

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4925-4937.doi: 10.11843/j.issn.0366-6964.2025.10.014
• Animal Genetics and Breeding • Previous Articles Next Articles
HE Siqi1,2(
), CHEN Qian2, JIANG Lin2, MA Yuehui2, ZHOU Shenghua1,*(
), ZHAO Qianjun2,*(
)
Received:2025-03-13
Online:2025-10-23
Published:2025-11-01
Contact:
ZHOU Shenghua, ZHAO Qianjun
E-mail:hesiqiovo@163.com;ZSH991109@163.com;zhaoqianjun@caas.cn
CLC Number:
HE Siqi, CHEN Qian, JIANG Lin, MA Yuehui, ZHOU Shenghua, ZHAO Qianjun. The Effect of METTL14 on Myogenic Differentiation of Ovine Skeletal Muscle Satellite Cells Based on Transcriptome Sequencing Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4925-4937.
Table 1
Primers for RT-qPCR"
| 基因 Gene | 引物序列(5′→3′) Primer sequence | 登录号 Accession number | 退火温度/℃ Annealing temperature | 产物大小/bp Product size |
| METTL14 | F:AGATTGCAGCACCTCGATCA | XM_004009592.6 | 60 | 87 |
| R:CCCACTTGCGTAAACACACT | ||||
| MyHC | F:CTGTCCAAGTTCCGCAAGGT | XM_004010325.4 | 60 | 182 |
| R:GAGCTTCGTTGCACCCTCAA | ||||
| MyoG | F:GAGAACTACCTGCCTGTCCAC | NM_001174109.1 | 60 | 251 |
| R:GCCTCGAAGGCTTCATTCAC | ||||
| MX2 | F:ACTGGGGCAGACAATGAGTC | NM_001078652.1 | 60 | 149 |
| R:GGTTGTTTTCGGACCCCTTT | ||||
| RSAD2 | F:TGGTTCCAGAAGTACGGTGA | XM_004005669.5 | 60 | 79 |
| R:TAAGGACGTTGACCTGCTCG | ||||
| IFI35 | F:GCGGGGACTTCAACGAAAGG | XM_004012955.6 | 60 | 182 |
| R:GCCTGGAGAGCCGACACAG | ||||
| PGAM2 | F:GTCCATCAGCAAGGAGCGT | XM_004018189.5 | 60 | 186 |
| R:TGCTTGACGATTCCCCGTAG | ||||
| RERG | F:CAACCTACCGACACCAAGCA | XM_012175305.4 | 60 | 86 |
| R:CTGAATGGTGTCTTCCTGCCC | ||||
| GAPDH | F:GGGTCATCATCTCTGCACCT | NM_001190390.1 | 60 | 176 |
| R:GGTCATAAGTCCCTCCACGA |
Fig. 1
Identification of ovine SMSCs (100×) Expression of Pax7 and MyHC in ovine skeletal muscle satellite cells(SMSCs). The first column shows the staining results of cytoplasm by Pax7 and MyHC, the second column shows the staining results of nucleus by DAPI, and the third column shows the combined staining results of cytoplasm and nucleus"
Fig. 2
METTL14 promotes differentiation of ovine SMSCs A, B. METTL14 dynamic changes during SMSCs differentiation: A. protein expression; B. mRNA expression. C-E.The efficiency of METTL14 overexpression and the effect of METTL14 on the expression of differentiation marker genes in ovine SMSCs: C. RT-qPCR; D.Western blot; E. immunofluorescence(100×)"
Table 2
Transcriptome sequencing data analysis of OE-NC group and OE-14 group"
| 样本 Sample | 原始碱基数/bp Raw datas | 过滤后碱基数/bp Clean datas | 过滤后读数 Clean reads | 比对率/% Ratio | Q20/% | Q30/% | GC含量/% GC content |
| OE-NC-1 | 11 617 995 000 | 11 478 734 663 | 77 185 284 | 95.59 | 98.02 | 94.12 | 48.98 |
| OE-NC-2 | 11 786 511 900 | 11 660 724 465 | 78 254 396 | 95.51 | 97.97 | 94.01 | 48.81 |
| OE-NC-3 | 11 790 966 300 | 11 668 905 187 | 78 291 154 | 95.73 | 97.97 | 94.02 | 49.21 |
| OE-14-1 | 12 070 909 800 | 11 943 452 847 | 80 182 260 | 95.55 | 98.03 | 94.14 | 49.85 |
| OE-14-2 | 11 967 072 600 | 11 842 913 088 | 79 510 606 | 95.52 | 98.03 | 94.12 | 49.12 |
| OE-14-3 | 12 023 415 300 | 11 914 845 248 | 79 901 354 | 95.59 | 97.99 | 93.94 | 49.61 |
Fig. 4
