Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2778-2789.doi: 10.11843/j.issn.0366-6964.2025.06.022
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
HAN Xitong1,2,3(), ZHANG Nan1,2,3, ZHANG Ning1,2,3, ZHANG Jiaxin1,2,3,*(
)
Received:
2024-11-27
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Jiaxin
E-mail:2225389871@qq.com;zjxcau@163.com
CLC Number:
HAN Xitong, ZHANG Nan, ZHANG Ning, ZHANG Jiaxin. FLI Promotes in Vitro Maturation of Bovine Oocytes by Increasing the Glucose Metabolism Pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2778-2789.
Table 1
Primer sequences"
基因 Gene | 引物序列(5′→3′) Primers sequence |
PKM | F: CACGCAGAGACCATCAAGAA;R: TCGGATCTCAGGTCCTTTAGT |
ACOD1 | F: ACTGGAAATGGCTCTCCTCGG;R: CAAGTGGCAGCGTGGATTCTC |
MPC1 | F: TGAGCTCCGACTAAATGAGGA;R: TGGGATTGACTGCTGGGGGATA |
GAPDH | F: GGGTCATCATCTCTGCACCT;R: GGTCATAAGTCCCTCCACGA |
LDHA | F: TCTGGATTCAGCTCGCTTCCGTTA;R: TTCTTCAGGGAGACACCAGCAACA |
HK1 | F: GTGTGCTGTTGATAATCTCC;R: AATAACTGTTGGACGAATGC |
GFPT1 | F: AAACACAGTCGGCAGTTCCA;R: TGGCTACACCAATCTCAGGC |
HAS2 | F: CCTCATCATCCAAAGCCTGT;R: CGGGGTAGGTTAGCCTTTTC |
TNFAIP6 | F: CATCTTGCCACCTACAAGCA;R: CACACCACCACACTCCTTTG |
β-actin | F: AACTCCATCATGAAGTGTGACG;R: GATCCACATCTGCTGGAAGG |
Fig. 3
Effect of FLI on in vitro maturation of oocytes A. Oocyte first polar body extrusion rate; B. Oocyte with first polar body extrusion, scale=100 μm; C. Cumulus expansion index; D. Diagram of cumulus expansion, scale=300 μm; Expression of cumulus expansion related genes in 0-24 h: E. HAS2; F. TNFAIP6. *. P < 0.05; **. P < 0.01; ***. P < 0.001, the same as below"
Fig. 4
Effects of FLI on mitochondrial membrane potential and cortical granule distribution A. Mitochondrial membrane potential staining of oocytes in control and FLI groups, scale=30 μm; B. JC-1 red/green fluorescence ratio; C. Cortical granules were stained in different distribution types, scale=30 μm; D. Percentage of oocytes with different distribution types of cortical granules"
Fig. 8
FLI reduces redox levels and reactive oxygen species production in oocytes A. NADPH and FAD++ fluorescence diagram of oocytes in control and FLI groups, scale=100 μm; B. NADPH, FAD++ relative fluorescence intensity and redox ratio of oocytes in control and FLI groups; C. ROS staining of oocytes in control and FLI groups, scale=100 μm; D. The relative fluorescence intensity of ROS in oocytes of control and FLI groups"
1 | YUAN Y , KRISHER R L . In vitro maturation (IVM) of porcine oocytes[J]. Methods Mol Biol, 2012, 825, 183- 198. |
2 |
HARDY K , WRIGHT C S , FRANKS S , et al. In vitro maturation of oocytes[J]. Br Med Bull, 2000, 56 (3): 588- 602.
doi: 10.1258/0007142001903391 |
3 |
BALDINI G M , LOT D , MALVASI A , et al. Abnormalities of oocyte maturation: mechanisms and implications[J]. Int J Mol Sci, 2024, 25 (22): 12197.
doi: 10.3390/ijms252212197 |
4 |
GILCHRIST R B , HO T M , DE VOS M , et al. A fresh start for IVM: capacitating the oocyte for development using pre-IVM[J]. Hum Reprod Update, 2024, 30 (1): 3- 25.
