Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1446-1455.doi: 10.11843/j.issn.0366-6964.2024.04.010
• REVIEW • Previous Articles Next Articles
LI Feifei, ZHANG Chenmiao, TONG Jinjin*, JIANG Linshu
Received:
2023-07-11
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455.
[1] LI A Q, GAO M, LIU B L, et al. Mitochondrial autophagy:molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5):444. [2] KUMMER E, BAN N. Mechanisms and regulation of protein synthesis in mitochondria[J]. Nat Rev Mol Cell Biol, 2021, 22(5):307-325. [3] MAURI S, FAVARO M, BERNARDO G, et al. Mitochondrial autophagy in the sleeping brain[J]. Front Cell Dev Biol, 2022, 10:956394. [4] FU J, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41:301-316. [5] LIU H, YOU L M, WU J, et al. Berberine suppresses influenza virus-triggered NLRP3 inflammasome activation in macrophages by inducing mitophagy and decreasing mitochondrial ROS[J]. J Leukoc Biol, 2020, 108(1):253-266. [6] REN Y F, LIU J X, LIU H Y. Effect of autophagy on development and function of mammary gland in dairy cows[J]. Chinese Journal of Animal Science, 2019, 55(9):11-17. (in Chinese) 任怡飞, 刘建新, 刘红云. 自噬对奶牛乳腺发育和功能影响的研究进展[J]. 中国畜牧杂志, 2019, 55(9):11-17. [7] GUO Y X, HAN B, YANG T, et al. Dithiothreitol promotes apoptosis in rat hepatocytes by inhibiting family with sequence similarity 134 member B(FAM134B)-mediated endoplasmic reticulophagy[J]. Chinese Journal of Cellular and Molecular Immunology, 2022, 38(12):1104-1110. (in Chinese) 郭怡歆, 韩冰, 杨婷, 等. 二硫苏糖醇抑制序列相似性家族134成员B(FAM134B)介导的内质网自噬促进大鼠肝细胞凋亡[J]. 细胞与分子免疫学杂志, 2022, 38(12):1104-1110. [8] QI M, TAN B E. Molecular mechanism of autophagy regulating oxidative stress in animals[J]. Chinese Journal of Animal Nutrition, 2020, 32(9):3993-4002. (in Chinese) 齐鸣, 谭碧娥. 自噬调节动物氧化应激反应的分子机制[J]. 动物营养学报, 2020, 32(9):3993-4002. [9] LIANG D, REN C, ZHAO P Y, et al. Research advance of ribophagy[J]. Progress in Physiological Sciences, 2022, 53(5):373-378. (in Chinese) 梁丹, 任超, 赵鹏跃, 等. 核糖体自噬的研究进展[J]. 生理科学进展, 2022, 53(5):373-378. [10] TORRES S, SEGALÉS P, GARCÍA-RUIZ C, et al. Mitochondria and the NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis[J]. Cells, 2022, 11(9):1475. [11] DOMINIC A, LE N T, TAKAHASHI M. Loop between NLRP3 inflammasome and reactive oxygen species[J]. Antioxid Redox Signal, 2022, 36(10/12):784-796. [12] LI S Q, WANG J, YU X, et al. Research progress on mitochondrial autophagy nucleotides binding oligomeric domain like receptor protein 3 inflammasome axis in aging related cardiovascular diseases[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2020, 22(10):1104-1106. (in Chinese) 李邵琦, 王举, 于雪, 等. 线粒体自噬核苷酸结合寡聚化结构域样受体蛋白3炎症小体轴在衰老相关心血管疾病中的研究进展[J]. 中华老年心脑血管病杂志, 2020, 22(10):1104-1106. [13] CAO Y X, ZHANG Y Q, QI W Q, et al. Research progress of food-derived natural products regulating mitophagy to prevent neurodegenerative diseases[J]. Food Science,, 2024, 45(1):301-302. (in Chinese) 曹雨欣, 张彦青, 戚务勤, 等. 食源性天然产物调控线粒体自噬预防神经退行性疾病的研究进展[J]. 食品科学, 2024, 45(1):301-302. [14] WANG H L, XING G D, QIAN Y, et al. Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction[J]. Ecotoxicol Environ Saf, 2021, 214:112078. [15] WATERS E, WILKINSON K A, HARDING A L, et al. The SUMO protease SENP3 regulates mitochondrial autophagy mediated by Fis1[J]. EMBO Rep, 2022, 23(2):e48754. [16] UM J H, YUN J. Emerging role of mitophagy in human diseases and physiology[J]. BMB Rep, 2017, 50(6):299-307. [17] MA X W, MCKEEN T, ZHANG J H, et al. Role and mechanisms of mitophagy in liver diseases[J]. Cells, 2020, 9(4):837. [18] LI J, YANG D M, LI Z P, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 84:101817. [19] MCWILLIAMS T G, PRESCOTT A R, MONTAVA-GARRIGA L, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand[J]. Cell Metab, 2018, 27(2):439-449.e5. [20] TANG Y. The regulatory mechanism of PINK1-mediated mitophagy on mammary gland inflammatory injury in ketotic cows[D]. Daqing:Heilongjiang Bayi Agricultural University, 2022. (in Chinese) 唐燕. PINK1介导的线粒体自噬对酮病奶牛乳腺组织炎性损伤的调节机制[D]. 大庆:黑龙江八一农垦大学, 2022. [21] MARINKOVIĆ M, šPRUNG M, NOVAK I. Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery[J]. Autophagy, 2021, 17(5):1232-1243. [22] SPRINGER M Z, POOLE L P, DRAKE L E, et al. BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver[J]. Autophagy, 2021, 17(11):3530-3546. [23] VIANELLO C, COCETTA V, CATANZARO D, et al. Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy[J]. Cell Death Dis, 2022, 13(4):398. [24] HE Y L, LI J, GONG S H, et al. BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia[J]. Cell Death Dis, 2022, 13(11):966. [25] ZHENG Y R, ZHANG X N, CHEN Z. Research progress on mechanism of Nix-mediated mitophagy[J]. Journal of Zhejiang University:Medical Sciences, 2017, 46(1):92-96. (in Chinese) 郑艳榕, 张翔南, 陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报:医学版, 2017, 46(1):92-96. [26] FIELD J T, GORDON J W. BNIP3 and Nix:Atypical regulators of cell fate[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(10):119325. [27] WILHELM L P, ZAPATA-MUÑOZ J, VILLAREJO-ZORI B, et al. BNIP3L/NIX regulates both mitophagy and pexophagy[J]. EMBO J, 2022, 41(24):e111115. [28] JIN X H, LU S F, BAI M, et al. Research progress in NIX-mediated mitophagy[J]. Chinese Journal of Pathophysiology, 2022, 38(11):2086-2092. (in Chinese) 靳晓慧, 卢帅菲, 白明, 等. NIX介导的线粒体自噬研究进展[J]. 中国病理生理杂志, 2022, 38(11):2086-2092. [29] TANG S S, KANG X R, FENG X Y, et al. Research progress in mechanism of TCM intervention in metabolic diseases by mitophagy[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2023, 30(8):187-192. (in Chinese) 唐斯斯, 康徐瑞, 冯馨瑶, 等. 中医药调控线粒体自噬治疗代谢性疾病机制研究进展[J]. 中国中医药信息杂志, 2023, 30(8):187-192. [30] MA L J, LI K F, WEI W X, et al. Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy[J]. Redox Biol, 2023, 62:102693. [31] LIU B, HUO F, XU Q Q, et al. Preparation of porcine NLRP3 monoclonal antibody and identification of antigenic epitope[J]. Chinese Journal of Veterinary Science, 2022, 42(11):2211-2215, 2241. (in Chinese) 刘博, 霍芳, 徐晴晴, 等. 猪NLRP3单克隆抗体制备及其抗原表位的鉴定[J]. 中国兽医学报, 2022, 42(11):2211-2215, 2241. [32] PANG M Y, MA Y R, WANG P P, et al. Research progress on the relationship between NLRP3 inflammasome and neuropathic pain[J]. Chinese Journal of Pain Medicine, 2022, 28(10):776-782. (in Chinese) 庞淼一, 马奕然, 王培培, 等. NLRP3炎症小体与神经病理性疼痛关系的研究进展[J]. 