畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4290-4301.doi: 10.11843/j.issn.0366-6964.2024.10.005
周蜓蜓1(), 李立1, 吴燕涛1, 逯文颖1, 付宝权1,2, 殷宏1,2, 贾万忠1,2,*(
), 闫鸿斌1,*(
)
收稿日期:
2023-12-25
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
贾万忠,闫鸿斌
E-mail:1305403647@qq.com;jiawanzhong@caas.cn;yanhongbin@caas.cn
作者简介:
周蜓蜓(1999-), 女, 重庆云阳人, 硕士生, 主要从事棘球蚴病发育与致病机制研究, E-mail: 1305403647@qq.com
基金资助:
Tingting ZHOU1(), Li LI1, Yantao WU1, Wenying LU1, Baoquan FU1,2, Hong YIN1,2, Wanzhong JIA1,2,*(
), Hongbin YAN1,*(
)
Received:
2023-12-25
Online:
2024-10-23
Published:
2024-11-04
Contact:
Wanzhong JIA, Hongbin YAN
E-mail:1305403647@qq.com;jiawanzhong@caas.cn;yanhongbin@caas.cn
摘要:
单细胞转录组代表了某一时刻单个细胞内所有mRNA总表达量,其表达量反映该细胞的总体特征。通过单细胞转录组测序(single cell RNA sequencing, scRNA-seq)技术对单个细胞的全部RNA进行逆转录、扩增和测序,测序结果中包含的大量信息有可能重塑对发育生物学、基因调控以及健康和疾病中细胞异质性的理解。随着科学技术的不断发展,测序技术也在不断进步,scRNA-seq全方位、高通量以及高分辨率的特点可构建更细致、全面和精准的单细胞图谱。本文综述了常用scRNA-seq方法及其数据分析主要流程和单细胞转录组学技术在寄生虫学与寄生虫病领域研究中的应用,以期为该领域相关研究提供参考资料。
中图分类号:
周蜓蜓, 李立, 吴燕涛, 逯文颖, 付宝权, 殷宏, 贾万忠, 闫鸿斌. 单细胞转录组学技术及其在寄生虫研究中的应用进展[J]. 畜牧兽医学报, 2024, 55(10): 4290-4301.
Tingting ZHOU, Li LI, Yantao WU, Wenying LU, Baoquan FU, Hong YIN, Wanzhong JIA, Hongbin YAN. Progress on Single-cell Transcriptomics Technology and Its Applications in Research on Parasites[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4290-4301.
表 1
几种scRNA-seq方法的比较"
测序技术 | 单细胞分离技术 | 转录本覆盖范围 | 优势 | 扩增 | 唯一分子标识符 |
Sequencing technology | Single cell separation | Transcript coverage | Advantage | Amplification | UMI |
CEL-seq/CEL-seq2 | 手动稀释分离 | 3′端序列 | 线性扩增以高精度减少非特异性片段的积累 | IVT | 有 |
MARS-seq/MARS-seq2 | 荧光激活细胞分选 | 3′端序列 | 高通量,良好的稳定性 | IVT | 有 |
SMART-seq/SMART-seq2 | 手动稀释分离 | 全长 | cDNA文库的平均长度和产量升高,序列覆盖率较高 | PCR | 无 |
SMART-seq3 | 荧光激活细胞分选 | 全长 | 高灵敏度,能够较好地识别细胞类型、状态及亚型特异性 | PCR | 有 |
SMART-seq3xpress | 荧光激活细胞分选 | 全长 | 高通量,耗时短,低成本 | PCR | 有 |
SCRB-seq | 荧光激活细胞分选 | 3′端序列 | 高通量,低成本 | PCR | 有 |
Drop-seq | 微滴技术 | 3′端序列 | 高通量,低成本 | PCR | 有 |
inDrop | 微流体技术 | 3′端序列 | 高通量,低成本 | IVT | 有 |
10×Genomics | 微流体技术 | 3′端序列 | 高通量,低成本,高灵敏度 | PCR | 有 |
Microwell-seq | 琼脂糖微孔阵列 | 全长 | 高通量,低成本 | PCR | 无 |
Seq-well | 微孔阵列 | 3′端序列 | 高通量,交叉污染较小 | PCR | 有 |
Live-seq | 流体力显微镜技术 | 全长 | 保留细胞生物活性 | PCR | 无 |
1 |
CHAMBERS D C , CAREW A M , LUKOWSKI S W , et al. Transcriptomics and single-cell RNA-sequencing[J]. Respirology, 2019, 24 (1): 29- 36.
