Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 603-610.doi: 10.11843/j.issn.0366-6964.2025.02.012
• Animal Genetics and Breeding • Previous Articles Next Articles
ZHANG Zhengyu(), YANG Peihong, GUO Hong, LI Xin, ZHANG Linlin, GUO Yiwen, HU Debao, DING Xiangbin*(
)
Received:
2024-08-01
Online:
2025-02-23
Published:
2025-02-26
Contact:
DING Xiangbin
E-mail:2203010125@stu.tjau.edu.cn;xiangbinding@tjau.edu.cn
CLC Number:
ZHANG Zhengyu, YANG Peihong, GUO Hong, LI Xin, ZHANG Linlin, GUO Yiwen, HU Debao, DING Xiangbin. Effects of Sirt1 Deacetylase on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 603-610.
Table 1
qRT-qPCR primer sequences"
引物名称 Primers name | 基因ID GenBank ID | 引物序列(5′→3′) Sequence | 产物大小/bp Products size |
Sirt1 forward | NM_001192980.3 | CATTTTCCATGGCGCTGAGG | 104 |
Sirt1 reverse | AACTTGGACTCTGGCACGTT | ||
GAPDH forward | NM_001034034.2 | CCGCATCCCTGAGACAAGAT | 114 |
GAPDH reverse | ATTGATGGCGACGATGTCCA | ||
Pax7 forward | XM_015460690.3 | CGATTAGCCGAGTGCTCAGA | 137 |
Pax7 reverse | GTCCAGACGGTTCCCTTTGT | ||
Ki67 forward | NM_001034354.2 | CCTAAACCCGCAGGAGGATG | 78 |
Ki67 reverse | TTCTCCTGTTGCTTGGTCGC | ||
MyoG forward | NM_001111325.1 | GTGGGCGTGTAAGGTGTGTA | 91 |
MyoG reverse | CACCTTCTTGAGTCTGCGCT | ||
MyHC forward | NM_174117.1 | TCAAGGTTGCATCTCCAAGGC | 131 |
MyHC reverse | GCGCTCCTTTTCAGACTTTCG |
Fig. 2
Effects of interference and overexpression of Sirt1 on proliferation of BSMSCs detected by fluorescence quantitative PCR and Western blotting A, B. Fluorescence quantitative PCR technology was used to detect the mRNA level of genes; C, D, E, F. Western blotting was used to detect the proteins expression levels"
Fig. 3
EdU detecting the effects of interference and overexpression of Sirt1 on the proliferation of bovine skeletal muscle satellite cells A. Representative pictures of EdU positive cell count after interference of Sirt1 and statistical graph of EdU labeling index; B. Representative pictures of EdU positive cell count after Sirt1 overexpression and statistical graph of EdU labeling index"
Fig. 4
Effects of interference and overexpression of Sirt1 on the differentiation of BSMSCs detected by fluorescence quantitative PCR and Western blotting A, B. Fluorescence quantitative PCR was used to detect mRNA levels of genes; C, D, E, F. Western blotting was used to detect proteins expression levels"
1 |
ALVES-FERNANDES D K , JASIULIONIS M G . The role of SIRT1 on DNA damage response and epigenetic alterations in cancer[J]. Int J Mol Sci, 2019, 20 (13): 3153.
doi: 10.3390/ijms20133153 |
2 |
IMAI S I , ARMSTRONG C M , KAEBERLEIN M , et al. Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase[J]. Nature, 2000, 403 (6771): 795- 800.
doi: 10.1038/35001622 |
3 |
HAJJI N , WALLENBORG K , VLACHOS P , et al. Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide[J]. Oncogene, 2010, 29 (15): 2192- 2204.
doi: 10.1038/onc.2009.505 |
4 |
VAQUERO A , SCHER M , LEE D , et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell, 2004, 16 (1): 93- 105.
doi: 10.1016/j.molcel.2004.08.031 |
5 |
KARBASFOROOSHAN H , ROOHBAKHSH A , KARIMI G . SIRT1 and microRNAs: the role in breast, lung and prostate cancers[J]. Exp Cell Res, 2018, 367 (1): 1- 6.
doi: 10.1016/j.yexcr.2018.03.023 |
6 |
CHEN H , LIN X P , YI X H , et al. SIRT1-mediated p53 deacetylation inhibits ferroptosis and alleviates heat stress-induced lung epithelial cells injury[J]. Int J Hyperthermia, 2022, 39 (1): 977- 986.
doi: 10.1080/02656736.2022.2094476 |
7 |
DILMAC S , KUSCU N , CANER A , et al. SIRT1/FOXO signaling pathway in breast cancer progression and metastasis[J]. Int J Mol Sci, 2022, 23 (18): 10227.
doi: 10.3390/ijms231810227 |
8 |
HAO Y J , REN Z N , YU L , et al. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis[J]. Aging Cell, 2022, 21 (8): e13677.
