Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5431-5439.doi: 10.11843/j.issn.0366-6964.2024.12.010
• Review • Previous Articles Next Articles
HUANG Deru(), CHANG Yirui, DING Ziyan, ZHANG Yashan, CHEN Aolei*(
)
Received:
2023-12-01
Online:
2024-12-23
Published:
2024-12-27
Contact:
CHEN Aolei
E-mail:Huangdr1999@163.com;chenolay@scau.edu.cn
CLC Number:
HUANG Deru, CHANG Yirui, DING Ziyan, ZHANG Yashan, CHEN Aolei. Progress on Application of Animal Intestinal Organoids[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5431-5439.
Table 1
Summary of animal intestinal organoids for studying host-pathogen interactions"
类器官的动物来源 Animal sources of organoids | 研究内容 Research contents | 参考文献 References |
鼠、人、猪、鸡 Mouse,human,pig,chicken | 建立鼠、人、猪、鸡的极化单层肠类器官后,用弓形虫感染各类器官,比较弓形虫-宿主相互作用 | Holthaus等[ |
牛、猪 Cow,pig | 从牛和猪空肠中分离肠隐窝,培养获得肠类器官;刚地弓形虫和鼠伤寒沙门菌成功感染肠类器官 | Derricott等[ |
猪 Pig | 从十二指肠、空肠和回肠的肠隐窝干细胞中生成了猪肠类器官,该类器官可受PEDV感染 | Li等[ |
猪 Pig | 开发了一种猪顶端上皮朝外的肠类器官培养系统;该肠类器官可受TGEV感染 | Li等[ |
猪 Pig | 从十二指肠、空肠和回肠的隐窝干细胞中生成了猪肠类器官;猪三角洲冠状病毒(PDcoV)可在该肠类器官中复制 | Luo等[ |
猪 Pig | 从猪的空肠中分离并建立了猪肠类器官;哺乳动物正呼肠孤病毒3型(MRV3)可感染该猪肠类器官且能够在该类器官中复制 | Lee等[ |
猪 Pig | 用C组轮状病毒(RVC)感染猪肠类器官与类器官衍生的单层细胞,探究胆固醇和唾液酸在RVC复制中的作用 | Guo等[ |
猪 Pig | 构建了仔猪肠道类器官的PEDV感染模型,发现源自牛奶的细胞外囊泡(msEVs)抑制了PEDV感染 | Liang等[ |
猪 Pig | 用产肠毒素大肠杆菌(ETEC)感染猪肠类器官和单层猪肠类器官,观察肠类器官对ETEC的反应 | Vermeire等[ |
牛 Cow | 用A组轮状病毒感染牛肠类器官,研究其感染肠道的机制 | Alfajaro等[ |
兔 Rabbit | 成功培养出兔小肠类器官和类器官衍生的细胞单层;用兔杯状病毒Australia-1感染兔类器官,但没有检测到该病毒的复制 | Kardia等[ |
猫 Cat | 成功分离、培养和传代猫回肠和结肠类器官;其中结肠类器官能够被猫肠道冠状病毒(FECV)轻度感染 | Tekes等[ |
犬 Dog | 建立犬肠类器官后,使用蛔虫线虫的外泌体样囊泡(EV)对其进行感染,发现EV通过上皮细胞转运到肠腔中 | Chandra等[ |
1 |
SAMBUY Y , DE ANGELIS I , RANALDI G , et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics[J]. Cell Biol Toxicol, 2005, 21 (1): 1- 26.
doi: 10.1007/s10565-005-0085-6 |
2 |
SATO T , VRIES R G , SNIPPERT H J , et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459 (7244): 262- 265.
doi: 10.1038/nature07935 |
3 | JOO S S , GU B H , PARK Y J , et al. Porcine intestinal apical-out organoid model for gut function study[J]. Animals (Basel), 2022, 12 (3): 372. |
4 | NALAPAREDDY K, GEIGER H. Analysis of aged dysfunctional intestinal stem cells[M]//ORDÓÑEZ-MORÁN P. Intestinal Stem Cells: Methods and Protocols. New York: Springer, 2020: 41-52. |
5 |
MIDDENDORP S , SCHNEEBERGER K , WIEGERINCK C L , et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function[J]. Stem Cells, 2014, 32 (5): 1083- 1091.
doi: 10.1002/stem.1655 |
6 |
陈奡蕾, 黄德如, 安娅菲, 等. 动物肠类器官培养技术[J]. 畜牧兽医学报, 2023, 54 (7): 2743- 2750.