doi: 10.1111/resp.13412 |
2 |
MANZONI C , KIA D A , VANDROVCOVA J , et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences[J]. Brief Bioinform, 2018, 19 (2): 286- 302.
doi: 10.1093/bib/bbw114 |
3 |
EBERWINE J , YEH H , MIYASHIRO K , et al. Analysis of gene expression in single live neurons[J]. Proc Natl Acad Sci U S A, 1992, 89 (7): 3010- 3014.
doi: 10.1073/pnas.89.7.3010 |
4 |
TANG F C , BARBACIORU C , WANG Y Z , et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6 (5): 377- 382.
doi: 10.1038/nmeth.1315 |
5 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
6 | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54 (8): 3183- 3194. |
YANG F S , GU X B . A review on applications of PCR technology in the diagnosis of parasitic diseases in the past 10 years[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3183- 3194. | |
7 |
LI P Y , SARFATI D N , XUE Y , et al. Single-cell analysis of Schistosoma mansoni identifies a conserved genetic program controlling germline stem cell fate[J]. Nat Commun, 2021, 12 (1): 485.
doi: 10.1038/s41467-020-20794-w |
8 | FENG M , ZHANG Y H , ZHOU H , et al. Single-cell RNA sequencing reveals that the switching of the transcriptional profiles of cysteine-related genes alters the virulence of Entamoeba histolytica[J]. mSystems, 2020, 5 (6): e01095- 20. |
9 |
RUBERTO A A , BOURKE C , MERIENNE N , et al. Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites[J]. Sci Rep, 2021, 11 (1): 4127.
doi: 10.1038/s41598-021-82914-w |
10 |
OLSEN T K , BARYAWNO N . Introduction to Single-cell RNA sequencing[J]. Curr Protoc Mol Biol, 2018, 122 (1): e57.
doi: 10.1002/cpmb.57 |
11 |
PAIK D T , CHO S , TIAN L , et al. Single-cell RNA sequencing in cardiovascular development, disease and medicine[J]. Nat Rev Cardiol, 2020, 17 (8): 457- 473.
doi: 10.1038/s41569-020-0359-y |
12 |
ZIEGENHAIN C , VIETH B , PAREKH S , et al. Comparative analysis of Single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65 (4): 631- 643.4.
doi: 10.1016/j.molcel.2017.01.023 |
13 |
HASHIMSHONY T , WAGNER F , SHER N , et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2 (3): 666- 673.
doi: 10.1016/j.celrep.2012.08.003 |
14 |
HASHIMSHONY T , SENDEROVICH N , AVITAL G , et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17, 77.
doi: 10.1186/s13059-016-0938-8 |
15 |
JAITIN D A , KENIGSBERG E , KEREN-SHAUL H , et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343 (6172): 776- 779.
doi: 10.1126/science.1247651 |
16 |
KEREN-SHAUL H , KENIGSBERG E , JAITIN D A , et al. MARS-seq2. 0:an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing[J]. Nat Protoc, 2019, 14 (6): 1841- 1862.
doi: 10.1038/s41596-019-0164-4 |
17 |
RAMSKÖLD D , LUO S J , WANG Y C , et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30 (8): 777- 782.