doi: 10.1111/acel.13677 |
9 |
HAN X , DING C , SANG X N , et al. Targeting Sirtuin1 to treat aging-related tissue fibrosis: From prevention to therapy[J]. Pharmacol Ther, 2022, 229, 107983.
doi: 10.1016/j.pharmthera.2021.107983 |
10 |
MA J Y , YANG H , LIU L , et al. Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway[J]. Theriogenology, 2021, 173, 83- 92.
doi: 10.1016/j.theriogenology.2021.07.011 |
11 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854 |
12 |
ZHANG W J , HUANG Q B , ZENG Z H , et al. Sirt1 inhibits oxidative stress in vascular endothelial cells[J]. Oxid Med Cell Longev, 2017, 2017, 7543973.
doi: 10.1155/2017/7543973 |
13 |
WANG L , XU C Y , JOHANSEN T , et al. SIRT1- a new mammalian substrate of nuclear autophagy[J]. Autophagy, 2021, 17 (2): 593- 595.
doi: 10.1080/15548627.2020.1860541 |
14 |
LU Z Y , WANG H Z , ISHFAQ M , et al. Quercetin and AMPK: a dynamic duo in alleviating MG-induced inflammation via the AMPK/SIRT1/NF-κB pathway[J]. Molecules, 2023, 28 (21): 7388.
doi: 10.3390/molecules28217388 |
15 | MA Z X , XU H , XIANG W , et al. Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9[J]. Eur Rev Med Pharmacol Sci, 2021, 25 (2): 626- 635. |
16 | 王轶敏, 代阳, 刘新峰, 等. 牛骨骼肌卫星细胞的分离鉴定和诱导分化[J]. 中国畜牧兽医, 2014, 41 (7): 142- 147. |
WANG Y M , DAI Y , LIU X F , et al. Isolation, identification and induced differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41 (7): 142- 147. | |
17 | DUMONT N A , BENTZINGER C F , SINCENNES M C , et al. Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5 (3): 1027- 1059. |
18 |
SOUSA-VICTOR P , GARCÍA-PRAT L , MUÑOZ-CÁNOVES P . Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23 (3): 204- 226.
doi: 10.1038/s41580-021-00421-2 |
19 |
刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55 (4): 1592- 1604.
doi: 10.11843/j.issn.0366-6964.2024.04.022 |
LIU Y , LI X Y , ZHANG W Y . Molecular mechanism of MMP14 regulating skeletal muscle satellite cell differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1592- 1604.
doi: 10.11843/j.issn.0366-6964.2024.04.022 |
|
20 |
SCHIAFFINO S , DYAR K A , CICILIOT S , et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. FEBS J, 2013, 280 (17): 4294- 4314.
doi: 10.1111/febs.12253 |
21 |
RELAIX F , BENCZE M , BOROK M J , et al. Perspectives on skeletal muscle stem cells[J]. Nat Commun, 2021, 12 (1): 692.
doi: 10.1038/s41467-020-20760-6 |
22 |
WANG S C , ZHAO X , LIU Q Q , et al. Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation[J]. Redox Biol, 2022, 50, 102255.
doi: 10.1016/j.redox.2022.102255 |
23 |
王子岩, 王亚慧, 吴天弋, 等. INTS11通过介导CDK2和CYCLIND1的转录促进牛成肌细胞增殖[J]. 畜牧兽医学报, 2024, 55 (7): 2927- 2939.
doi: 10.11843/j.issn.0366-6964.2024.07.013 |
WANG Z Y , WANG Y H , WU T Y , et al. INTS11 promotes the proliferation of bovine myoblasts by mediating the transcription of CDK2 and CYCLIND1[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2927- 2939.
doi: 10.11843/j.issn.0366-6964.2024.07.013 |
|
24 |
RYALL J G , DELL'ORSO S , DERFOUL A , et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells[J]. Cell Stem Cell, 2015, 16 (2): 171- 183.
doi: 10.1016/j.stem.2014.12.004 |
25 |
AMAT R , PLANAVILA A , CHEN S L , et al. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ Co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD[J]. J Biol Chem, 2009, 284 (33): 21872- 21880.
doi: 10.1074/jbc.M109.022749 |
26 |
CANTÓ C , JIANG L Q , DESHMUKH A S , et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle[J]. Cell Metab, 2010, 11 (3): 213- 219.
doi: 10.1016/j.cmet.2010.02.006 |
27 |
GURD B J . Deacetylation of PGC-1α by SIRT1:importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J]. Appl Physiol Nutr Metab, 2011, 36 (5): 589- 597.
doi: 10.1139/h11-070 |
28 |
MCBURNEY M W , YANG X F , JARDINE K , et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis[J]. Mol Cell Biol, 2003, 23 (1): 38- 54.
doi: 10.1128/MCB.23.1.38-54.2003 |
29 |
JIN X X , SUN X L , MA X , et al. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1[J]. Cell Mol Life Sci, 2024, 81 (1): 204.
