Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 4829-4839.doi: 10.11843/j.issn.0366-6964.2024.11.005
• Review • Previous Articles Next Articles
Qingqin ZENG1(), Rusong LI2, Rui LI1, Chunyin ZHU1, Xinle WANG2, Xuedong HE3, Jialing HUAN1, Ziyu YE1, Ying WANG4, Jing ZHANG4, Tianqi XIA1, Houhui SONG1,*(
), Yadong ZHENG1,*(
), Yongchun YANG1,*(
)
Received:
2023-12-12
Online:
2024-11-23
Published:
2024-11-30
Contact:
Houhui SONG, Yadong ZHENG, Yongchun YANG
E-mail:18065198536@163.com;songhh@zafu.edu.cn;zhengyadong@zafu.edu.cn;yyc@zafu.edu.cn
CLC Number:
Qingqin ZENG, Rusong LI, Rui LI, Chunyin ZHU, Xinle WANG, Xuedong HE, Jialing HUAN, Ziyu YE, Ying WANG, Jing ZHANG, Tianqi XIA, Houhui SONG, Yadong ZHENG, Yongchun YANG. Expression Regulation, Structure and Immune Responses of Variant Surface Glycoproteins in Trypanosomes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4829-4839.
Table 1
Regulation of VSG expression"
调控水平 Regulation level | 调控因素/分子 Regulatory factors/molecules | 功能 Functions | 参考文献 Reference |
染色体水平 Chromosome level | 染色体折叠结构域及其附近的染色质结构 | 确保单一VSG表达 | [ |
含VSG基因的小型染色体末端 | 参与VSG的选择性表达 | [ | |
通用小环序列结合蛋白 | 通过影响染色质重塑调节VSG表达 | [ | |
跨泡DNA聚合酶 | 维持染色体正常分离,确保单一VSG表达 | [ | |
转录水平 Transcription level | ESB特异蛋白1 | 参与招募ESB组成成分 | [ |
含SAP结构域的DNA结合蛋白 | 作用于表达位点启动子,抑制多种VSG表达 | [ | |
卡哈尔体 | 参与VSG的转录、剪切,实现对单个 | [ | |
剪切引导序列阵列体 | VSG的高水平表达 | ||
NUFIP剪切因子体 | |||
DNA聚合酶IE | 调节VSG切换 | [ | |
共济失调毛细血管扩张和Rad3相关激酶 | [ | ||
组蛋白甲基转移酶DOT1B及其互作 | [ | ||
蛋白RNA酶H2 | |||
阻遏物激活蛋白1 | [ | ||
同源重组酶RAD51 | [ | ||
同源重组酶RAD50 | [ | ||
转录激活子 | [ | ||
转录后水平 Posttranscriptional level | ploy(A)尾巴中腺苷进行甲基化修饰 | 增强VSG mRNA的稳定性 | [ |
细胞周期蛋白F盒蛋白2及其互作蛋白 | 形成RNA结合复合体,增强VSG mRNA稳定 | [ |
1 |
DESQUESNESM,GONZATTIM,SAZMANDA,et al.A review on the diagnosis of animal trypanosomoses[J].Parasit Vectors,2022,15(1):64.
doi: 10.1186/s13071-022-05190-1 |
2 |
PAYSE,RADWANSKAM,MAGEZS.The pathogenesis of African trypanosomiasis[J].Annu Rev Pathol,2023,18,19-45.
doi: 10.1146/annurev-pathmechdis-031621-025153 |
3 | 甘露,郑会珍,诺明达来,等.伊氏锥虫伊犁株扩繁及其PFR基因克隆表达和生物信息学分析[J].中国畜牧兽医,2023,50(2):469-478. |
GANL,ZHENGH Z,NUOM D L,et al.Propagation of Trypanosoma evansi Yili strain and cloning, expression and bioinformatics analysis of its PFR gene[J].China Animal Husbandry & Veterinary Medicine,2023,50(2):469-478. | |
4 |
SIMAN,MCLAUGHLINE J,HUTCHINSONS,et al.Escaping the immune system by DNA repair and recombination in African trypanosomes[J].Open Biol,2019,9(11):190182.
doi: 10.1098/rsob.190182 |
5 |
SILVA PEREIRAS,JACKSONA P,FIGUEIREDOL M.Evolution of the variant surface glycoprotein family in African trypanosomes[J].Trends Parasitol,2022,38(1):23-36.
