[1] |
GREENHALGH C J, RICO-BAUTISTA E, LORENTZON M, et al.SOCS2 negatively regulates growth hormone action in vitro and in vivo[J].J Clin Invest, 2005, 115(2):397-406.
|
[2] |
VESTERLUND M, ZADJALI F, PERSSON T, et al.The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels[J].PLoS One, 2011, 6(9):e25358.
|
[3] |
李亭亭, 刘秋月, 李向臣, 等.绵羊经济性状相关基因研究进展及其应用[J].畜牧兽医学报, 2022, 53(8):2417-2434.LI T T, LIU Q Y, LI X C, et al.Research progress and applications of genes associated with economic traits in sheep[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2417-2434.(in Chinese)
|
[4] |
METCALF D, GREENHALGH C J, VINEY E, et al.Gigantism in mice lacking suppressor of cytokine signalling-2[J].Nature, 2000, 405(6790):1069-1073.
|
[5] |
STARR R, WILLSON T A, VINEY E M, et al.A family of cytokine-inducible inhibitors of signalling[J].Nature, 1997, 387(6636):917-921.
|
[6] |
LI K L, MEZA GUZMAN L G, WHITEHEAD L, et al.SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine[J].Biosci Rep, 2022, 42(12):BSR20221683.
|
[7] |
BULLOCK A N, DEBRECZENI J É, EDWARDS A M, et al.Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase[J].Proc Natl Acad Sci U S A, 2006, 103(20):7637-7642.
|
[8] |
BULATOV E, MARTIN E M, CHATTERJEE S, et al.Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase:suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2)[J].J Biol Chem, 2015, 290(7):4178-4191.
|
[9] |
KUNG W W, RAMACHANDRAN S, MAKUKHIN N, et al.Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase[J].Nat Commun, 2019, 10(1):2534.
|
[10] |
LINOSSI E M, LI K L, VEGGIANI G, et al.Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands[J].Nat Commun, 2021, 12(1):7032.
|
[11] |
RUPP R, SENIN P, SARRY J, et al.A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model[J].PLoS Genet, 2015, 11(12):e1005629.
|
[12] |
LIU Y, COTTLE W T, HA T.Mapping cellular responses to DNA double-strand breaks using CRISPR technologies[J].Trends Genet, 2023, 39(7):560-574.
|
[13] |
MATHEW S M.Strategies for generation of mice via CRISPR/HDR-mediated knock-in[J].Mol Biol Rep, 2023, 50(4):3189-3204.
|
[14] |
BU W, CREIGHTON C J, HEAVENER K S, et al.Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice[J].Sci Adv, 2023, 9(19):eade0059.
|
[15] |
WANG Y, QI T, LIU J T, et al.A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing[J].Sci Adv, 2023, 9(6):eabo6405.
|
[16] |
CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823.
|
[17] |
季海艳, 朱焕章.基因编辑技术在基因治疗中的应用进展[J].生命科学, 2015, 27(1):71-82.JI H Y, ZHU H Z.Progress of genome editing approaches towards gene therapy[J].Chinese Bulletin of Life Sciences, 2015, 27(1):71-82.(in Chinese)
|
[18] |
殷文晶, 陈振概, 黄佳慧, 等.基于CRISPR-Cas9基因编辑技术在作物中的应用[J].生物工程学报, 2023, 39(2):399-424.YIN W J, CHEN Z G, HUANG J H, et al.Application of CRISPR-Cas9 gene editing technology in crop breeding[J].Chinese Journal of Biotechnology, 2023, 39(2):399-424.(in Chinese)
|
[19] |
费晓钰, 石超群, 刘雪明, 等.CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J].畜牧兽医学报, 2023, 54(3):934-946.FEI X Y, SHI C Q, LIU X M, et al.CRISPR/Cas9 system mediated gene modificated MRC1 in PK15 cells reduce PCV2 replication[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):934-946.(in Chinese)
|
[20] |
GUO C T, MA X T, GAO F, et al.Off-target effects in CRISPR/Cas9 gene editing[J].Front Bioeng Biotechnol, 2023, 11:1143157.
|
[21] |
YANG Q Q, WU L L, MENG J, et al.EpiCas-DL:predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning[J].Comput Struct Biotechnol J, 2023, 21:202-211.
|
[22] |
ZHOU S W, CAI B, HE C, et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J].Front Genet, 2019, 10:215.
|
[23] |
CHEN W, MCKENNA A, SCHREIBER J, et al.Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair[J].Nucleic Acids Res, 2019, 47(15):7989-8003.