doi: 10.1038/nbt.2282 |
18 |
PICELLI S , BJÖRKLUND Å K , FARIDANI O R , et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10 (11): 1096- 1098.
doi: 10.1038/nmeth.2639 |
19 |
HAGEMANN-JENSEN M , ZIEGENHAIN C , CHEN P , et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3[J]. Nat Biotechnol, 2020, 38 (6): 708- 714.
doi: 10.1038/s41587-020-0497-0 |
20 |
HAGEMANN-JENSEN M , ZIEGENHAIN C , SANDBERG R . Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress[J]. Nat Biotechnol, 2022, 40 (10): 1452- 1457.
doi: 10.1038/s41587-022-01311-4 |
21 | SOUMILLON M , CACCHIARELLI D , SEMRAU S , et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq[J]. bioRxiv, 2014, 003236. |
22 |
MACOSKO E Z , BASU A , SATIJA R , et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161 (5): 1202- 1214.
doi: 10.1016/j.cell.2015.05.002 |
23 |
KLEIN A M , MAZUTIS L , AKARTUNA I , et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161 (5): 1187- 1201.
doi: 10.1016/j.cell.2015.04.044 |
24 |
ZHENG G X Y , TERRY J M , BELGRADER P , et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8, 14049.
doi: 10.1038/ncomms14049 |
25 |
CHEN W Z , GUILLAUME-GENTIL O , RAINER P Y , et al. Live-seq enables temporal transcriptomic recording of single cells[J]. Nature, 2022, 608 (7924): 733- 740.
doi: 10.1038/s41586-022-05046-9 |
26 |
HAN X P , WANG R Y , ZHOU Y C , et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172 (5): 1091- 1107.17.
doi: 10.1016/j.cell.2018.02.001 |
27 |
GIERAHN T M , WADSWORTH Ⅱ M H , HUGHES T K , et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14 (4): 395- 398.
doi: 10.1038/nmeth.4179 |
28 | 熊和丽, 沙茜, 刘韶娜, 等. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38 (3): 226- 233. |
XIONG H L , SHA Q , LIU S N , et al. Application of single-cell transcriptome sequencing in animals[J]. Biotechnology Bulletin, 2022, 38 (3): 226- 233. | |
29 |
ZHANG X N , LI T Q , LIU F , et al. Comparative analysis of droplet-based ultra-high-throughput single-cell rna-seq systems[J]. Mol Cell, 2019, 73 (1): 130- 142.5.
doi: 10.1016/j.molcel.2018.10.020 |
30 |
MEISTER A , GABI M , BEHR P , et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond[J]. Nano Lett, 2009, 9 (6): 2501- 2507.
doi: 10.1021/nl901384x |
31 |
PICELLI S , FARIDANI O R , BJÖRKLUND Å K , et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9 (1): 171- 181.
doi: 10.1038/nprot.2014.006 |
32 |
HORVATH R . Single-cell temporal transcriptomics from tiny cytoplasmic biopsies[J]. Cell Rep Methods, 2022, 2 (10): 100319.
doi: 10.1016/j.crmeth.2022.100319 |
33 |
TANG Q K , LI W J , HUANG J , et al. Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease[J]. Orphanet J Rare Dis, 2023, 18 (1): 174.
doi: 10.1186/s13023-023-02781-8 |
34 |
DOBIN A , DAVIS C A , SCHLESINGER F , et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29 (1): 15- 21.
doi: 10.1093/bioinformatics/bts635 |
35 |
YOU Y , TIAN L Y , SU S A , et al. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows[J]. Genome Biol, 2021, 22 (1): 339.
doi: 10.1186/s13059-021-02552-3 |
36 |
ENGSTRÖM P G , STEIJGER T , SIPOS B , et al. Systematic evaluation of spliced alignment programs for RNA-seq data[J]. Nat Methods, 2013, 10 (12): 1185- 1191.