中国疼痛医学杂志, 2022, 28(10):776-782. [33] SHARMA B R, KANNEGANTI T D. NLRP3 inflammasome in cancer and metabolic diseases[J]. Nat Immunol, 2021, 22(5):550-559. [34] CAI B S, ZHAO J, ZHANG Y L, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J]. Autophagy, 2022, 18(5):990-1004. [35] DUAN Y H, WANG J H, CAI J, et al. The leucine-rich repeat (LRR) domain of NLRP3 is required for NLRP3 inflammasome activation in macrophages[J]. J Biol Chem, 2022, 298(12):102717. [36] MA Q. Pharmacological inhibition of the NLRP3 inflammasome:structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3):487-520. [37] SHARIF H, WANG L, WANG W L, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature, 2019, 570(7761):338-343. [38] SCOTT X O, STEPHENS M E, DESIR M C, et al. The inflammasome adaptor protein ASC in mild cognitive impairment and Alzheimer's disease[J]. Int J Mol Sci, 2020, 21(13):4674. [39] LIU G Z, CHEN Y Y, YANG S, et al. Intervention of traditional chinese and western medicine in NLRP3 inflammasome-mediated digestive system diseases:a review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(23):174-188. (in Chinese) 刘国政, 陈嫣嫣, 杨硕, 等. NLRP3炎症小体介导的消化系统疾病的中西医干预研究进展[J]. 中国实验方剂学杂志, 2023, 29(23):174-188. [40] ZHAN X Y, LI Q, XU G, et al. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors[J]. Front Immunol, 2023, 13:1109938. [41] WANG D, ZHANG Y N, XU X M, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3[J]. Nature Communications, 2021, 12(1):2674. [42] XU J, NÚÑEZ G. The NLRP3 inflammasome:activation and regulation[J]. Trends Biochem Sci, 2023, 48(4):331-344. [43] HUANG Y, XU W, ZHOU R B. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9):2114-2127. [44] LAI X L, WANG X Q, MAI J L, et al. Etiological characteristics of abscessed granulomatous mastitis and changes of NLRP3 and IL-1β[J]. Chinese Journal of Nosocomiology, 2023, 33(10):1540-1544. (in Chinese) 赖小玲, 王晓秋, 麦金丽, 等. 脓肿型肉芽肿性乳腺炎病原学特点及NLRP3和IL-1β表达变化[J]. 中华医院感染学杂志, 2023, 33(10):1540-1544. [45] MENG D H, SHE K J, MENG X Y, et al. Effect of Wenyang Jieyu prescription on hippocampal neural plasticity in depressed mice based on NLRP3/caspase-1/IL-1β Pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(6):39-47. (in Chinese) 孟丹华, 佘楷杰, 孟晓莹, 等. 基于NLRP3/Caspase-1/IL-1β通路探讨温阳解郁方调节小鼠海马突触可塑性的机制[J]. 中国实验方剂学杂志, 2024, 30(6):39-47. [46] ZHANG H Z, SHI H M, ZHOU S D, et al. Dietary disodium fumarate supplementation alleviates subacute ruminal acidosis (SARA)-induced liver damage by inhibiting pyroptosis via mitophagy-NLRP3 inflammasome pathway in lactating Hu sheep[J]. Front Immunol, 2023, 14:1197133. [47] DAGVADORJ J, MIKULSKA-RUMINSKA K, TUMURKHUU G, et al. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation[J]. Proc Natl Acad Sci U S A, 2021, 118(1):e2015632118. [48] XU Z Y. Inhibiting NLRP3/caspase-1 signaling pathway enhances the protective effect of mitophagy against sepsis-associated lung injury in mice[D]. Nanchang:Nanchang University, 2022. (in Chinese) 徐泽尧. 阻断NLRP3/CASPASE-1信号通路增强了线粒体自噬对脓毒症小鼠肺损伤的保护作用[D]. 