of the fecal and mucosa-associated microbiota in dogs with chronic inflammatory enteropathy[J]. Animals (Basel), 2023, 13 (3): 326. |
15 |
GUARD B C , HONNEFFER J B , JERGENS A E , et al. Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroid-responsive chronic inflammatory enteropathy[J]. J Vet Intern Med, 2019, 33 (3): 1295- 1305.
doi: 10.1111/jvim.15493 |
16 |
XU J , VERBRUGGHE A , LOURENÇO M , et al. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?[J]. BMC Vet Res, 2016, 12 (1): 114.
doi: 10.1186/s12917-016-0736-2 |
17 |
BASTOS T S , DE LIMA D C , SOUZA C , et al. Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs[J]. BMC Vet Res, 2020, 16 (1): 116.
doi: 10.1186/s12917-020-02321-7 |
18 |
XU H , HUANG W , HOU Q , et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota[J]. Front Immunol, 2019, 10, 666.
doi: 10.3389/fimmu.2019.00666 |
19 |
ZHAO D , ZHANG R , WANG J , et al. Effect of Limosilactobacillus reuteri ZJF036 on growth performance and gut microbiota in Juvenile Beagle dogs[J]. Curr Microbiol, 2023, 80 (5): 155.
doi: 10.1007/s00284-023-03276-2 |
20 |
ROSSI G , PENGO G , GALOSI L , et al. Effects of the Probiotic Mixture Slab51® (SivoMixx®) as food supplement in healthy dogs: Evaluation of fecal microbiota, clinical parameters and immune function[J]. Front Vet Sci, 2020, 7, 613.
doi: 10.3389/fvets.2020.00613 |
21 | KANG A , KWAK M , LEE D J , et al. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs[J]. Microbiol Spectrum, 2024, 12 (3): e2523- e2552. |
22 | KAYSER E , HE F , NIXON S , et al. Effects of supplementation of live and heat-treated bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs[J]. J Anim Sci, 2024, 3, 102. |
23 |
BASTOS T S , SOUZA C , LEGENDRE H , et al. Effect of yeast saccharomyces cerevisiae as a probiotic on diet digestibility, fermentative metabolites, and composition and functional potential of the fecal microbiota of dogs submitted to an abrupt dietary change[J]. Microorganisms, 2023, 11 (2): 506.
doi: 10.3390/microorganisms11020506 |
24 |
UNTERER S , STROHMEYER K , KRUSE B D , et al. Treatment of aseptic dogs with hemorrhagic gastroenteritis with amoxicillin/clavulanic acid: a prospective blinded study[J]. J Vet Intern Med, 2011, 25 (5): 973- 979.
doi: 10.1111/j.1939-1676.2011.00765.x |
25 |
ISIDORI M , CORBEE R J , TRABALZA-MARINUCCI M . Nonpharmacological treatment strategies for the management of canine chronic inflammatory enteropathy-A narrative review[J]. Vet Sci, 2022, 9 (2): 37.
doi: 10.3390/vetsci9020037 |
26 | SAROWSKA J , CHOROSZY-KRÓL I , REGULSKA-ILOW B , et al. The therapeutic effect of probiotic bacteria on gastrointestinal diseases[J]. Adv Clin Exp Med, 2013, 22 (5): 759- 766. |
27 | KELLEY R L , MINIKHIEM D , KIELY B , et al. Clinical benefits of probiotic canine-derived Bifidobacterium animalis strain AHC7 in dogs with acute idiopathic diarrhea[J]. Vet Ther, 2009, 10 (3): 121- 130. |
28 |
NIXON S L , ROSE L , MULLER A T . Efficacy of an orally administered anti-diarrheal probiotic paste (Pro-Kolin Advanced) in dogs with acute diarrhea: A randomized, placebo-controlled, double-blinded clinical study[J]. J Vet Intern Med, 2019, 33 (3): 1286- 1294.
doi: 10.1111/jvim.15481 |
29 |
ROSE L , ROSE J , GOSLING S , et al. Efficacy of a probiotic-prebiotic supplement on incidence of diarrhea in a dog shelter: A randomized, double-blind, placebo-controlled trial[J]. J Vet Intern Med, 2017, 31 (2): 377- 382.