doi: 10.1038/nmeth.2722 |
37 |
CHEN G , NING B T , SHI T L . Single-cell RNA-seq technologies and related computational data analysis[J]. Front Genet, 2019, 10, 317.
doi: 10.3389/fgene.2019.00317 |
38 | SLOVIN S , CARISSIMO A , PANARIELLO F , et al. Single-cell RNA sequencing analysis: a step-by-step overview[J]. Methods Mol Biol, 2021, 2284, 343- 365. |
39 |
BUTLER A , HOFFMAN P , SMIBERT P , et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36 (5): 411- 420.
doi: 10.1038/nbt.4096 |
40 |
CAO J Y , SPIELMANN M , QIU X J , et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566 (7745): 496- 502.
doi: 10.1038/s41586-019-0969-x |
41 |
CHEN Q X , YIN Q J , SONG J X , et al. Identification of monocyte-associated genes as predictive biomarkers of heart failure after acute myocardial infarction[J]. BMC Med Genomics, 2021, 14 (1): 44.
doi: 10.1186/s12920-021-00890-6 |
42 | 赵琴平, 董惠芬, 蒋明森. 关于寄生虫病防治研究的几点思考[J]. 中国血吸虫病防治杂志, 2013, 25 (6): 564-569, 589. |
ZHAO Q P , DONG H F , JIANG M S . Views for research development of control of parasitic diseases[J]. Chinese Journal of Schistosomiasis Control, 2013, 25 (6): 564-569, 589. | |
43 |
TINTORI S C , NISHIMURA E O , GOLDEN P , et al. A transcriptional lineage of the early C. elegans embryo[J]. Dev Cell, 2016, 38 (4): 430- 444.
doi: 10.1016/j.devcel.2016.07.025 |
44 | LORENZO R , ONIZUKA M , DEFRANCE M , et al. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes[J]. Nucleic Acids Res, 2020, 48 (13): 7119- 7134. |
45 |
TAYLOR S R , SANTPERE G , WEINREB A , et al. Molecular topography of an entire nervous system[J]. Cell, 2021, 184 (16): 4329- 4347.23.
doi: 10.1016/j.cell.2021.06.023 |
46 |
FINCHER C T , WURTZEL O , DE HOOG T , et al. Cell type transcriptome atlas for the planarian Schmidtea mediterranea[J]. Science, 2018, 360 (6391): eaaq1736.
doi: 10.1126/science.aaq1736 |
47 |
ZENG A , LI H , GUO L H , et al. Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration[J]. Cell, 2018, 173 (7): 1593- 1608.20.
doi: 10.1016/j.cell.2018.05.006 |
48 |
WURTZEL O , COTE L E , POIRIER A , et al. A generic and cell-type-specific wound response precedes regeneration in planarians[J]. Dev Cell, 2015, 35 (5): 632- 645.
doi: 10.1016/j.devcel.2015.11.004 |
49 |
SONG L G , ZENG X D , LI Y X , et al. Imported parasitic diseases in mainland China: current status and perspectives for better control and prevention[J]. Infect Dis Poverty, 2018, 7 (1): 78.
doi: 10.1186/s40249-018-0454-z |
50 |
BAHK Y Y , SHIN E H , CHO S H , et al. Prevention and control strategies for parasitic infections in the Korea centers for disease control and prevention[J]. Korean J Parasitol, 2018, 56 (5): 401- 408.
doi: 10.3347/kjp.2018.56.5.401 |
51 | 叶美琼. 寄生虫病的危害及防治对策[J]. 今日畜牧兽医, 2021, 37 (5): 88- 89. |
YE M Q . The harm and prevention strategies of parasitic diseases[J]. Today Animal Husbandry and Veterinary Medicine, 2021, 37 (5): 88- 89. | |
52 |
LVSCHER A , DE KONING H P , MÄSER P . Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting[J]. Curr Pharm Des, 2007, 13 (6): 555- 567.