Screening of differentially expressed genes between OE-NC group and OE-14 group A. The number of differentially expressed genes between OE-NC group and OE-14 group; B. The volcano map displays the differentially expressed genes between the OE-NC group and the OE-14 group; C. The differential comparison clustering heatmap displays the differential genes expression patterns between the OE-NC group and the OE-14 group"
| 1 | 李雪娇, 刘晨曦, 孙亚伟, 等. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究[J]. 西北农林科技大学学报(自然科学版), 2018, 46 (5): 1- 7. |
| LI X J , LIU C X , SUN Y W , et al. Study on structure development characteristics of German Merino sheep fetal skeletal muscle tissue[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46 (5): 1- 7. | |
| 2 | 李伯江, 李平华, 吴望军, 等. 骨骼肌肌纤维形成机制的研究进展[J]. 中国农业科学, 2014, 47 (6): 1200- 1207. |
| LI B J , LI P H , WU W J , et al. Progresses in research of the mechanisms of skeletal muscle fiber Formation[J]. Scientia Agricultura Sinica, 2014, 47 (6): 1200- 1207. | |
| 3 |
BISCHOFF R . Enzymatic liberation of myogenic cells from adult rat muscle[J]. Anat Rec, 1974, 180 (4): 645- 661.
doi: 10.1002/ar.1091800410 |
| 4 |
DODSON M V , MARTIN E L , BRANNON M A , et al. Optimization of bovine satellite cell-derived myotube formation in vitro[J]. Tissue Cell, 1987, 19 (2): 159- 166.
doi: 10.1016/0040-8166(87)90001-2 |
| 5 |
WU H , REN Y , LI S , et al. In vitro culture and induced differentiation of sheep skeletal muscle satellite cells[J]. Cell Biol Int, 2012, 36 (6): 579- 587.
doi: 10.1042/CBI20110487 |
| 6 |
LIU H H , LI L , CHEN X , et al. Characterization of in vitro cultured myoblasts isolated from duck (Anas platyrhynchos) embryo[J]. Cytotechnology, 2011, 63 (4): 399- 406.
doi: 10.1007/s10616-011-9356-7 |
| 7 |
SEALE P , SABOURIN L A , GIRGIS-GABARDO A , et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102 (6): 777- 786.
doi: 10.1016/S0092-8674(00)00066-0 |
| 8 | SCHULTZ E . Satellite cell behavior during skeletal muscle growth and regeneration[J]. Med Sci Sports Exerc, 1989, 21 (5 Suppl): S181- 186. |
| 9 | WHITE T P , ESSER K A . Satellite cell and growth factor involvement in skeletal muscle growth[J]. Med Sci Sports Exerc, 1989, 21 (5 Suppl): S158- 163. |
| 10 |
WAGERS A J , CONBOY I M . Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis[J]. Cell, 2005, 122 (5): 659- 667.
doi: 10.1016/j.cell.2005.08.021 |
| 11 |
VON MALTZAHN J , JONES A E , PARKS R J , et al. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle[J]. Proc Natl Acad Sci U S A, 2013, 110 (41): 16474- 16479.
doi: 10.1073/pnas.1307680110 |
| 12 | FENG X , NAZ F , JUAN A H , et al. Identification of skeletal muscle satellite cells by immuno-fluorescence with Pax7 and laminin antibodies[J]. J Vis Exp, 2018 (134): 57212. |
| 13 | 李欣, 于永生, 张立春, 等. 绵羊骨骼肌卫星细胞分离培养、鉴定与成肌诱导分化[J]. 中国畜牧兽医, 2021, 48 (4): 1204- 1210. |
| LI X , YU Y S , ZHANG L C , et al. Isolation, culture, identification and myognic differentiation of sheep skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (4): 1204- 1210. | |
| 14 |
DHAWAN J , RANDO T A . Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends Cell Biol, 2005, 15 (12): 666- 673.