doi: 10.11843/j.issn.0366-6964.2023.07.008 |
CHEN A L , HUANG D R , AN Y F , et al. Animal intestinal organoids culture[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (7): 2743- 2750.
doi: 10.11843/j.issn.0366-6964.2023.07.008 |
|
7 | 张言, 朱春玲, 杨蕊, 等. 类器官培养方法及家畜类器官研究进展[J]. 生命科学, 2023, 35 (8): 994- 1003. |
ZHANG Y , ZHU C L , YANG R , et al. Advances in organoid methodology and livestock organoids[J]. Chinese Bulletin of Life Sciences, 2023, 35 (8): 994- 1003. | |
8 |
LUO W W , TIAN L , TAN B , et al. Update: innate lymphoid cells in inflammatory bowel disease[J]. Dig Dis Sci, 2022, 67 (1): 56- 66.
doi: 10.1007/s10620-021-06831-8 |
9 |
SAEZ A , GOMEZ-BRIS R , HERRERO-FERNANDEZ B , et al. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease[J]. Int J Mol Sci, 2021, 22 (14): 7618.
doi: 10.3390/ijms22147618 |
10 |
RALLABANDI H R , YANG H , OH K B , et al. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids[J]. Tissue Eng Regen Med, 2020, 17 (5): 641- 650.
doi: 10.1007/s13770-020-00278-0 |
11 |
POLTORAK A , HE X L , SMIRNOVA I , et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282 (5396): 2085- 2088.
doi: 10.1126/science.282.5396.2085 |
12 | KOLTES D A , GABLER N K . Characterization of porcine intestinal enteroid cultures under a lipopolysaccharide challenge[J]. J Anim Sci, 2016, 94 (S3): 335- 339. |
13 |
CERQUETELLA M , SPATERNA A , LAUS F , et al. Inflammatory bowel disease in the dog: differences and similarities with humans[J]. World J Gastroenterol, 2010, 16 (9): 1050- 1056.
doi: 10.3748/wjg.v16.i9.1050 |
14 |
KARARLI T T . Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals[J]. Biopharm Drug Dispos, 1995, 16 (5): 351- 380.
doi: 10.1002/bdd.2510160502 |
15 |
KOPPER J J , IENNARELLA-SERVANTEZ C , JERGENS A E , et al. Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery: a one health approach[J]. Front Toxicol, 2021, 3, 773953.
doi: 10.3389/ftox.2021.773953 |
16 |
CHANDRA L , BORCHERDING D C , KINGSBURY D , et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology[J]. BMC Biol, 2019, 17 (1): 33.
doi: 10.1186/s12915-019-0652-6 |
17 | PODOLSKY D K . Mucosal immunity and inflammation.V.Innate mechanisms of mucosal defense and repair: the best offense is a good defense[J]. Am J Physiol, 1999, 277 (3): G495- G499. |
18 | STIELER S A , FREUND J M , BLIKSLAGER A T , et al. Intestinal stem cell isolation and culture in a porcine model of segmental small intestinal ischemia[J]. J Vis Exp, 2018, (135): 57647. |
19 |
STEWART A S , SCHAAF C R , LUFF J A , et al. HOPX+ injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321 (5): G588- G602.
doi: 10.1152/ajpgi.00165.2021 |
20 | HUANG J J , XU Z Y , JIAO J , et al. Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury[J]. Bioact Mater, 2023, 30, 1- 14. |
21 |
FELCHLE H , BRUNNER V , GROLL T , et al. Novel tumor organoid-based mouse model to study image-guided radiation therapy of rectal cancer after non-invasive and precise endoscopic implantation[J]. Int J Radiat Oncol Biol Phys, 2024, 118 (4): 1094- 1104.
doi: 10.1016/j.ijrobp.2023.10.008 |
22 |
HU X , ZHANG L , LI Y Q , et al. Organoid modelling identifies that DACH1 functions as a tumour promoter in colorectal cancer by modulating BMP signalling[J]. EbioMedicine, 2020, 56, 102800.
doi: 10.1016/j.ebiom.2020.102800 |
23 |
XU H L , YAN Y Q , DEB S , et al. Cohesin Rad21 mediates loss of heterozygosity and is upregulated via Wnt promoting transcriptional dysregulation in gastrointestinal tumors[J]. Cell Rep, 2014, 9 (5): 1781- 1797.