南昌:南昌大学, 2022. [49] LIU K J, ZHOU X, FANG L, et al. PINK1/parkin-mediated mitophagy alleviates Staphylococcus aureus-induced NLRP3 inflammasome and NF-κB pathway activation in bovine mammary epithelial cells[J]. Int Immunopharmacol, 2022, 112:109200. [50] LI Y N, ZHU Y H, CHU B X, et al. Lactobacillus rhamnosus GR-1 prevents Escherichia coli-induced apoptosis through PINK1/parkin-mediated mitophagy in bovine mastitis[J]. Front Immunol, 2021, 12:715098. [51] JI Z J, SHI Y, LI X, et al. Neuroprotective effect of Taohong Siwu decoction on cerebral ischemia/reperfusion injury via mitophagy-NLRP3 inflammasome pathway[J]. Front Pharmacol, 2022, 13:910217. [52] KIM M J, BAE S H, RYU J C, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages[J]. Autophagy, 2016, 12(8):1272-1291. [53] ZHAO W P, HE F M, BARKEMA H W, et al. Prototheca spp. induce an inflammatory response via mtROS-mediated activation of NF-κB and NLRP3 inflammasome pathways in bovine mammary epithelial cell cultures[J]. Vet Res, 2021, 52(1):144. [54] QIU W Q, AI W, ZHU F D, et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-mediated mitophagy[J]. Free Radic Biol Med, 2022, 179:76-94. [55] WU K K L, CHENG K K Y. A new role of the early endosome in restricting NLRP3 inflammasome via mitophagy[J]. Autophagy, 2022, 18(6):1475-1477. |
[1] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[2] | SHEN Wenjuan, YANG Zhuo, ZHANG Xinrui, FU Yu, TAO Jinzhong. Research Progress of Microorganisms and Reproductive and Related Diseases in Dairy Cows Reproductive Tract [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 924-932. |
[3] | GAO Xin, SUN Yipeng. Research Progress of Cell Inflammation Induced by Influenza A Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 481-490. |
[4] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[5] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[6] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[7] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
[8] | HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612. |
[9] | ZHANG Yafeng, ZHU Bin, MA Chang, ZHANG Yuanshu. The Research on the Effects of ACE2 Activated by Diminazene Aceturate on Mitochondria in the Liver of Rats with Non-alcoholic Fatty Liver Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3895-3904. |
[10] | WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182. |
[11] | GUO Yixin, WANG Zhisheng, HU Rui, WANG Junmei, WANG Sen, SHI Liyuan, ZHANG Xiaohong, ZOU Huawei, ZUO Jiaxue, PENG Quanhui, XUE Bai, WANG Lizhi. Effect of Leucine on Browning of Subcutaneous Adipocytes in Yellow Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3286-3298. |
[12] | ZHONG Hua, SONG Shanshan, SHAO Huanting, ZHAO Yu, KANG Jinwen, WU Yao, SU Renwei. Transcriptome Sequencing Analysis on Canine Pyometra Uterine Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3383-3392. |
[13] | HU Xiuhua, SUN Zhixin, ZHAO Mengyang, XIE Jiaqi, WANG Min, CHEN Hailiang, GE Xin, LIU Tianlong, WANG Shaolin. Pathogenicity and Resistance Analysis of Enterococcus faecium from Wild Squirrels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3012-3021. |
[14] | ZHAO Donghao, YUAN Meng, MA Kaiteng, DUAN Zhuo, ZHU Yixin, TANG Fang, HAN Keguang, HUO Nairui. Chelating Role of Sheep Bone Collagen Peptide to Cadmium and Its Protection Role against Liver Injuries Induced by Cadmium in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2641-2652. |
[15] | HAN Xiuyuan, ZHAO Liang, WANG Chuang, QI Meiyu, YAO Yuchang. Nicotinic Acid Enhances Low Temperature Preservation of Sheep Sperm by Reducing Oxidative Stress Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1979-1989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||