doi: 10.1093/humupd/dmad023 |
5 | 陈涛, 曹鸿国, 张卫琴, 等. 卵母细胞成熟发生机制的研究进展[J]. 生命科学, 2009, 21 (2): 307- 311. |
CHEN T , CAO H G , ZHANG W Q , et al. Research progresses on the genesis mechanism of mammalian oocyte maturation[J]. Chinese Bulletin of Life Sciences, 2009, 21 (2): 307- 311. | |
6 |
RICHANI D , GILCHRIST R B . The epidermal growth factor network: role in oocyte growth, maturation and developmental competence[J]. Hum Reprod Update, 2018, 24 (1): 1- 14.
doi: 10.1093/humupd/dmx029 |
7 |
ZHANG P , YANG B , XU X , et al. Combination of CNP, MT and FLI during IVM significantly improved the quality and development abilities of bovine oocytes and IVF-derived embryos[J]. Antioxidants (Basel), 2023, 12 (4): 897.
doi: 10.3390/antiox12040897 |
8 |
ZHENG H , CHOI H , OH D , et al. Supplementation with fibroblast growth factor 7 during in vitro maturation of porcine cumulus-oocyte complexes improves oocyte maturation and early embryonic development[J]. Front Vet Sci, 2023, 10, 1250551.
doi: 10.3389/fvets.2023.1250551 |
9 |
BARROS R G , LIMA P F , SOARES A C S , et al. Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte[J]. J Assist Reprod Genet, 2019, 36 (5): 905- 913.
doi: 10.1007/s10815-019-01436-7 |
10 |
CHAVES R N , DE M M H , BURATINI J JR , et al. The fibroblast growth factor family: involvement in the regulation of folliculogenesis[J]. Reprod Fertil Dev, 2012, 24 (7): 905- 915.
doi: 10.1071/RD11318 |
11 |
DU C , DAVIS J S , CHEN C , et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro[J]. Reproduction, 2021, 161 (2): 205- 214.
doi: 10.1530/REP-20-0264 |
12 |
NEMCOVÁ L , NAGYOVÁ E , PETLACH M , et al. Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes[J]. Biol Reprod, 2007, 76 (6): 1016- 1024.
doi: 10.1095/biolreprod.106.057927 |
13 |
PIAU T B , DE Q R A , PAULINI F . Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies[J]. Growth Horm IGF Res, 2023, 72-73, 101561.
doi: 10.1016/j.ghir.2023.101561 |
14 | TOORI M A , MOSAVI E , NIKSERESHT M , et al. Influence of insulin-like growth factor-I on maturation and fertilization rate of immature oocyte and embryo development in NMRI mouse with TCM199 and α-MEM medium[J]. J Clin Diagn Res, 2014, 8 (12): AC05- AC8. |
15 |
KORDOWITZKI P , KRAJNIK K , SKOWRONSKA A , et al. Pleiotropic effects of IGF1 on the oocyte[J]. Cells, 2022, 11 (10): 1610.
doi: 10.3390/cells11101610 |
16 |
SATO A , SARENTONGLAGA B , OGATA K , et al. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes[J]. J Reprod Dev, 2018, 64 (1): 83- 88.
doi: 10.1262/jrd.2017-145 |
17 |
DE MATOS DG , MILLER K , SCOTT R , et al. Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation[J]. Fertil Steril, 2008, 90 (6): 2367- 2375.
doi: 10.1016/j.fertnstert.2007.10.061 |
18 | MCKINLEY E , SPECKHART S L , KEANE J A , et al. Influences of supplementing selective members of the interleukin-6 cytokine family on bovine oocyte competency[J]. Animals (Basel), 2023, 14 (1): 44. |
19 |
MO X , WU G , YUAN D , et al. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development[J]. Mol Reprod Dev, 2014, 81 (7): 608- 618.
doi: 10.1002/mrd.22327 |
20 | YUAN Y , SPATE L D , REDEL B K , et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): E5796- E5804. |
21 |
NAHAR A , BECKER J , PASQUARIELLO R , et al. FGF2, LIF, and IGF-1 supplementation improves mouse oocyte in vitro maturation via increased glucose metabolism?[J]. Biol Reprod, 2024, 110 (4): 672- 683.
doi: 10.1093/biolre/ioae014 |
22 |
TIAN H , QI Q , YAN F , et al. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2-leukemia inhibitory factor-Insulin-like growth factor 1 combination[J]. Theriogenology, 2021, 159, 13- 19.