doi: 10.1111/jvim.14666 |
30 | MOLINA R A , VILLAR M D , MIRANDA M H , et al. A multi-strain probiotic promoted recovery of puppies from gastroenteritis in a randomized, double-blind, placebo-controlled study[J]. Can Vet J, 2023, 64 (7): 666- 673. |
31 |
GÓMEZ-GALLEGO C , JUNNILA J , MÄNNIKKÖ S , et al. A canine-specific probiotic product in treating acute or intermittent diarrhea in dogs: A double-blind placebo-controlled efficacy study[J]. Vet Microbiol, 2016, 197, 122- 128.
doi: 10.1016/j.vetmic.2016.11.015 |
32 |
GAGNÉ J W , WAKSHLAG J J , SIMPSON K W , et al. Effects of a synbiotic on fecal quality, short-chain fatty acid concentrations, and the microbiome of healthy sled dogs[J]. BMC Vet Res, 2013, 9, 246.
doi: 10.1186/1746-6148-9-246 |
33 | ZIESE A L , SUCHODOLSKI J S , HARTMANN K , et al. Effect of probiotic treatment on the clinical course, intestinal microbiome, and toxigenic Clostridium perfringens in dogs with acute hemorrhagic diarrhea[J]. PLoS One, 2018, 13 (9): e204691. |
34 | ISIDORI M , RUECA F , MASSACCI F R , et al. The use of Ascophyllum nodosum and Bacillus subtilis C-3102 in the management of canine chronic inflammatory enteropathy: A pilot study[J]. Animals (Basel), 2021, 11 (12): 3417. |
35 |
WHITE R , ATHERLY T , GUARD B , et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease[J]. Gut Microbes, 2017, 8 (5): 451- 466.
doi: 10.1080/19490976.2017.1334754 |
36 |
ROSSI G , PENGO G , CALDIN M , et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease[J]. PLoS One, 2014, 9 (4): e94699.
doi: 10.1371/journal.pone.0094699 |
37 |
CHAITMAN J , ZIESE A L , PILLA R , et al. Fecal microbial and metabolic profiles in dogs with acute diarrhea receiving either fecal microbiota transplantation or oral metronidazole[J]. Front Vet Sci, 2020, 7, 192.
doi: 10.3389/fvets.2020.00192 |
38 |
SUGITA K , YANUMA N , OHNO H , et al. Oral faecal microbiota transplantation for the treatment of Clostridium difficile-associated diarrhoea in a dog: a case report[J]. BMC Vet Res, 2019, 15 (1): 11.
doi: 10.1186/s12917-018-1754-z |
39 | GAL A , BARKO P C , BIGGS P J , et al. One dog's waste is another dog's wealth: A pilot study of fecal microbiota transplantation in dogs with acute hemorrhagic diarrhea syndrome[J]. PLoS One, 2021, 16 (4): e250344. |
40 |
PEREIRA G Q , GOMES L A , SANTOS I S , et al. Fecal microbiota transplantation in puppies with canine parvovirus infection[J]. J Vet Intern Med, 2018, 32 (2): 707- 711.
doi: 10.1111/jvim.15072 |
41 |
NⅡNA A , KIBE R , SUZUKI R , et al. Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease[J]. Biosci Microbiota Food Health, 2021, 40 (2): 98- 104.
doi: 10.12938/bmfh.2020-049 |
42 | NⅡNA A , KIBE R , SUZUKI R , et al. Improvement in clinical symptoms and fecal microbiome after fecal microbiota transplantation in a dog with inflammatory bowel disease[J]. Vet Med (Auckl), 2019, 10, 197- 201. |
43 | 杨敏敏, 吴孝杰, 巨玉鑫, 等. 益生菌对犬肠道健康的影响研究进展[J]. 中国畜牧杂志, 2024, 60 (6): 44- 48. |
YANG M M , WU X J , JU Y X , et al. Research progress on the effects of probiotics on canine intestinal health[J]. Chinese Journal of Animal Husbandry, 2024, 60 (6): 44- 48. | |
44 | SINGH T P , KAUR G , KAPILA S , et al. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens[J]. Front Microbiol, 2017, 8, 486. |
45 |
YADAV A K , TYAGI A , KUMAR A , et al. Adhesion of Lactobacilli and their anti-infectivity potential[J]. Crit Rev Food Sci Nutr, 2017, 57 (10): 2042- 2056.
doi: 10.1080/10408398.2014.918533 |
46 |
YANG Q , WU Z . Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms[J]. Microorganisms, 2023, 11 (10): 2452.
