Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1423-1431.doi: 10.11843/j.issn.0366-6964.2024.04.008
• REVIEW • Previous Articles Next Articles
LIU Sidi, MA Ben, ZHENG Yan, QIU Yunqiao, YAO Zelong, CAO Zhongzan*, LUAN Xinhong*
Received:
2023-07-07
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
LIU Sidi, MA Ben, ZHENG Yan, QIU Yunqiao, YAO Zelong, CAO Zhongzan, LUAN Xinhong. Research Progress in the Regulation of Intestinal Flora on Intestinal Mucosal Immunity and Inflammation in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1423-1431.
[1] GUAN Q D. A Comprehensive review and update on the pathogenesis of inflammatory bowel disease[J]. J Immunol Res, 2019, 2019:7247238. [2] NEURATH M F. Targeting immune cell circuits and trafficking in inflammatory bowel disease[J]. Nat Immunol, 2019, 20(8):970-979. [3] GRAHAM D B, XAVIER R J. Pathway paradigms revealed from the genetics of inflammatory bowel disease[J]. Nature, 2020, 578(7796):527-539. [4] SCHIRMER M, GARNER A, VLAMAKIS H, et al. Microbial genes and pathways in inflammatory bowel disease[J]. Nat Rev Microbiol, 2019, 17(8):497-511. [5] LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4):223-237. [6] MAO Q J, PAN H Q, ZHANG Y Y, et al. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease[J]. Bioact Mater, 2023, 19:251-267. [7] UPADHYAY K G, DESAI D C, ASHAVAID T F, et al. Microbiome and metabolome in inflammatory bowel disease[J]. J Gastroenterol Hepatol, 2023, 38(1):34-43. [8] AL BANDER Z, NITERT M D, MOUSA A, et al. The gut microbiota and inflammation:An overview[J]. Int J Environ Res Public Health, 2020, 17(20):7618. [9] GRÜNER N, ORTLEPP A L, MATTNER J. Pivotal role of intestinal microbiota and intraluminal metabolites for the maintenance of gut-bone physiology[J]. Int J Mol Sci, 2023, 24(6):5161. [10] XAVIER R J, PODOLSKY D K. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152):427-434. [11] MCCOLE D F. IBD candidate genes and intestinal barrier regulation[J]. Inflamm Bowel Dis, 2014, 20(10):1829-1849. [12] SUZUKI M, NAGAISHI T, YAMAZAKI M, et al. Myosin light chain kinase expression induced via tumor necrosis factor receptor 2 signaling in the epithelial cells regulates the development of colitis-associated carcinogenesis[J]. PLoS One, 2014, 9(2):e88369. [13] OSHIMA S, NAKAMURA T, NAMIKI S, et al. Interferon regulatory factor 1(IRF-1) and IRF-2 distinctively up-regulate gene expression and production of interleukin-7 in human intestinal epithelial cells[J]. Mol Cell Biol, 2004, 24(14):6298-6310. [14] ZHOU T Y, XU W Z, WANG Q Q, et al. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease:A review of microbe and immune mechanism associations[J]. Front Cell Infect Microbiol, 2023, 13:1132420. [15] LANGRISH C L, CHEN Y, BLUMENSCHEIN W M, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2):233-240. [16] PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903):907-912. [17] IVANOV I I, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3):485-498. [18] NIZZOLI G, BURRELLO C, CRIBIÙ F M, et al. Pathogenicity of in vivo generated intestinal Th17 lymphocytes is IFNγ dependent[J]. J Crohns Colitis, 2018, 12(8):981-992. [19] VERNERO M, ASTEGIANO M, RIBALDONE D G. New onset of inflammatory bowel disease in three patients undergoing IL-17A inhibitor secukinumab:A case series[J]. Am J Gastroenterol, 2019, 114(1):179-180. [20] FRIES W, BELVEDERE A, CAPPELLO M, et al. Inflammatory bowel disease onset during secukinumab treatment:Real concern or just an expression of dysregulated immune response?