doi: 10.1007/s00018-023-05043-9 |
30 |
ZAINABADI K , LIU C J , CALDWELL A L M , et al. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis[J]. PLoS One, 2017, 12 (9): e0185236.
doi: 10.1371/journal.pone.0185236 |
31 |
MOON M H , JEONG J K , LEE Y J , et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes[J]. Osteoarthritis Cartilage, 2013, 21 (3): 470- 480.
doi: 10.1016/j.joca.2012.11.017 |
32 |
BUHRMANN C , BUSCH F , SHAYAN P , et al. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells[J]. J Biol Chem, 2014, 289 (32): 22048- 22062.
doi: 10.1074/jbc.M114.568790 |
[1] | HUANG Xinhe, LI Haonan, ZHOU Xiao, XU Jiajing, ZHANG Yuanshu, HAN Zhengkang. Effects and Mechanism on the Synthesis of Milk Components and Cell Proliferation in Mouse Mammary Epithelial Cells by Phytoestrogen Daidzein [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 417-429. |
[2] | 古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956. |
[3] | Ziyan WANG, Yahui WANG, Tianyi WU, Chen GAO, Zhenwei DU, Fei GE, Xiaobei ZHANG, Wenxuan ZHAO, Lupei ZHANG, Huijiang GAO, Huansheng DONG, Junya LI. INTS11 Promotes the Proliferation of Bovine Myoblasts by Mediating the Transcription of CDK2 and CYCLIND1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2927-2939. |
[4] | LI Qiuyun, TIAN Xinyuan, LIAO Wensheng, ZHANG Huanrong, REN Yupeng, YANG Falong, ZHU Jiangjiang, XIANG Hua. Effects of SOCS2 on Proliferation, Cycle and Apoptosis of Turbinate Bone Cells in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2226-2240. |
[5] | ZHANG Wanfeng, ZHAO Tianzhi, LI Jiao, YOU Ziwei, YANG Yang, CAI Chunbo, GAO Pengfei, CAO Guoqing, GUO Xiaohong, LI Bugao. Study on NR2F2 Gene Regulating Proliferation and Apoptosis of Porcine PK15 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3242-3251. |
[6] | WANG Wanjie, CHEN Nanzhu, ZOU Huiying, ZHOU Xinyi, HAO Haisheng, PANG Yunwei, ZHU Huabin, ZHAO Xueming, YU Dawei, DU Weihua. Effects of Histone Methyltransferase ASH1L Overexpression on Proliferation and Apoptosis of Bovine Cumulus Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3358-3368. |
[7] | ZHANG Peng, WANG Mingxiu, JING Kemin, PENG Wei, TIAN Yuan, LI Yuqian, FU Changqi, SHU Shi, ZHONG Jincheng, CAI Xin. Abnormal Expression of FGFs/FGFRs and Their Mediated Signaling Pathway Genes Affect the Proliferative Activity of Undifferentiated Spermatogonia in Cattleyak [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2886-2897. |
[8] | XU Tiantian, ZHANG Tongtong, WANG Meng, WANG Xin. Transcription Factor Foxq1 Affects the Proliferation of Hair Follicle Stem Cells in Cashmere Goats via WNT/β-catenin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2653-2661. |
[9] | REN Xiaoli, FAN Yuying, HUANGFU Heping, LIU Yun, SHI Dongmei. Effect of GSK126 on Epithelial-mesenchymal Transition of Canine Mammary Tumor Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1721-1729. |
[10] | YANG Guang, XU Jing, LI Xin, HU Debao, GUO Yiwen, DING Xiangbin, GUO Hong, ZHANG Linlin. Effect of Interfering lncbMD on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1015-1025. |
[11] | SUN Jinkui, XU Houqiang, SHI Pengfei, RUAN Yong. Construction of MEF2A Gene Interference Vector and Effect of Its Transfection on Myoblasts in Guanling Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 584-595. |
[12] | MA Tianwen, YU Yue, LÜ Liangyu, JIA Lina, RUAN Hongri, WANG Haoran, WANG Xinyu, ZHANG Yuxin, ZHANG Jiantao, GAO Li. Effects of Bilobalide on Autophagy, Proliferation and Apoptosis of IL-1β-induced ATDC5 Chondrocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 837-846. |
[13] | REN Xiaoli, FAN Yuying, HUANGFU Heping, WANG Jun, JIN Shuangxing, LIU Yun, SHI Dongmei. Mechanism of miR-502 Regulating Proliferation, Migration, Invasion and EMT of Canine Mammary Tumor Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4379-4388. |
[14] | WEI Jiayuan, ZHU Qian, YANG Yaxing, SHEN Ming. Inhibition of Porcine Follicular Granulosa Cell Proliferation by Cobalt Chloride Induced DNA Oxidative Damage [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2982-2992. |
[15] | CHEN Lan, ZHANG Tao, DING Hao, XIE Kaizhou, ZHANG Genxi, WANG Jinyu. Effects of Kruppel-like Factor 15 Gene on Proliferation and Differentiation of Preadipocytes of Heying Black Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2118-2129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||