doi: 10.3390/microorganisms11102452 |
47 |
WU J , MA N , JOHNSTON L J , et al. Dietary nutrients mediate intestinal host defense peptide expression[J]. Adv Nutr, 2020, 11 (1): 92- 102.
doi: 10.1093/advances/nmz057 |
48 | WANG L , CAO L , YU Q , et al. Bifidobacterium bifidum CCFM1359 alleviates intestinal motility disorders through the BDNF-TrkB pathway[J]. Food Funct, 2024, 16 (2): 437- 451. |
49 |
KUMAR S , AHMAD M F , NATH P , et al. Controlling intestinal infections and digestive disorders using probiotics[J]. J Med Food, 2023, 26 (10): 705- 720.
doi: 10.1089/jmf.2023.0062 |
50 |
AMBAT A , ANTONY L , MAJI A , et al. Enhancing recovery from gut microbiome dysbiosis and alleviating DSS-induced colitis in mice with a consortium of rare short-chain fatty acid-producing bacteria[J]. Gut Microbes, 2024, 16 (1): 2382324.
doi: 10.1080/19490976.2024.2382324 |
51 | GAUDIER E , RIVAL M , BUISINE M P , et al. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon[J]. Physiol Res, 2009, 58 (1): 111- 119. |
52 |
KIM C H . Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity[J]. Cell Mol Immunol, 2023, 20 (4): 341- 350.
doi: 10.1038/s41423-023-00987-1 |
53 |
ZHANG D , JIAN Y P , ZHANG Y N , et al. Short-chain fatty acids in diseases[J]. Cell Commun Signal, 2023, 21 (1): 212.
doi: 10.1186/s12964-023-01219-9 |
54 |
TAN J K , MACIA L , MACKAY C R . Dietary fiber and SCFAs in the regulation of mucosal immunity[J]. J Allergy Clin Immunol, 2023, 151 (2): 361- 370.
doi: 10.1016/j.jaci.2022.11.007 |
55 |
XIA J , CUI Y , GUO Y , et al. The Function of probiotics and prebiotics on canine intestinal health and their evaluation criteria[J]. Microorganisms, 2024, 12 (6): 1248.
doi: 10.3390/microorganisms12061248 |
56 |
GYAWALI I , ZHOU G , XU G , et al. Supplementation of microencapsulated probiotics modulates gut health and intestinal microbiota[J]. Food Sci Nutr, 2023, 11 (8): 4547- 4561.
doi: 10.1002/fsn3.3414 |
57 |
NABAVI-RAD A , SADEGHI A , ASADZADEH A H , et al. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management[J]. Gut Microbes, 2022, 14 (1): 2108655.
doi: 10.1080/19490976.2022.2108655 |
58 |
MAZZIOTTA C , TOGNON M , MARTINI F , et al. Probiotics mechanism of action on immune cells and beneficial effects on human health[J]. Cells, 2023, 12 (1): 184.
doi: 10.3390/cells12010184 |
59 |
DE VOS P , MUJAGIC Z , DE HAAN B J , et al. Lactobacillus plantarum strains can enhance human mucosal and systemic immunity and prevent non-steroidal anti-inflammatory drug induced reduction in T regulatory cells[J]. Front Immunol, 2017, 8, 1000.
doi: 10.3389/fimmu.2017.01000 |
60 |
HUANG R , WU F , ZHOU Q , et al. Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications[J]. Microbiol Res, 2022, 260, 127019.
doi: 10.1016/j.micres.2022.127019 |
61 | ZHENG M , HAN R , YUAN Y , et al. The role of Akkermansia muciniphila in inflammatory bowel disease: Current knowledge and perspectives[J]. Front Immunol, 2022, 13, 1089600. |
62 |
MAGRYŚ A , PAWLIK M . Postbiotic fractions of probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG show immune-modulating effects[J]. Cells, 2023, 12 (21): 2538.
doi: 10.3390/cells12212538 |
63 | WEESE J S , ANDERSON M E . Preliminary evaluation of Lactobacillus rhamnosus strain GG, a potential probiotic in dogs[J]. Can Vet J, 2002, 43 (10): 771- 774. |
64 |
RINKINEN M , JALAVA K , WESTERMARCK E , et al. Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization?[J]. Vet Microbiol, 2003, 92 (1-2): 111- 119.
doi: 10.1016/S0378-1135(02)00356-5 |
65 |
KUMAR S , PATTANAIK A K , SHARMA S , et al. Comparative assessment of canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophillus NCDC 15 for nutrient digestibility, faecal fermentative metabolites and selected gut health indices in dogs[J]. J Nutr Sci, 2017, 6, e38.