doi: 10.1016/j.tcb.2005.10.007 |
| 15 |
CORNELISON D D , WOLD B J . Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells[J]. Dev Biol, 1997, 191 (2): 270- 283.
doi: 10.1006/dbio.1997.8721 |
| 16 | 张笑, 贾桂芳. RNA表观遗传修饰: N6-甲基腺嘌呤[J]. 遗传, 2016, 38 (4): 275- 288. |
| ZHANG X , JIA G F . RNA epigenetic modification: N6-methyladenosine[J]. Hereditas, 2016, 38 (4): 275- 288. | |
| 17 |
LIU J , YUE Y , HAN D , et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10 (2): 93- 95.
doi: 10.1038/nchembio.1432 |
| 18 |
WANG P , DOXTADER K A , NAM Y . Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016, 63 (2): 306- 317.
doi: 10.1016/j.molcel.2016.05.041 |
| 19 | YANG X , MEI C , MA X , et al. m(6)A methylases regulate myoblast proliferation, apoptosis and differentiation[J]. Animals (Basel), 2022, 12 (6): 773. |
| 20 | CHEN B , LIU S , ZHANG W , et al. Profiling analysis of N6-methyladenosine mRNA methylation reveals differential m6A patterns during the embryonic skeletal muscle development of ducks[J]. Animals (Basel), 2022, 12 (19): 2593. |
| 21 |
JIANG Q , XU T , ZHOU H , et al. METTL14 regulates proliferation and differentiation of duck myoblasts through targeting MiR-133b[J]. PLoS One, 2025, 20 (3): e0320659.
doi: 10.1371/journal.pone.0320659 |
| 22 |
PETROSINO J M , HINGER S A , GOLUBEVA V A , et al. The m(6)A methyltransferase METTL3 regulates muscle maintenance and growth in mice[J]. Nat Commun, 2022, 13 (1): 168.
doi: 10.1038/s41467-021-27848-7 |
| 23 |
TAN B , ZENG J , MENG F , et al. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles[J]. BMC Genomics, 2022, 23 (1): 804.
doi: 10.1186/s12864-022-09043-0 |
| 24 | 束婧婷, 单艳菊, 姬改革, 等. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55 (3): 589- 601. |
| SHU J T , SHAN Y J , JI G G , et al. Relationship between expression levels of guangxi partridge chicken m6A methyltransferase genes, myofiber types and myogenic differentiation[J]. Scientia Agricultura Sinica, 2022, 55 (3): 589- 601. | |
| 25 | 马兰花. METTL14基因在牦牛前体脂肪细胞增殖分化和脂质沉积中的作用[D]. 兰州: 西北民族大学, 2022. |
| MA L H. The role of METTL14 gene in proliferation, differentiationand lipid deposition of yak preadipocytes[D]. Lanzhou: Northwest Minzu University, 2022. (in Chinese) | |
| 26 | 张丹, 陈博雯, 杨博辉, 等. 湖羊m6A甲基转移酶METTL14基因CDS序列克隆及表达谱分析[J]. 南方农业学报, 2023, 54 (10): 3047- 3055. |
| ZHANG D , CHEN B W , YANG B H , et al. Cloning and expression profile analysis of CDS sequence of m6A methyltransferase METTL14 gene from Hu sheep[J]. Journal of Southern Agriculture, 2023, 54 (10): 3047- 3055. | |
| 27 | 丁浩, 林月月, 张涛, 等. m6A甲基化在鸡肌肉生长发育中的表达研究[J]. 中国畜牧兽医, 2021, 48 (5): 1525- 1534. |
| DING H , LIN Y Y , ZHANG T , et al. Study on the Expression of m6A Methylation in Chicken Muscle Growth and Development[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (5): 1525- 1534. | |
| 28 | 杨海平, 戴敏, 张东华. 细胞因子信号传导抑制蛋白-1(SOCS-1)研究进展[J]. 中国实验血液学杂志, 2007 (2): 437- 440. |
| YANG H P , DAI M , ZHANG D H . Progress of study on suppressor of cytokine signaling-1——review[J]. Journal of Experimental Hematology, 2007 (2): 437- 440. | |
| 29 |
DEYHLE M R , HAFEN P S , PARMLEY J , et al. CXCL10 increases in human skeletal muscle following damage but is not necessary for muscle regeneration[J]. Physiol Rep, 2018, 6 (8): e13689.