doi: 10.1016/j.theriogenology.2020.10.019 |
23 |
CURRIN L , GLANZNER W G , GUTIERREZ K , et al. Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation[J]. Theriogenology, 2022, 194, 133- 143.
doi: 10.1016/j.theriogenology.2022.10.005 |
24 |
STOECKLEIN K S , ORTEGA M S , SPATE L D , et al. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1[J]. PLoS One, 2021, 16 (2): e0243727.
doi: 10.1371/journal.pone.0243727 |
25 |
CAJAS Y N , CAÑÓN-BELTRÁN K , LADRÓN DE G M , et al. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality[J]. Int J Mol Sci, 2020, 21 (15): 5340.
doi: 10.3390/ijms21155340 |
26 |
HOSOE M , SHIOYA Y . Distribution of cortical granules in bovine oocytes classified by cumulus complex[J]. Zygote, 1997, 5 (4): 371- 376.
doi: 10.1017/S0967199400003956 |
27 |
HOODBHOY T , DANDEKAR P , CALARCO P , et al. p62/p56 are cortical granule proteins that contribute to formation of the cortical granule envelope and play a role in mammalian preimplantation development[J]. Mol Reprod Dev, 2001, 59 (1): 78- 89.
doi: 10.1002/mrd.1009 |
28 |
ZHANG H , LI C , LIU Q , et al. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy[J]. Elife, 2023, 12, RP88523.
doi: 10.7554/eLife.88523.3 |
29 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
30 |
XIONG Y Y , ZHU H Y , SHI R J , et al. Regulation of glucose metabolism: effects on oocyte, preimplantation embryo, assisted reproductive technology and embryonic stem cell[J]. Heliyon, 2024, 10 (19): e38551.
doi: 10.1016/j.heliyon.2024.e38551 |
31 |
ZHANG Q , REN J , WANG F , et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3[J]. Free Radic Biol Med, 2022, 187, 1- 16.
doi: 10.1016/j.freeradbiomed.2022.05.010 |
32 |
孟亚轩, 刘彦, 王晶, 等. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55 (7): 2825- 2835.
doi: 10.11843/j.issn.0366-6964.2024.07.005 |
MENG Y X , LIU Y , WANG J , et al. Research progress in the effect of oxidative stress on ovarian function in female livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2825- 2835.
doi: 10.11843/j.issn.0366-6964.2024.07.005 |
|
33 |
ZHANG C H , LIU X Y , WANG J . Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24 (22): 16247.
doi: 10.3390/ijms242216247 |
34 |
ZHANG H , LI C , WEN D , et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply[J]. Redox Biol, 2022, 49, 102215.
doi: 10.1016/j.redox.2021.102215 |
35 |
DOHERTY C A , AMARGANT F , SHVARTSMAN S Y , et al. Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila[J]. Trends Cell Biol, 2022, 32 (4): 311- 323.
doi: 10.1016/j.tcb.2021.11.005 |
36 |
CLARKE H J . Transzonal projections: essential structures mediating intercellular communication in the mammalian ovarian follicle[J]. Mol Reprod Dev, 2022, 89 (11): 509- 525.
doi: 10.1002/mrd.23645 |
37 |
CHEN M , HE C , ZHU K , et al. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication[J]. Theranostics, 2022, 12 (2): 782- 795.
doi: 10.7150/thno.67167 |
38 |
TORKASHVAND H , SHABANI R , ARTIMANI T , et al. Oocyte competence develops: nuclear maturation synchronously with cytoplasm maturation[J]. Zygote, 2024, 32 (6): 421- 428.
doi: 10.1017/S0967199424000169 |
39 |
JAFFE L A , EGBERT J R . Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79, 237- 260.
doi: 10.1146/annurev-physiol-022516-034102 |
40 |
NAGYOVA E , MLYNARCIKOVA A B , NEMCOVA L , et al. Unique hyaluronan structure of expanded oocyte-cumulus extracellular matrix in ovarian follicles[J]. Endocr Regul, 2024, 58 (1): 174- 180.
doi: 10.2478/enr-2024-0020 |
41 |
ABBASSI L , EL-HAYEK S , CARVALHO K F , et al. Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation[J]. Nat Commun, 2021, 12 (1): 1438.