doi: 10.1017/jns.2017.35 |
66 |
MERENSTEIN D , POT B , LEYER G , et al. Emerging issues in probiotic safety: 2023 perspectives[J]. Gut Microbes, 2023, 15 (1): 2185034.
doi: 10.1080/19490976.2023.2185034 |
67 |
AGHAMOHAMMAD S , ROHANI M . Antibiotic resistance and the alternatives to conventional antibiotics: The role of probiotics and microbiota in combating antimicrobial resistance[J]. Microbiol Res, 2023, 267, 127275.
doi: 10.1016/j.micres.2022.127275 |
68 | OSMAN M , ALTIER C , CAZER C . Antimicrobial resistance among canine enterococci in the northeastern United States, 2007-2020[J]. Front Microbiol, 2022, 13, 1025242. |
69 |
BHAT A H . Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria[J]. Microb Pathog, 2021, 155, 104891.
doi: 10.1016/j.micpath.2021.104891 |
[1] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
[2] | 王苗, 伏庭书, 陈梦炜, 周宏达, 柏小楠, 马保华, 彭莎. 负载姜黄素的犬脂肪间充质干细胞来源外泌体对皮肤损伤愈合的效果及机制研究[J]. 畜牧兽医学报, 2025, 56(8): 4042-4052. |
[3] | 陆乐, 罗贤祖, 黄心昱, 邹辉, 顾建红, 刘学忠, 卞建春, 刘宗平, 袁燕. 镉可通过影响大鼠肠道菌群致大脑皮质氧化应激[J]. 畜牧兽医学报, 2025, 56(7): 3540-3547. |
[4] | 郑艳虹, 吴梓琦, 刘谕儒, 罗均, 郭霄峰, 罗永文. 狂犬病病毒的起源、传播及遗传演化[J]. 畜牧兽医学报, 2025, 56(6): 2613-2625. |
[5] | 康申辰, 赵源杰, 陈宇, 刘萌萌. 犬埃里希体的全球流行现状和风险因素分析[J]. 畜牧兽医学报, 2025, 56(6): 2626-2638. |
[6] | 王晨蕾, 郭鑫瑞, 贺海洋, 刘阳, 马保华, 彭莎. 过表达Klotho的犬脂肪间充质干细胞源的外泌体对犬急性肾损伤的治疗作用[J]. 畜牧兽医学报, 2025, 56(6): 2978-2989. |
[7] | 康慧杰, 沙季辰, 杨天元, 张云彤, 侯晓昱, 李思瑶, 王维千, 侯庆典, 张帅, 杨昊天, 赵元, 范宏刚. 新藤黄酸调控糖原代谢途径抑制犬骨肉瘤细胞恶性生物学行为的机制研究[J]. 畜牧兽医学报, 2025, 56(6): 3002-3013. |
[8] | 姜林, 张耀辉, 黎静, 张晓晶. 影像学技术在犬猫常见心脏疾病诊断中的应用[J]. 畜牧兽医学报, 2025, 56(5): 2103-2111. |
[9] | 李雪源, 杨利峰, 赵德明. 犬卵巢肿瘤病理诊断及分析[J]. 畜牧兽医学报, 2025, 56(5): 2393-2402. |
[10] | 罗诗师, 陈蓓蕾, 张蕾, 冯启贤, 吴瑞森, 陈佳祺, 王媛, 简子昕, 许丽惠, 陈秋勇, 马玉芳, 王全溪. 太子参多糖经Let-7d-3p下调伪狂犬病病毒感染小鼠的炎症基因转录水平[J]. 畜牧兽医学报, 2025, 56(5): 2438-2450. |
[11] | 匡尹之, 徐凤培, 周沛. 水獭源犬圆环病毒的全基因组序列分析[J]. 畜牧兽医学报, 2025, 56(4): 1989-1994. |
[12] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
[13] | 丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026. |
[14] | 王子姣, 刘春晓, 李光玉. 紫花前胡苷对犬特应性皮炎的疗效分析[J]. 畜牧兽医学报, 2025, 56(3): 1453-1464. |
[15] | 方绍勤, 尹洪伟, 李杰, 徐虎, 万揆, 牟玉莲. 昆明犬3~12月龄行为特征纵向研究[J]. 畜牧兽医学报, 2025, 56(2): 657-665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||