doi: 10.1016/j.celrep.2014.10.059 |
24 |
TANAKA M , YAMAGUCHI S , IWASA Y . Enhanced risk of cancer in companion animals as a response to the longevity[J]. Sci Rep, 2020, 10 (1): 19508.
doi: 10.1038/s41598-020-75684-4 |
25 |
SAHOO D K , BORCHERDING D C , CHANDRA L , et al. Differential transcriptomic profiles following stimulation with lipopolysaccharide in intestinal organoids from dogs with inflammatory bowel disease and intestinal mast cell tumor[J]. Cancers (Basel), 2022, 14 (14): 3525.
doi: 10.3390/cancers14143525 |
26 |
DERRICOTT H , LUU L , FONG W Y , et al. Developing a 3D intestinal epithelium model for livestock species[J]. Cell Tissue Res, 2019, 375 (2): 409- 424.
doi: 10.1007/s00441-018-2924-9 |
27 | YIN L D , CHEN J F , LI L , et al. Aminopeptidase N expression, not interferon responses, determines the intestinal segmental tropism of porcine deltacoronavirus[J]. J Virol, 2020, 94 (14): e00480- 20. |
28 | LI L , FU F , GUO S S , et al. Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response[J]. J Virol, 2019, 93 (5): e01682. |
29 |
WILLIAMSON I A , ARNOLD J W , SAMSA L A , et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology[J]. Cell Mol Gastroenterol Hepatol, 2018, 6 (3): 301- 319.
doi: 10.1016/j.jcmgh.2018.05.004 |
30 |
VAN DER HEE B , LOONEN L M P , TAVERNE N , et al. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids[J]. Stem Cell Res, 2018, 28, 165- 171.
doi: 10.1016/j.scr.2018.02.013 |
31 | LI Y , YANG N , CHEN J N , et al. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations[J]. J Virol, 2020, 94 (21): e01006- 20. |
32 |
ACHARYA M , ARSI K , DONOGHUE A M , et al. Production and characterization of avian crypt-villus enteroids and the effect of chemicals[J]. BMC Vet Res, 2020, 16 (1): 179.
doi: 10.1186/s12917-020-02397-1 |
33 |
PARK K W , YANG H , LEE M G , et al. Establishment of intestinal organoids from small intestine of growing cattle (12 months old)[J]. J Anim Sci Technol, 2022, 64 (6): 1105- 1116.
doi: 10.5187/jast.2022.e70 |
34 |
AMBROSINI Y M , PARK Y , JERGENS A E , et al. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions[J]. PLoS One, 2020, 15 (4): e0231423.
doi: 10.1371/journal.pone.0231423 |
35 |
MUSSARD E , POUZET C , HELIES V , et al. Culture of rabbit caecum organoids by reconstituting the intestinal stem cell niche in vitro with pharmacological inhibitors or L-WRN conditioned medium[J]. Stem Cell Research, 2020, 48, 101980.
doi: 10.1016/j.scr.2020.101980 |
36 |
HOLTHAUS D , DELGADO-BETANCOURT E , AEBISCHER T , et al. Harmonization of protocols for multi-species organoid platforms to study the intestinal biology of Toxoplasma gondii and other protozoan infections[J]. Front Cell Infect Microbiol, 2021, 10, 610368.
doi: 10.3389/fcimb.2020.610368 |
37 |
LUO H , ZHENG J Y , CHEN Y L , et al. Utility evaluation of porcine enteroids as PDCoV infection model in vitro[J]. Front Microbiol, 2020, 11, 821.
doi: 10.3389/fmicb.2020.00821 |
38 |
LEE S A , LEE H J , GU N Y , et al. Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection[J]. J Vet Sci, 2023, 24 (4): e53.
doi: 10.4142/jvs.23017 |
39 |
GUO Y S , RAEV S , KICK M K , et al. Rotavirus C replication in porcine intestinal enteroids reveals roles for cellular cholesterol and sialic acids[J]. Viruses, 2022, 14 (8): 1825.
doi: 10.3390/v14081825 |
40 |
LIANG J Q , XIE M Y , HOU L J , et al. miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection[J]. Antiviral Res, 2023, 212, 105579.
doi: 10.1016/j.antiviral.2023.105579 |
41 |
VERMEIRE B , GONZALEZ L M , JANSENS R J J , et al. Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut[J]. Vet Res, 2021, 52 (1): 94.