doi: 10.1016/j.pt.2021.07.012 |
6 |
EL-SAYEDN M,MYLERP J,BLANDING,et al.Comparative genomics of trypanosomatid parasitic protozoa[J].Science,2005,309(5733):404-409.
doi: 10.1126/science.1112181 |
7 |
ZHENGL L,JIANGN,SANGX Y,et al.In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra[J].Sci China Life Sci,2019,62(3):406-419.
doi: 10.1007/s11427-018-9473-8 |
8 |
BERRIMANM,GHEDINE,HERTZ-FOWLERC,et al.The genome of the African trypanosome Trypanosoma brucei[J].Science,2005,309(5733):416-422.
doi: 10.1126/science.1112642 |
9 | DAVAASURENB,YAMAGISHIJ,MIZUSHIMAD,et al.Draft genome sequence of Trypanosoma equiperdum strain IVM-t1[J].Microbiol Resour Announc,2019,8(9):e01119-18. |
10 |
HÉBERTL,MOUMENB,MADELINEA,et al.First draft genome sequence of the dourine causative agent: Trypanosoma equiperdum strain OVI[J].J Genomics,2017,5,1-3.
doi: 10.7150/jgen.17904 |
11 |
JACKSONA P,BERRYA,ASLETTM,et al.Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species[J].Proc Natl Acad Sci U S A,2012,109(9):3416-3421.
doi: 10.1073/pnas.1117313109 |
12 |
DÍAZ-VIRAQUÉF,CHIRIBAOM L,LIBISCHM G,et al.Genome-wide chromatin interaction map for Trypanosoma cruzi[J].Nat Microbiol,2023,8(11):2103-2114.
doi: 10.1038/s41564-023-01483-y |
13 |
MÜLLERL S M,COSENTINOR O,FÖRSTNERK U,et al.Genome organization and DNA accessibility control antigenic variation in trypanosomes[J].Nature,2018,563(7729):121-125.
doi: 10.1038/s41586-018-0619-8 |
14 |
FARIAJ,LUZAKV,MÜLLERL S M,et al.Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes[J].Nat Microbiol,2021,6(3):289-300.
doi: 10.1038/s41564-020-00833-4 |
15 |
SONIA,KLEBANOV-AKOPYANO,ERBENE,et al.UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes[J].Nucleic Acids Res,2023,51(11):5678-5698.
doi: 10.1093/nar/gkad402 |
16 |
LEALA Z,SCHWEBSM,BRIGGSE,et al.Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation[J].Nucleic Acids Res,2020,48(17):9660-9680.
doi: 10.1093/nar/gkaa686 |
17 |
ESCRIVANID O,SCHEIDTV,TINTIM,et al.Competition among variants is predictable and contributes to the antigenic variation dynamics of African trypanosomes[J].PLoS Pathog,2023,19(7):e1011530.
doi: 10.1371/journal.ppat.1011530 |
18 |
LÓPEZ-ESCOBARL,HÄNISCHB,HALLIDAYC,et al.Stage-specific transcription activator ESB1 regulates monoallelic antigen expression in Trypanosoma brucei[J].Nat Microbiol,2022,7(8):1280-1290.
doi: 10.1038/s41564-022-01175-z |
19 |
DAVIESC,OOIC P,SIOUTASG,et al.TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei[J].Nucleic Acids Res,2021,49(6):3242-3262.
doi: 10.1093/nar/gkab109 |
20 |
BUDZAKJ,JONESR,TSCHUDIC,et al.An assembly of nuclear bodies associates with the active VSG expression site in African trypanosomes[J].Nat Commun,2022,13(1):101.
doi: 10.1038/s41467-021-27625-6 |
21 |
RABBANIM A G,TONINIM L,AFRINM,et al.POLIE suppresses telomerase-mediated telomere G-strand extension and helps ensure proper telomere C-strand synthesis in trypanosomes[J].Nucleic Acids Res,2022,50(4):2036-2050.
doi: 10.1093/nar/gkac023 |
22 |
BLACKJ A,CROUCHK,LEMGRUBERL,et al.Trypanosoma brucei ATR links DNA damage signaling during antigenic variation with regulation of RNA polymerase Ⅰ-transcribed surface antigens[J].Cell Rep,2020,30(3):836-851.