doi: 10.14814/phy2.13689 |
| 30 |
BERKES C A , TAPSCOTT S J . MyoD and the transcriptional control of myogenesis[J]. Semin Cell Dev Biol, 2005, 16 (4-5): 585- 595.
doi: 10.1016/j.semcdb.2005.07.006 |
| 31 |
MASCARELLO F , TONIOLO L , CANCELLARA P , et al. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species[J]. Ann Anat, 2016, 207, 9- 20.
doi: 10.1016/j.aanat.2016.02.007 |
| 32 |
XIE S J , LEI H , YANG B , et al. Dynamic m(6)A mRNA methylation reveals the role of METTL3/14-m(6)A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration[J]. Front Cell Dev Biol, 2021, 9, 744171.
doi: 10.3389/fcell.2021.744171 |
| 33 | 董可为, 沈尧, 王帅, 等. WTAP通过上调糖酵解抑制结直肠癌细胞分化[J]. 空军军医大学学报, 2024, 45 (3): 298-302+310. |
| DONG K W , SHEN Y , WANG S , et al. WTAP inhibits colorectal cancer cell differentiation by up-regulating glycolysis[J]. Journal of Air Force Medical University, 2024, 45 (3): 298-302+310. | |
| 34 | 刘铃, 王圣楠, 王丹丹, 等. Zbed6基因敲除对小鼠骨骼肌生长发育的影响及其分子作用机制研究[J]. 中国畜牧兽医, 2023, 50 (9): 3641- 3651. |
| LIU L , WANG S N , WANG D D , et al. Effect and molecular mechanism of Zbed6 gene knockout on the frowth and development of skeletal muscle in mice[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (9): 3641- 3651. | |
| 35 |
GAO X Q , ZHANG Y H , LIU F , et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA[J]. Nat Cell Biol, 2020, 22 (11): 1319- 1331.
doi: 10.1038/s41556-020-0576-y |
| 36 |
LIU Z , ZHANG X , LEI H , et al. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG[J]. Nat Commun, 2020, 11 (1): 911.
doi: 10.1038/s41467-020-14684-4 |
| 37 |
AMIN N M , GIBBS D , CONLON F L . Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development[J]. Dev Dyn, 2014, 243 (7): 948- 956.
doi: 10.1002/dvdy.24126 |
| 38 |
KAMALUDIN A A , SMOLARCHUK C , BISCHOF J M , et al. Muscle dysfunction caused by loss of Magel2 in a mouse model of Prader-Willi and Schaaf-Yang syndromes[J]. Hum Mol Genet, 2016, 25 (17): 3798- 3809.
doi: 10.1093/hmg/ddw225 |
| 39 |
FERREIRA F J , CARVALHO L , LOGARINHO E , et al. foxm1 modulates cell non-autonomous response in zebrafish skeletal muscle homeostasis[J]. Cells, 2021, 10 (5): 1241.
doi: 10.3390/cells10051241 |
| 40 |
NEJAD F M , MOHAMMADABADI M , ROUDBARI Z , et al. Network visualization of genes involved in skeletal muscle myogenesis in livestock animals[J]. BMC Genomics, 2024, 25 (1): 294.
doi: 10.1186/s12864-024-10196-3 |
| 41 |
KITAJIMA Y , YOSHIOKA K , SUZUKI N . The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders[J]. J Physiol Sci, 2020, 70 (1): 40.
doi: 10.1186/s12576-020-00768-9 |
| 42 |
PIZON V , MÉCHALI F , BALDACCI G . RAP1A GTP/GDP cycles determine the intracellular location of the late endocytic compartments and contribute to myogenic differentiation[J]. Exp Cell Res, 1999, 246 (1): 56- 68.