doi: 10.1186/s13567-021-00961-7 |
42 | ALFAJARO M M , KIM J Y , BARBÉ L , et al. Dual recognition of sialic acid and αgal epitopes by the VP8* domains of the bovine rotavirus G6P[J]. J Virol, 2019, 93 (18): e00941- 19. |
43 |
KARDIA E , FRESE M , SMERTINA E , et al. Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers[J]. Sci Rep, 2021, 11 (1): 5401.
doi: 10.1038/s41598-021-84774-w |
44 |
TEKES G , EHMANN R , BOULANT S , et al. Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection[J]. Cells, 2020, 9 (9): 2085.
doi: 10.3390/cells9092085 |
45 |
KAR S K , VAN DER HEE B , LOONEN L M P , et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers[J]. J Anim Sci Biotechnol, 2020, 11, 51.
doi: 10.1186/s40104-020-00443-4 |
46 |
WANG Z B , LI J , WANG Y , et al. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells[J]. J Anim Sci, 2020, 98 (2): skaa020.
doi: 10.1093/jas/skaa020 |
47 |
SATITSRI S , AKRIMAJIRACHOOTE N , NUNTA K , et al. Piperine as potential therapy of post-weaning porcine diarrheas: an in vitro study using a porcine duodenal enteroid model[J]. BMC Vet Res, 2023, 19 (1): 4.
doi: 10.1186/s12917-022-03536-6 |
48 |
LIU L J , ZHANG S Y , BAO J Y , et al. Melatonin improves laying performance by enhancing intestinal amino acids transport in hens[J]. Front Endocrinol (Lausanne), 2018, 9, 426.
doi: 10.3389/fendo.2018.00426 |
49 |
NASH T J , MORRIS K M , MABBOTT N A , et al. Inside-out chicken enteroids with leukocyte component as a model to study host-pathogen interactions[J]. Commun Biol, 2021, 4 (1): 377.
doi: 10.1038/s42003-021-01901-z |
50 |
NOEL G , BAETZ N W , STAAB J F , et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions[J]. Sci Rep, 2017, 7, 45270.
doi: 10.1038/srep45270 |
51 |
LIU P F , CAO Y W , ZHANG S D , et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model[J]. Oncotarget, 2015, 6 (35): 37695- 37705.
doi: 10.18632/oncotarget.6070 |
52 |
BOUFFI C , WIKENHEISER-BROKAMP K A , CHATURVEDI P , et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice[J]. Nat Biotechnol, 2023, 41 (6): 824- 831.
doi: 10.1038/s41587-022-01558-x |
53 |
ZIEGLER A , GONZALEZ L , BLIKSLAGER A . Large animal models: the key to translational discovery in digestive disease research[J]. Cell Mol Gastroenterol Hepatol, 2016, 2 (6): 716- 724.
doi: 10.1016/j.jcmgh.2016.09.003 |
54 |
BLOCK T , ISAKSSON H S , ACOSTA S , et al. Altered mRNA expression due to acute mesenteric ischaemia in a porcine model[J]. Eur J Vasc Endovasc Surg, 2011, 41 (2): 281- 287.
doi: 10.1016/j.ejvs.2010.09.012 |
55 |
PEREIRA-FANTINI P M , THOMAS S L , TAYLOR R G , et al. Colostrum supplementation restores insulin-like growth factor-1 levels and alters muscle morphology following massive small bowel resection[J]. JPEN J Parenter Enteral Nutr, 2008, 32 (3): 266- 275.
doi: 10.1177/0148607108316197 |
56 |
CILIEBORG M S , THYMANN T , SIGGERS R , et al. The incidence of necrotizing enterocolitis is increased following probiotic administration to preterm pigs[J]. J Nutr, 2011, 141 (2): 223- 230.
doi: 10.3945/jn.110.128561 |
57 |
BLIKSLAGER A T , ROBERTS M C , RHOADS J M , et al. Is reperfusion injury an important cause of mucosal damage after porcine intestinal ischemia?[J]. Surgery, 1997, 121 (5): 526- 534.
doi: 10.1016/S0039-6060(97)90107-0 |
58 | ARGENZIO R A , ARMSTRONG M , BLIKSLAGER A , et al. Peptide YY inhibits intestinal Cl- secretion in experimental porcine cryptosporidiosis through a prostaglandin-activated neural pathway[J]. J Pharmacol Exp Ther, 1997, 283 (2): 692- 697. |
59 |
LI X G , ZHU M , CHEN M X , et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicol Lett, 2019, 305, 19- 31.