[J]. Clin Drug Investig, 2019, 39(8):799-803. [21] MONCADA R R, MORÓN J M V, MANRIQUE H P. The onset of ulcerative colitis during treatment with secukinumab:can anti-IL-17A be a trigger for inflammatory bowel disease?[J]. Rev Esp Enferm Dig, 2019, 111(9):720-721. [22] YAMADA A, ARAKAKI R, SAITO M, et al. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease[J]. World J Gastroenterol, 2016, 22(7):2195-2205. [23] SELLON R K, TONKONOGY S, SCHULTZ M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice[J]. Infect Immun, 1998, 66(11):5224-5231. [24] ATARASHI K, TANOUE T, SHIMA T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341. [25] MOMOSE Y, MARUYAMA A, IWASAKI T, et al. 16S rRNA gene sequence-based analysis of clostridia related to conversion of germfree mice to the normal state[J]. J Appl Microbiol, 2009, 107(6):2088-2097. [26] ALAMEDDINE J, GODEFROY E, PAPARGYRIS L, et al. Faecalibacterium prausnitzii skews human dc to prime IL10-Producing T Cells through TLR2/6/JNK signaling and IL-10, IL-27, CD39, and IDO-1 induction[J]. Front Immunol, 2019, 10:143. [27] HU G. Multiomics analysis to reveal the transcriptional and microbial regulation of salmonella enteritidis infection in chicken cecum[D]. Tai'an:Shandong Agricultural University, 2023. (in Chinese) 胡耿. 多组学联合分析鸡盲肠对肠炎沙门氏菌感染的转录和微生物调控作用[D]. 泰安:山东农业大学, 2023. [28] GUO M W, ZHANG H B, LIAO X P, et al. Progress in the regulation of ILC3 on intestinal mucosal immunity[J]. Chinese Journal of Animal Science, 2021, 57(5):65-69. (in Chinese) 郭美薇, 张海波, 廖晓鹏, 等. 三型固有淋巴细胞对动物肠黏膜免疫的调节作用研究进展[J]. 中国畜牧杂志, 2021, 57(5):65-69. [29] GEREMIA A, ARANCIBIA-CÁRCAMO C V, FLEMING M P P, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease[J]. J Exp Med, 2011, 208(6):1127-1133. [30] HAN L, WANG X M, DI S, et al. Innate lymphoid cells:A link between the nervous system and microbiota in intestinal networks[J]. Mediators Inflamm, 2019, 2019:1978094. [31] SONNENBERG G F, MONTICELLI L A, ELLOSO M M, et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut[J]. Immunity, 2011, 34(1):122-134. [32] HART A L, AL-HASSI H O, RIGBY R J, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases[J]. Gastroenterology, 2005, 129(1):50-65. [33] BRINKMANN V, REICHARD U, GOOSMANN C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663):1532-1535. [34] GUPTA S, KAPLAN M J. The role of neutrophils and NETosis in autoimmune and renal diseases[J]. Nat Rev Nephrol, 2016, 12(7):402-413. [35] DINALLO V, MARAFINI I, DI FUSCO D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6):772-784. [36] GRINGHUIS S I, WEVERS B A, KAPTEIN T M, et al. Selective C-Rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2[J]. PLoS Pathog, 2011, 7(1):e1001259. [37] BAI X D, LIU X H, TONG Q Y. Intestinal colonization with Candida albicans and mucosal immunity[J]. World J Gastroenterol, 2004, 10(14):2124-2126. [38] SHI S Q. Chicken Lactobacillus reuteri S5 resistant to salmonella enteritidis infection and its regulation on intestinal microflora[D]. Hefei:Anhui Agricultural University, 2020. (in Chinese) 石水琴. 鸡罗伊氏乳杆菌S5抗肠炎沙门氏菌感染及其对肠道菌群微生态的调控作用研究[D]. 合肥:安徽农业大学, 2020. [39] QIU P, ISHIMOTO T, FU L F, et al. The gut microbiota in inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12:733992. [40] ZHANG Y C, SI X M, YANG L, et al. Association between intestinal microbiota and inflammatory bowel disease[J]. Animal Model Exp Med, 2022, 5(4):311-322. [41] CAVIGLIA G P, ROSSO C, STALLA F, et al. On-treatment decrease of serum interleukin-6 as a predictor of clinical response to biologic therapy in patients with inflammatory bowel diseases[J]. J Clin Med, 2020, 9(3):800. [42] RIBALDONE D G, CAVIGLIA G P, ABDULLE A, et al. Adalimumab therapy improves intestinal dysbiosis in crohn's disease[J]. J Clin Med, 2019, 8(10):1646. [43] DIGBY-BELL J L, ATREYA R, MONTELEONE G, et al. Interrogating host immunity to predict treatment response in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 17(1):9-20. [44] SCALDAFERRI F, GERARDI V, LOPETUSO L R, et al. Gut microbial flora, prebiotics, and probiotics in IBD:their current usage and utility[J]. Biomed Res Int, 2013, 2013:435268. [45] SWIDSINSKI A, WEBER J, LOENING-BAUCKE V, et al. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease[J]. J Clin Microbiol, 2005, 43(7):3380-3389. [46] GARRIDO-MESA N, CAMUESCO D, ARRIBAS B, et al. The intestinal anti-inflammatory effect of minocycline in experimental colitis involves both its immunomodulatory and antimicrobial properties[J]. Pharmacol Res, 2011, 63(4):308-319. [47] FIORUCCI S, DISTRUTTI E, MENCARELLI A, et al. Inhibition of intestinal bacterial translocation with rifaximin modulates lamina propria monocytic cells reactivity and protects against inflammation in a rodent model of colitis[J]. Digestion, 2002, 66(4):246-256. [48] SARTOR R B. Review article:The potential mechanisms of action of rifaximin in the management of inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2016, 43 Suppl 1:27-36. [49] MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4):247-265. [50] BURRELLO C, GARAVAGLIA F, CRIBIÙ F M, et al. Short-term Oral Antibiotics treatment promotes inflammatory activation of colonic invariant natural killer t and conventional CD4+ T cells[J]. Front Med (Lausanne), 2018, 5:21. [51] WIEËRS G, BELKHIR L, ENAUD R, et al. How probiotics affect the microbiota[J]. Front Cell Infect Microbiol, 2020, 9:454. [52] MARKOWIAK P, ŚLIŻEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients, 2017, 9(9):1021. [53] ZHOU J, LI M Y, CHEN Q F, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022, 13(1):3432. [54] BERMUDEZ-BRITO M, BORGHUIS T, DANIEL C, et al. L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches[J]. Sci Rep, 2018, 8(1):1785. [55] LIM S M, JANG H M, JANG S E, et al. Lactobacillus fermentum IM12 attenuates inflammation in mice by inhibiting NF-κB-STAT3 signalling pathway[J]. Benef Microbes, 2017, 8(3):407-419. [56] ZHAI Q X, SHEN X D, CEN S, et al. Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice[J]. Food Funct, 2020, 11(1):221-235. [57] JANG S E, JEONG J J, KIM J K, et al. Simultaneous amelioratation of colitis and liver injury in mice by bifidobacterium longum LC67 and Lactobacillus plantarum LC27[J]. Sci Rep, 2018, 8(1):7500. [58] ZHOU L Y, LIU D Y, XIE Y, et al. Bifidobacterium infantis induces protective colonic PD-L1 and Foxp3 regulatory T cells in an acute murine experimental model of inflammatory bowel disease[J]. Gut Liver, 2019, 13(4):430-439. [59] STEIMLE A, MENZ S, BENDER A, et al. Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains[J]. PLoS Biol, 2019, 17(6):e3000334. [60] RODRÍGUEZ-NOGALES A, ALGIERI F, GARRIDO-MESA J, et al. The administration of Escherichia coli nissle 1917 ameliorates development of DSS-induced colitis in mice[J]. Front Pharmacol, 2018, 9:468. [61] BYNDLOSS M X, OLSAN E E, RIVERA-CHÁVEZ F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351):570-575. [62] FU Y Z, JIAO S, ZHANG N F. Research progress of acidogenic mechanism of butyrate-producing bacteria and its regulation on intestinal health[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12):4148-4158. (in Chinese) 付域泽, 焦帅, 张乃锋. 产丁酸菌的产酸机制及其在调控肠道健康中的作用研究进展[J]. 畜牧兽医学报, 2022, 53(12):4148-4158. [63] TAKAHASHI K, NISHIDA A, FUJIMOTO T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in crohn's disease[J]. Digestion, 2016, 93(1):59-65. [64] KUMARI R, AHUJA V, PAUL J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India[J]. World J Gastroenterol, 2013, 19(22):3404-3414. [65] SILVEIRA A L M, FERREIRA A V M, DE OLIVEIRA M C, et al. Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS-induced colitis in mice[J]. Eur J Nutr, 2017, 56(1):179-191. [66] LLEWELLYN S R, BRITTON G J, CONTIJOCH E J, et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice[J]. Gastroenterology, 2018, 154(4):1037-1046.e2. [67] ISHISONO K, MANO T, YABE T, et al. Dietary fiber pectin ameliorates experimental colitis in a neutral sugar side chain-dependent manner[J]. Front Immunol, 2019, 10:2979. [68] GRABINGER T, GARZON J F G, HAUSMANN M, et al. Alleviation of intestinal inflammation by oral supplementation with 2-fucosyllactose in mice[J]. Front Microbiol, 2019, 10:1385. [69] KANWAL S, JOSEPH T P, OWUSU L, et al. A polysaccharide isolated from Dictyophora indusiata promotes recovery from antibiotic-driven intestinal dysbiosis and improves gut epithelial barrier function in a mouse model[J]. Nutrients, 2018, 10(8):1003. [70] KANWAL S, JOSEPH T P, ALIYA S, et al. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways[J]. J Funct Foods, 2020, 64:103641. [71] LI R Q, KIM M H, SANDHU A K, et al. Muscadine grape (Vitis rotundifolia) or wine phytochemicals reduce intestinal inflammation in mice with dextran sulfate sodium-induced colitis[J]. J Agric Food Chem, 2017, 65(4):769-776. [72] LI R Q, WANG G P, WHITLOCK J A, et al. Muscadine grapes (Vitis rotundifolia) and dealcoholized muscadine wine alleviated symptoms of colitis and protected against dysbiosis in mice exposed to dextran sulfate sodium[J]. J Funct Foods, 2020, 65:103746. [73] PANDEY K R, NAIK S R, VAKIL B V. Probiotics, prebiotics and synbiotics-A review[J]. J Food Sci Technol, 2015, 52(12):7577-7587. [74] YE T, MA C, ZHU Q, et al. Effects of dietary supplementation with probiotics and synbiotics on immune function and antioxidant capacity of pregnant-lactating sows[J]. Chinese Journal of Animal Nutrition, 2023, 35(1):168-175. (in Chinese) 叶婷, 马翠, 祝倩, 等. 饲粮添加益生菌和合生元对妊娠-哺乳期母猪免疫功能与抗氧化能力的影响[J]. 动物营养学报, 2023, 35(1):168-175. [75] MAO A P, SUN H R, ZHANG H H, et al. Research progress of probiotics, prebiotics, synbiotics and intestinal health in canine and feline[J]. Chinese Journal of Animal Nutrition, 2022, 34(4):2140-2147. (in Chinese) 毛爱鹏, 孙皓然, 张海华, 等. 益生菌、益生元、合生元与犬猫肠道健康的研究进展[J]. 动物营养学报, 2022, 34(4):2140-2147. [76] MOSCA F, GIANNÌ M L, RESCIGNO M. Can postbiotics represent a new strategy for NEC?[J]. Adv Exp Med Biol, 2019, 1125:37-45. [77] TSILINGIRI K, RESCIGNO M. Postbiotics:what else?[J]. Benef Microbes, 2013, 4(1):101-107. [78] REN Q, YANG B, ZHANG H, et al. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 ameliorate dextran sodium sulfate-induced colitis in mice[J]. J Agric Food Chem, 2020, 68(12):3758-3769. [79] ZHA Z Q, LV Y, TANG H L, et al. An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis[J]. Int J Biol Macromol, 2020, 156:1217-1233. [80] QURAISHI M N, SHAHEEN W, OO Y H, et al. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease[J]. Clin Exp Immunol, 2020, 199(1):24-38. [81] MAHMOUDI H, HOSSAINPOUR H. Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases:A review[J]. Saudi J Gastroenterol, 2023, 29(1):3-11. [82] QURAISHI M N, WIDLAK M, BHALA N, et al. Systematic review with meta-analysis:The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection[J]. Aliment Pharmacol Ther, 2017, 46(5):479-493. [83] BAKTASH A, TERVEER E M, ZWITTINK R D, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections[J]. Front Microbiol, 2018, 9:1242. [84] BURRELLO C, GIUFFRÈ M R, MACANDOG A D, et al. Fecal microbiota transplantation controls murine chronic intestinal inflammation by modulating immune cell functions and gut microbiota composition[J]. Cells, 2019, 8(6):517. [85] TANG W J, CHEN D W, YU B, et al. Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets[J]. Vet Res, 2020, 51(1):55. [86] HUANG J, LI C, CUI Y Q, et al. Study on the effect of gut microbiota disturbance on susceptibility to BVDV based on a mouse model[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8):3466-3473. (in Chinese) 黄江, 李闯, 崔月琦, 等. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8):3466-3473. [87] WANG Y, TENG X X, YANG N Z, et al. Preliminary report of the therapeutic effect of fecal microbiota transplantation on non-specific pathogenic diarrhea in suckling lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8):1878-1885. (in Chinese) 王燕, 滕晓晓, 杨柠芝, 等. 粪菌移植法治疗非特异病原性羔羊腹泻的效果初报[J]. 畜牧兽医学报, 2020, 51(8):1878-1885. [88] LEONARDI I, PARAMSOTHY S, DORON I, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis[J]. Cell Host Microbe, 2020, 27(5):823-829.e3. |
[1] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[2] | DUAN Yixin, ZHANG Linyun, ZHAO Yongju. The Evaluated Methods and Influencing Factors of SNP Heritability and Its Application in Farmer Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1854-1865. |
[3] | HAN Fuzhen, CAI Limeng, LI Zhuoran, WANG Xueying, XIE Weichun, KUANG Hongdi, LI Jiaxuan, CUI Wen, JIANG Yanping, LI Yijing, SHAN Zhifu, TANG Lijie. Research Progress on the Mechanism of Intestinal Flora-Mediated Regulation of Intestinal Mucosal Immunity by Secondary Bile Acids and Their Receptors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1904-1913. |
[4] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[5] | DENG Gunan, ZHANG Jiaqi, BAO Zhipeng, CHEN Taoyun, YU Qisheng, DING Lu, ZHU Chenxi, WANG Yi, REN Yupeng, HE Chao, ZHANG Bin. Detection of Feline Herpesvirus Type 1 and Pathogenicity of an Isolated Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2253-2258. |
[6] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[7] | LUO Chenghui, GAO Jiangrui, CHEN Junwei, WEI Chunjie, WEI Shuangshuang, PEI Yechun. Construction of Mouse Model of Dust Mite Induced Atopic Dermatitis and Asthma [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1257-1267. |
[8] | WU Wenying, XIA Qing, HU Mengjie, ZHAO Yixuan, WANG Chen, ZHANG Yuhao, HAO Chengwu, HE Sun, GUO Aizhen, CHEN Jianguo, CHEN Yingyu. Establishment of Rabbit Challenge Model of Mycoplasma bovis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1268-1277. |
[9] | HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612. |
[10] | HU Xiangyun, CAO Yanhong, LÜ Lingyan, LIU Zheng, HUANG Facai, WU Zhuyue, XIAO Zhengzhong. Nanobodies and Their Research Status in Veterinary Field [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3164-3172. |
[11] | WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182. |
[12] | XIE Yi, ZOU Lirui, TAO Ran, LIU Sha, WANG Jiangping, WEN Lixin, WU Jing, WANG Ji. Protective Effect of Tannic Acid on Colonic Mucosal Damage and Microflora Disturbance Induced by Low-Dose T-2 Toxin in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3582-3594. |
[13] | LIAN Yuju, ZHANG Zhiyuan, LIAO Xiaobo, WEI Hongjiang, YIN Yulong, LIU Mei. Breeding Methods and Application Progress of Medical Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2667-2682. |
[14] | CHEN Aolei, HUANG Deru, AN Yafei, LI Shoujun. Animal Intestinal Organoids Culture [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2743-2750. |
[15] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||