doi: 10.2174/138161207780162809 |
53 |
MATETOVICI I , CALJON G , VAN DEN ABBEELE J . Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland[J]. BMC Genomics, 2016, 17 (1): 971.
doi: 10.1186/s12864-016-3283-0 |
54 |
HUTCHINSON S , FOULON S , CROUZOLS A , et al. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands[J]. PLoS Pathog, 2021, 17 (9): e1009904.
doi: 10.1371/journal.ppat.1009904 |
55 |
VIGNERON A , O'NEILL M B , WEISS B L , et al. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens[J]. Proc Natl Acad Sci U S A, 2020, 117 (5): 2613- 2621.
doi: 10.1073/pnas.1914423117 |
56 |
SORIA C L D , LEE J , CHONG T , et al. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni[J]. Nat Commun, 2020, 11 (1): 6411.
doi: 10.1038/s41467-020-20092-5 |
57 |
WANG B , LEE J , LI P Y , et al. Stem cell heterogeneity drives the parasitic life cycle of Schistosoma mansoni[J]. eLife, 2018, 7, e35449.
doi: 10.7554/eLife.35449 |
58 | 汪茂林, 杨洪军. 单细胞转录组测序技术在药物研究中的应用[J]. 药学学报, 2023, 58 (9): 2551- 2559. |
WANG M L , YANG H J . Single cell RNA sequencing technology applicated for drug discovery[J]. Acta Pharmaceutica Sinica, 2023, 58 (9): 2551- 2559. | |
59 |
WHITE N J . Erratum to: Malaria parasite clearance[J]. Malar J, 2017, 16 (1): 194.
doi: 10.1186/s12936-017-1785-0 |
60 |
RAWAT M , SRIVASTAVA A , JOHRI S , et al. Single-cell RNA sequencing reveals cellular heterogeneity and stage transition under temperature stress in synchronized Plasmodium falciparum cells[J]. Microbiol Spectr, 2021, 9 (1): e0000821.
doi: 10.1128/Spectrum.00008-21 |
61 |
ROCAMORA F , ZHU L , LIONG K Y , et al. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites[J]. PLoS Pathog, 2018, 14 (3): e1006930.
doi: 10.1371/journal.ppat.1006930 |
62 |
HE X L , CHEN J Y , FENG Y L , et al. Single-cell RNA sequencing deciphers the mechanism of sepsis-induced liver injury and the therapeutic effects of artesunate[J]. Acta Pharmacol Sin, 2023, 44 (9): 1801- 1814.
doi: 10.1038/s41401-023-01065-y |
63 | ZHENG D D , ZHOU J , QIAN L , et al. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment[J]. Bioact Mater, 2023, 22, 567- 587. |
64 |
YE C Y , HO D J , NERI M , et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery[J]. Nat Commun, 2018, 9 (1): 4307.
doi: 10.1038/s41467-018-06500-x |
65 |
XIE R , LIU Y , WANG S Y , et al. Combinatorial perturbation sequencing on single cells using microwell-based droplet random pairing[J]. Biosens Bioelectron, 2023, 220, 114913.
doi: 10.1016/j.bios.2022.114913 |
66 | AUTIER B , MANUEL C , LUNDSTROEM-STADELMANN B , et al. Endogenous IL-33 accelerates metacestode growth during late-stage alveolar echinococcosis[J]. Microbiol Spectr, 2023, 11 (2): e04239- 22. |
67 | YARAHMADOV T , WANG J H , SANCHEZ-TALTAVULL D , et al. Primary infection by E. multilocularis induces distinct patterns of cross talk between hepatic natural killer T Cells and regulatory T cells in mice[J]. Infect Immun, 2022, 90 (8): e00174- 22. |
68 | WEN H , VUITTON L , TUXUN T , et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32 (2): e00075- 18. |
69 |
JUNGHANSS T , DA SILVA A M , HORTON J , et al. Clinical management of cystic echinococcosis: state of the art, problems, and perspectives[J]. Am J Trop Med Hyg, 2008, 79 (3): 301- 311.