doi: 10.1016/j.celrep.2019.12.049 |
23 |
EISENHUTHN,VELLMERT,RAUHE T,et al.A DOT1B/ribonuclease H2 protein complex is involved in R-loop processing, genomic integrity, and antigenic variation in Trypanosoma brucei[J].Mbio,2021,12(6):e0135221.
doi: 10.1128/mBio.01352-21 |
24 |
GAURAVA K,AFRINM,YANGX,et al.The RRM-mediated RNA binding activity in T. brucei RAP1 is essential for VSG monoallelic expression[J].Nat Commun,2023,14(1):1576.
doi: 10.1038/s41467-023-37307-0 |
25 |
GIRASOLM J,KRASILNIKOVAM,MARQUESC A,et al.RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei[J].Proc Natl Acad Sci U S A,2023,120(48):e2309306120.
doi: 10.1073/pnas.2309306120 |
26 |
MEHNERTA K,PROROCICM,DUJEANCOURT-HENRYA,et al.The MRN complex promotes DNA repair by homologous recombination and restrains antigenic variation in African trypanosomes[J].Nucleic Acids Res,2021,49(3):1436-1454.
doi: 10.1093/nar/gkaa1265 |
27 |
SAURAA,IRIBARRENP A,ROJAS-BARROSD,et al.SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes[J].EMBO Rep,2019,20(12):e48029.
doi: 10.15252/embr.201948029 |
28 |
VIEGASI J,DE MACEDOJ P,SERRAL,et al.N6-methyladenosine in poly(A) tails stabilize VSG transcripts[J].Nature,2022,604(7905):362-370.
doi: 10.1038/s41586-022-04544-0 |
29 |
MELO DO NASCIMENTOL,EGLERF,ARNOLDK,et al.Functional insights from a surface antigen mRNA-bound proteome[J].eLife,2021,10,e68136.
doi: 10.7554/eLife.68136 |
30 |
BRAVO RUIZG,TINTIM,RIDGWAYM,et al.Control of variant surface glycoprotein expression by CFB2 in Trypanosoma brucei and quantitative proteomic connections to translation and cytokinesis[J].mSphere,2022,7(2):e0006922.
doi: 10.1128/msphere.00069-22 |
31 |
MELO DO NASCIMENTOL,TERRAOM,MARUCHAK K,et al.The RNA-associated proteins MKT1 and MKT1L form alternative PBP1-containing complexes in Trypanosoma brucei[J].J Biol Chem,2020,295(32):10940-10955.
doi: 10.1074/jbc.RA120.013306 |
32 |
SINGHA,MINIAI,DROLLD,et al.Trypanosome MKT1 and the RNA-binding protein ZC3H11:interactions and potential roles in post-transcriptional regulatory networks[J].Nucleic Acids Res,2014,42(7):4652-4668.
doi: 10.1093/nar/gkt1416 |
33 |
GÜNZLA,KIRKHAMJ K,NGUYENT N,et al.Mono-allelic VSG expression by RNA polymerase Ⅰ in Trypanosoma brucei: expression site control from both ends?[J].Gene,2015,556(1):68-73.
doi: 10.1016/j.gene.2014.09.047 |
34 |
SILVA PEREIRAS,DE ALMEIDA CASTILHO NETOK J G,DUFFYC W,et al.Variant antigen diversity in Trypanosoma vivax is not driven by recombination[J].Nat Commun,2020,11(1):844.
doi: 10.1038/s41467-020-14575-8 |
35 |
MUGNIERM R,CROSSG A M,PAPAVASILIOUF N.The in vivo dynamics of antigenic variation in Trypanosoma brucei[J].Science,2015,347(6229):1470-1473.
doi: 10.1126/science.aaa4502 |
36 |
SOJ,SUDLOWS,SAYEEDA,et al.VSGs expressed during Natural T. b. gambiense infection exhibit extensive sequence divergence and a subspecies-specific bias towards type B N-terminal domains[J].Mbio,2022,13(6):e0255322.
doi: 10.1128/mbio.02553-22 |
37 |
DA SILVAM S,HOVEL-MINERG A,BRIGGSE M,et al.Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation in African trypanosomes[J].PLoS Pathog,2018,14(11):e1007321.