doi: 10.1016/j.toxlet.2019.01.008 |
60 |
ZHOU J Y , HUANG D G , ZHU M , et al. Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress[J]. J Cell Physiol, 2020, 235 (7-8): 5613- 5627.
doi: 10.1002/jcp.29492 |
61 |
ZHOU J Y , LIN H L , WANG Z , et al. Zinc L-aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway[J]. Environ Pollut, 2020, 262, 114290.
doi: 10.1016/j.envpol.2020.114290 |
62 | MOCHEL J P , JERGENS A E , KINGSBURY D , et al. Intestinal stem cells to advance drug development, precision, and regenerative medicine: a paradigm shift in translational research[J]. AAPS J, 2017, 20 (1): 17. |
63 |
SCHAEFER K , RENSING S , HILLEN H , et al. Is science the only driver in species selection?An internal study to evaluate compound requirements in the minipig compared to the dog in preclinical studies[J]. Toxicol Pathol, 2016, 44 (3): 474- 479.
doi: 10.1177/0192623315624572 |
64 | ERICSSON A C , CRIM M J , FRANKLIN C L . A brief history of animal modeling[J]. Mo Med, 2013, 110 (3): 201- 205. |
65 |
SAHOO D K , MARTINEZ M N , DAO K , et al. Canine intestinal organoids as a novel in vitro model of intestinal drug permeability: a proof-of-concept study[J]. Cells, 2023, 12 (9): 1269.
doi: 10.3390/cells12091269 |
66 |
YUI S , NAKAMURA T , SATO T , et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18 (4): 618- 623.
doi: 10.1038/nm.2695 |
[1] | Qi ZHANG, Jiangpeng GUO, Aixin NI, Hongfeng DU, Jilan CHEN, Yanyan SUN. Research Progress on Influencing Factors and Genetic Architecture of Feather Pecking in Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3745-3756. |
[2] | Xiaoxu ZHANG, Hao LI, Pingjie FENG, Hao YANG, Xinyue LI, Ran LÜ, Zhangyuan PAN, Mingxing CHU. Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3276-3287. |
[3] | Xiuqin CHEN, Su LIN, Shizhong ZHANG, Min ZHENG, Meiqing HUANG. Application of CRISPR/Cas-based Biosensors for Animal Diseases Diagnosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2859-2876. |
[4] | Huanqin ZHENG, Xiaomin JIANG, Hong YUE, Baoyan WANG, Yang LIU, Xingxiao ZHANG, Jianlong ZHANG, Hongwei ZHU. Isolation, Identification and Partial Biological Characteristics Analysis of Feline Herpesvirus-1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3040-3048. |
[5] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[6] | Xiaoyu JI, Yongwei WANG, Yan QIU, Cai ZHANG. Physiological Functions of Glycyrrhiza Polysaccharides and Its Applications in Livestock and Poultry Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2379-2387. |
[7] | Ying CHEN, Dayong CHEN, Riga WU, Chunjuan QIU, Lihong FAN, Meirong BAO, Yuan YUE, Hongyan LIANG, Jiaxin ZHANG, Jianhui TIAN, Lei AN, Liqin WANG. Influence of Meat Sheep Varieties on the Scale Application of in vitro Embryo Production Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2451-2459. |
[8] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[9] | DUAN Yixin, ZHANG Linyun, ZHAO Yongju. The Evaluated Methods and Influencing Factors of SNP Heritability and Its Application in Farmer Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1854-1865. |
[10] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[11] | DENG Gunan, ZHANG Jiaqi, BAO Zhipeng, CHEN Taoyun, YU Qisheng, DING Lu, ZHU Chenxi, WANG Yi, REN Yupeng, HE Chao, ZHANG Bin. Detection of Feline Herpesvirus Type 1 and Pathogenicity of an Isolated Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2253-2258. |
[12] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[13] | LIU Sidi, MA Ben, ZHENG Yan, QIU Yunqiao, YAO Zelong, CAO Zhongzan, LUAN Xinhong. Research Progress in the Regulation of Intestinal Flora on Intestinal Mucosal Immunity and Inflammation in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1423-1431. |
[14] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[15] | LUO Chenghui, GAO Jiangrui, CHEN Junwei, WEI Chunjie, WEI Shuangshuang, PEI Yechun. Construction of Mouse Model of Dust Mite Induced Atopic Dermatitis and Asthma [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1257-1267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||