doi: 10.4269/ajtmh.2008.79.301 |
70 |
YASEN A , SUN W , AINI A , et al. Single-cell RNA sequencing reveals the heterogeneity of infiltrating immune cell profiles in the hepatic cystic echinococcosis microenvironment[J]. Infect Immun, 2021, 89 (12): e0029721.
doi: 10.1128/IAI.00297-21 |
71 | JIANG X F , ZHANG X F , JIANG N , et al. The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity[J]. Front Immunol, 2022, 13, 1067338. |
72 | AMBROSIO R E , DE WAAL D T . Diagnosis of parasitic disease[J]. Rev Sci Tech, 1990, 9 (3): 759- 778. |
73 | REID A J , TALMAN A M , BENNETT H M , et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites[J]. eLife, 2018, 7, e33105. |
74 | LOURADOUR I , FERREIRA T R , DUGE E , et al. Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq[J]. eLife, 2022, 11, e73488. |
75 | XUE Y , THEISEN T C , RASTOGI S , et al. A single-parasite transcriptional atlas of Toxoplasma Gondii reveals novel control of antigen expression[J]. eLife, 2020, 9, e54129. |
76 | ROZANSKI A , MOON H , BRANDL H , et al. PlanMine 3. 0-improvements to a mineable resource of flatworm biology and biodiversity[J]. Nucleic Acids Res, 2019, 47 (D1): D812- D820. |
77 | VOTYPKA J, MODRY D, OBORNÍK M, et al. Apicomplexa[M]//ARCHIBALD J M, SIMPSON A G B, SLAMOVITS C H. Handbook of the Protists. 2nd ed. New York: Springer, 2017: 567-624. |
78 | JANOUŠKOVEC J , PASKEROVA G G , MIROLIUBOVA T S , et al. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles[J]. eLife, 2019, 8, e49662. |
79 | MATHUR V , KOLÍSKO M , HEHENBERGER E , et al. Multiple independent origins of Apicomplexan-like parasites[J]. Curr Biol, 2019, 29 (17): 2936- 2941.5. |
80 | MATHUR V , SALOMAKI E D , WAKEMAN K C , et al. Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids[J]. Mol Biol Evol, 2023, 40 (1): msad002. |
81 | LAHR D J G , KOSAKYAN A , LARA E , et al. Phylogenomics and morphological reconstruction of arcellinida testate amoebae highlight diversity of microbial eukaryotes in the neoproterozoic[J]. Curr Biol, 2019, 29 (6): 991- 1001.3. |
82 | KANG S , TICE A K , SPIEGEL F W , et al. Between a pod and a hard test: the deep evolution of amoebae[J]. Mol Biol Evol, 2017, 34 (9): 2258- 2270. |
[1] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[2] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[3] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[4] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[5] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[6] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[7] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[8] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[9] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[10] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[11] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[12] | 张寅梁, 张冉, 王文君, 王德贺, 李兰会, 周荣艳. 基于转录组数据挖掘蛋鸡产蛋前后骨代谢差异的关键候选基因[J]. 畜牧兽医学报, 2024, 55(10): 4455-4465. |
[13] | 刘益丽, 唐娇, 闵奇, 杨露, 王泽宁, 胡莲, 赵迪, 江明锋. 基于转录组数据挖掘牦牛皱胃发育代谢的关键候选基因[J]. 畜牧兽医学报, 2024, 55(1): 153-168. |
[14] | 梁凯欣, 钟海文, 宋长绪, 杨化强, 黄思秀, 徐铮. SYNGR2影响猪圆环病毒2型体外增殖的研究[J]. 畜牧兽医学报, 2023, 54(9): 3824-3835. |
[15] | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54(8): 3183-3194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||