doi: 10.1371/journal.ppat.1007321 |
38 |
THIVOLLEA,MEHNERTA K,TIHONE,et al.DNA double strand break position leads to distinct gene expression changes and regulates VSG switching pathway choice[J].PLoS Pathog,2021,17(11):e1010038.
doi: 10.1371/journal.ppat.1010038 |
39 |
AFRINM,GAURAVA K,YANGX,et al.TbRAP1 has an unusual duplex DNA binding activity required for its telomere localization and VSG silencing[J].Sci Adv,2020,6(38):eabc4065.
doi: 10.1126/sciadv.abc4065 |
40 |
NANAVATYV,SANDHUR,JEHIS E,et al.Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA: DNA hybrids[J].Nucleic Acids Res,2017,45(10):5785-5796.
doi: 10.1093/nar/gkx184 |
41 |
GARRISONP,KHANU,CIPRIANOM,et al.Turnover of variant surface glycoprotein in Trypanosoma brucei is a bimodal process[J].Mbio,2021,12(4):e0172521.
doi: 10.1128/mBio.01725-21 |
42 |
CHATTOPADHYAYA,JONESN G,NIETLISPACHD,et al.Structure of the c-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2[J].J Biol Chem,2005,280(8):7228-7235.
doi: 10.1074/jbc.M410787200 |
43 |
MARCELLOL,BARRYJ D.Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure[J].Genome Res,2007,17(9):1344-1352.
doi: 10.1101/gr.6421207 |
44 |
ÐAKOVIĆS,ZEELENJ P,GKEKAA,et al.A structural classification of the variant surface glycoproteins of the African trypanosome[J].PLoS Negl Trop Dis,2023,17(9):e0011621.
doi: 10.1371/journal.pntd.0011621 |
45 |
JONESN G,NIETLISPACHD,SHARMAR,et al.Structure of a glycosylphosphatidylinositol-anchored domain from a trypanosome variant surface glycoprotein[J].J Biol Chem,2008,283(6):3584-3593.
doi: 10.1074/jbc.M706207200 |
46 |
UMAERK,ARESTA-BRANCOF,CHANDRAM,et al.Dynamic, variable oligomerization and the trafficking of variant surface glycoproteins of Trypanosoma brucei[J].Traffic,2021,22(8):274-283.
doi: 10.1111/tra.12806 |
47 |
BORGESA R,LINKF,ENGSTLERM,et al.The glycosylphosphatidylinositol anchor: a linchpin for cell surface versatility of trypanosomatids[J].Front Cell Dev Biol,2021,9,720536.
doi: 10.3389/fcell.2021.720536 |
48 |
MORENOC J G,TEMPORÃOA,TORREST,et al.Trypanosoma brucei interaction with host: mechanism of VSG release as target for drug discovery for African trypanosomiasis[J].Int J Mol Sci,2019,20(6):1484.
doi: 10.3390/ijms20061484 |
49 |
SHARIFM,GARRISONP,BUSHP,et al.Turnover of variant surface glycoprotein in Trypanosoma brucei is not altered in response to specific silencing[J].mSphere,2022,7(4):e0012222.
doi: 10.1128/msphere.00122-22 |
50 |
PINGERJ,NEŠIĆD,ALIL,et al.African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat[J].Nat Microbiol,2018,3(8):932-938.
doi: 10.1038/s41564-018-0187-6 |
51 |
GKEKAA,ARESTA-BRANCOF,TRILLERG,et al.Immunodominant surface epitopes power immune evasion in the African trypanosome[J].Cell Rep,2023,42(3):112262.
doi: 10.1016/j.celrep.2023.112262 |
52 |
ARESTA-BRANCOF,SANCHES-VAZM,BENTOF,et al.African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system[J].Proc Natl Acad Sci U S A,2019,116(41):20725-20735.
doi: 10.1073/pnas.1905120116 |
53 |
PINGERJ,CHOWDHURYS,PAPAVASILIOUF N.Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation[J].Nat Commun,2017,8(1):828.
doi: 10.1038/s41467-017-00959-w |
54 |
VERDIJ,ZIPKINR,HILLMANE,et al.Inducible germline IgMs bridge trypanosome lytic factor assembly and parasite recognition[J].Cell Host Microbe,2020,28(1):79-88. e4.