|
[24] |
CRISPO M, VILARIÑO M, DOS SANTOS-NETO P C, et al.Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis[J].Transgenic Res, 2015, 24(1):31-41.
|
[25] |
LEDDA S, IDDA A, KELLY J, et al.A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor[J]. J Assist Reprod Genet, 2016, 33(4):513-518.
|
[26] |
UYTTENDAELE I, LEMMENS I, VERHEE A, et al.Mammalian protein-protein interaction trap (MAPPIT) analysis of STAT5, CIS, and SOCS2 interactions with the growth hormone receptor[J].Mol Endocrinol, 2007, 21(11):2821-2831.
|
[27] |
尹 智, 袁雪薇, 吕嘉伟, 等.CRISPR/Cas9系统介导的一步法胚胎注射获得猪GGTA1敲除胚胎[J].畜牧与兽医, 2016, 48(4):15-18.YIN Z, YUAN X W, LV J W, et al.One-step generation of GGTA1-knockout pig embryos by injection of CRISPR/Cas9 system[J].Animal Husbandry & Veterinary Medicine, 2016, 48(4):15-18.(in Chinese)
|
[28] |
尉翔栋, 吕晨晨, 朱肖亭, 等.利用CRISPR-Cas9基因编辑技术制备牛MSTN基因编辑胚胎[J].河南农业科学, 2019, 48(2):131-136.YU X D, LV C C, ZHU X T, et al.Preparation of bovine MSTN gene edited embryos using CRISPR-Cas9 gene editing technology[J]. Journal of Henan Agricultural Sciences, 2019, 48(2):131-136.(in Chinese)
|
[29] |
ZHANG X M, LI W R, WU Y S, et al.Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos[J].Theriogenology, 2017, 91:163-172.e2.
|
[30] |
HUSZÁR K, WELKER Z, GYÖRGYPÁL Z, et al.Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs[J].Nucleic Acids Res, 2023, 51(11):5847-5863.
|
[31] |
NOSHAY J M, WALKER T, ALEXANDER W G, et al.Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering[J].Nucleic Acids Res, 2023, doi:10.1093/nar/gkad736.
|
[32] |
LIU Y, FAN R, YI J K, et al.A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency[J].Comput Biol Med, 2023, 165:107476.
|
[33] |
DYKE E, BIJNAGTE-SCHOENMAKER C, WU K M, et al.Generation of induced pluripotent stem cell line carrying frameshift variants in NPHP1 (UCSFi001-A-68) using CRISPR/Cas9[J].Stem Cell Res, 2023, 68:103053.
|
[34] |
ABEUOVA L, KALI B, TUSSIPKAN D, et al.CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato[J].Transgenic Res, 2023, doi:10.1007/s11248-023-00356-8.
|
[35] |
JEONG Y J, CHO J, KWAK J, et al.Immortalization of primary marmoset skin fibroblasts by CRISPR-Cas9-mediated gene targeting[J].Anim Cells Syst (Seoul), 2022, 26(6):266-274.
|
[36] |
QIU Z W, LIU M Z, CHEN Z H, et al.High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases[J].Nucleic Acids Res, 2013, 41(11):e120.
|
[37] |
HU R, FAN Z Y, WANG B Y, et al.RAPID COMMUNICATION:generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J].J Anim Sci, 2017, 95(5):2019-2024.
|
[38] |
XU C L, RUAN M Z, RAGI S D, et al.CRISPR off-target analysis platforms[J].Methods Mol Biol, 2023, 2560:279-285.
|
[39] |
TIAN R, CAO C, HE D, et al.Massively parallel CRISPR off-target detection enables rapid off-target prediction model building[J].Med, 2023, 4(7):478-492.e6.
|
[40] |
WIENERT B, CROMER M K.CRISPR nuclease off-target activity and mitigation strategies[J].Front Genome Ed, 2022, 4:1050507.
|
[41] |
郭日红.Cas9技术介导兔和山羊MSTN与CLPG1基因编辑的研究[D].南京:南京农业大学, 2017.GUO R H.Genome editing at MSTN and CLPG1 locus of rabbit and goat using Cas9[D].Nanjing:Nanjing Agricultural University, 2017.(in Chinese)
|
[42] |
赵为民, 王慧利, 曹少先, 等.猪CD163基因的单碱基编辑研究[J].畜牧兽医学报, 2022, 53(4):1041-1050.ZHAO W M, WANG H L, CAO S X, et al.The study of base editing of porcine CD163 gene[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(4):1041-1050.(in Chinese)
|