doi: 10.1038/s41467-021-21644-z |
[1] | GAO Linna, JIANG Yingying, WANG Yue, SHI Qianqian, AN Zhenjiang, WANG Huili, SHEN Yangyang, CHEN Kunlin, ZHANG Leying. Construction of a Whole Genome Knockout Library of bMECs Based on CRISPR/Cas9 Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2711-2723. |
[2] | JIA Chaoying, ZHANG Huawei, LUO Xiuxin, LIU Qingyun, WANG Xiangru. Establishment of Mice Model Infected by Bovine Mannheimia haemolytica and the Immunogenicity of Inactivated Vaccine [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2312-2324. |
[3] | ZHAO Ying, WANG Jinglei, WANG Meng, WANG Libin, ZHANG Qian, LI Zhijie, MA Xin, YU Sijiu, PAN Yangyang. Preparation and Characterization of Forsythiaside A and Kaempferol Encapsulated in Milk-derived Exosomes and Evaluation of Anti-inflammatory Effects in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2481-2495. |
[4] | XIONG Keng, FAN Haojie, WANG Jie, ZHAO Shanjiang, ZHU Qingli, HU Zhihui, LUO Haoshu, ZHU Huabin. Recent Advances and Applications of Recombinant Follicle-Stimulating Hormone in Bovine Superovulation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2047-2055. |
[5] | ZHAO Wanyue, XU Xiaowen, CHANG Shushu, XIANG Zhijie, GUO Aizhen, CHEN Yingyu. Epidemiologic Investigation of the Major Viruses of the Bovine Respiratory Disease Complex [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1324-1335. |
[6] | JIANG Huihua, ZHAO Long, GUO Kangkang. Effect of HE Gene Receptor Binding Domain Variation on Bovine Coronavirus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1336-1343. |
[7] | ZHAO Wenyue, YANG Jing, SHAO Yilan, LI Jiaxuan, JIANG Yanping, CUI Wen, WANG Xiaona, TANG Lijie. Screening and Identification of Secretory Signal Peptide of Lactobacillus reuteri Expressing Lactoferrin Peptide [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1431-1440. |
[8] | ZHANG Zhengyu, YANG Peihong, GUO Hong, LI Xin, ZHANG Linlin, GUO Yiwen, HU Debao, DING Xiangbin. Effects of Sirt1 Deacetylase on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 603-610. |
[9] | LIANG Entang, LI Huaxuan, CHEN Shuaicheng, LI Guo, SUN Gege, ZAN Linsen. Effect of Genistein on Semen Cryopreservation of Bull [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 700-710. |
[10] | LIU Jian, YU Zehai, ZHANG Meiyu, LI Dan, WANG Jun, LIU Fangqin, ZHANG Qun, XU Shouzhen. Full-genome Analysis of a Bovine Enterovirus Type F and the Establishment of an Indirect ELISA Method for Antibody Detection [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 814-825. |
[11] | ZHAO Long, LIN Jingyi, DOU Wei, XU Tingxuan, GU Qingyun, GAO Haihui, LI Shengqing, GUO Kangkang. In vitro Screening of Tibetan Medicine with Inhibitory Effects on Bovine Coronavirus Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 826-838. |
[12] | WANG Haolei, LIU Mengyan, LONG Quan, LI Manman, LÜ Xiang, LIN Tao, JIANG Caode. Inhibition of Epicatechin Gallate on Inflammation and Pyroptosis as Well as NF-κB Pathway and NLRP3 Inflammasome in MAC-T Cells and Mouse Mammary Glands [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 430-441. |
[13] | Yi WANG, Jianfei GONG, Nuo HENG, Yingfan HU, Rui WANG, Huan WANG, Ni ZHU, Wei HE, Zhihui HU, Haisheng HAO, Huabin ZHU, Shanjiang ZHAO. Melatonin Alleviates Palmitic Acid-induced Damage in Bovine Endometrial Epithelial Cells by Improving Mitochondrial Dynamics [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3978-3987. |
[14] | Shuying DAI, Qing LIU, Aiguo LI, Bo YU, Hongbo CHEN. Research Progress on Culture Medium Additives in Bovine In Vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3309-3320. |
[15] | Wangqing BAN MA, Xi CHEN, Yi YUE, Yurong SU, Hua YUE, Cheng TANG. Isolation, Identification and Partial Biological Characteristics of a Bovine Respiratory Coronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3094-3104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||