doi: 10.1016/j.chom.2020.04.012 |
55 |
LECORDIERL,UZUREAUS,VANWALLEGHEMG,et al.The Trypanosoma brucei KIFC1 kinesin ensures the fast antibody clearance required for parasite infectivity[J].iScience,2020,23(9):101476.
doi: 10.1016/j.isci.2020.101476 |
56 |
WUH,LIUG G,SHIM Q.Interferon gamma in African trypanosome infections: friends or foes?[J].Front Immunol,2017,8,1105.
doi: 10.3389/fimmu.2017.01105 |
57 |
NGUYENH T T,GUEVARRAR B,MAGEZS,et al.Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis[J].PLoS Pathog,2021,17(11):e1010026.
doi: 10.1371/journal.ppat.1010026 |
58 |
FARIAJ,GLOVERL,HUTCHINSONS,et al.Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex[J].Nat Commun,2019,10(1):3023.
doi: 10.1038/s41467-019-10823-8 |
59 |
FARIAJ,BRIGGSE M,BLACKJ A,et al.Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome[J].Curr Opin Microbiol,2022,70,102209.
doi: 10.1016/j.mib.2022.102209 |
[1] | Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823. |
[2] | Xiaoxu WANG, Yanqing CHEN, Jiaqi ZHANG, Ye WANG, Rui WANG, Hanlin YU, Kaiqi YANG, Jun BAO, Runxiang ZHANG. Effect of Foot Pad Dermatitis on Production Performance, Egg Quality, Behavioral Responses, and Immune Levels of Laying Hens in Furnished Cages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2680-2691. |
[3] | Yongqing LIU, Gang ZHANG, Yanling XIONG, Zhongxin SUN, Fan GAO, Ting LIU, Hui LI. Effects of Heat Stress on Duodenal Mucosal Structure, HIF-1 and Its Related Protein Expression in Congjiang Xiang Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4690-4699. |
[4] | CHEN Xin, QIN Tong. mRNA Vaccine and Its Research Prospect in Zoonotic Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2732-2742. |
[5] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[6] | WU Chunlin, ZHONG Lemiao, ZHAO Yan, LI Wenji, HUANG Xiaozi, WU Yijian. Transcriptomic Analysis on Responses of Chicken Trachea to Mycoplasma gallisepticum Strain MG-HY Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2652-2662. |
[7] | ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082. |
[8] | ZHANG Na, WANG Fei, GE Ximin, ZHAO Guiping, WEN Jie, LI Qinghe. Correlation between the Expression Level of USP7 and the Immune Response to Salmonella Infection in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2396-2402. |
[9] | WANG Luyao, HAO Xuepiao, LEI Baishi, ZHAO Kuan, ZHANG Wuchao, YUAN Wanzhe. Differential Expression of Transcriptome in Liver, Thymus and Ileum of Ducks Infected with Novel Goose Parvovirus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 654-657. |
[10] | YIN Lei, PAN Xiaocheng, SHEN Xuehuai, ZHANG Danjun, DAI Yin, WANG Jieru. Analysis of Bone Marrow miRNA Expression Profiles in Salmonella enteric Serovar Pullorum-infected Chicks [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4527-4534. |
[11] | XIAO Jing, XIAO Kunxue, WANG Qiaochu, CHEN Huanchun, CAI Xuwang, XU Xiaojuan. Development and Optimization of Double-Gene Knockout Method for Glaesserella parasuis based on the Flp-FRT System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 219-230. |
[12] | ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281. |
[13] | ZHANG Fanfan, ZENG Yanbing, FANG Shaopei, LI Haiqin, KANG Zhaofeng, TAN Meifang, TAN Jia, YANG Qun, WEI Qipeng. Research Progress in Duck Tembusu Virus Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1489-1497. |
[14] | WANG Shubo, XU Yigang, CHEN Qiuyan, MEI Zhuyuan, CUI Wen, JIANG Yanping, ZHOU Han, WANG Li, QIAO Xinyuan, LI Yijing, TANG Lijie. Analysis of Immune Response Induced by Recombinant Lactobacillus reuteri Expressing Cap Protein of Porcine Circovirus Type 2 in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2238-2249. |
[15] | WANG Shuli, ZHANG Huiru, BI Yanqi, WANG Dejuan, CHEN Lin, ZHANG Xiaoting, LI Zhiqiang. Analysis of Immune Responses Induced by Brucella Transcriptional Regulatory Factor HFQ [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1977-1984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||