doi: 10.1006/excr.1998.4284 |
| 43 |
HAO D , WANG X , WANG X , et al. Transcriptomic changes in bovine skeletal muscle cells after resveratrol treatment[J]. Gene, 2020, 754, 144849.
doi: 10.1016/j.gene.2020.144849 |
| 44 |
WANG Y , WANG J , HU H , et al. Dynamic transcriptome profiles of postnatal porcine skeletal muscle growth and development[J]. BMC Genom Data, 2021, 22 (1): 32.
doi: 10.1186/s12863-021-00984-1 |
| 45 |
ZHAN S , ZHAO W , SONG T , et al. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages[J]. Funct Integr Genomics, 2018, 18 (1): 43- 54.
doi: 10.1007/s10142-017-0573-9 |
| 46 | MOHAMMADINEJAD F , MOHAMMADABADI M , ROUDBARI Z , et al. Identification of key genes and biological pathways associated with skeletal muscle maturation and hypertrophy in Bos taurus, Ovis aries, and Sus scrofa[J]. Animals (Basel), 2022, 12 (24): 3471. |
| 47 |
GLICKMAN M H , CIECHANOVER A . The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction[J]. Physiol Rev, 2002, 82 (2): 373- 428.
doi: 10.1152/physrev.00027.2001 |
| 48 | OLGUÍN H C . The gentle side of the UPS: Ubiquitin-proteasome system and the regulation of the myogenic program[J]. Front Cell Dev Biol, 2021, 9, 821839. |
| 49 |
HORISBERGER M A . Interferon-induced human protein MxA is a GTPase which binds transiently to cellular proteins[J]. J Virol, 1992, 66 (8): 4705- 4709.
doi: 10.1128/jvi.66.8.4705-4709.1992 |
| 50 |
ELLINWOOD N M , MCCUE J M , GORDY P W , et al. Cloning and characterization of cDNAs for a bovine (Bos taurus) Mx protein[J]. J Interferon Cytokine Res, 1998, 18 (9): 745- 755.
doi: 10.1089/jir.1998.18.745 |
| 51 |
SCARAMOZZA A , PARK D , KOLLU S , et al. Lineage tracing reveals a subset of reserve muscle stem cells capable of Clonal expansion under stress[J]. Cell Stem Cell, 2019, 24 (6): 944- 957.
doi: 10.1016/j.stem.2019.03.020 |
| 52 |
CHISTIAKOV D A . Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review[J]. Viral Immunol, 2010, 23 (1): 3- 15.
doi: 10.1089/vim.2009.0071 |
| 53 |
WANG Q , XU J , BAO M , et al. Weighted gene co-expression network analysis reveals genes related to growth performance in Hu sheep[J]. Sci Rep, 2024, 14 (1): 13043.
doi: 10.1038/s41598-024-63850-x |
| 54 |
MORESI V , ADAMO S , BERGHELLA L . The JAK/STAT pathway in skeletal muscle pathophysiology[J]. Front Physiol, 2019, 10, 500.
doi: 10.3389/fphys.2019.00500 |
| 55 |
TRENERRY M K , DELLA GATTA P A , CAMERON-SMITH D . JAK/STAT signaling and human in vitromyogenesis[J]. BMC Physiol, 2011, 11, 6.
doi: 10.1186/1472-6793-11-6 |
| 56 |
HUANG L , ZHANG S M , ZHANG P , et al. Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation[J]. J Am Heart Assoc, 2014, 3 (5): e001309.
doi: 10.1161/JAHA.114.001309 |
| [1] | BAI Feng, MAERZIYA·Yasen , AMINIGULI·Abulaizi , TENG Wen, LUO Chunyan, NAZHAKAITI·Ainiwaner , ZHANG Yuntao, JI Xinmin, ZHANG Yanhua. Genome-Wide Association Study of Body Weight and Body Size Traits In Turpan Black Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4315-4327. |
| [2] | XING Zhou, SONG Chenglei, CAO Fengfeng, LI Zhuoying, LI Qingyun, TAO Jinzhong*. Effects of Plasma Steroid Hormones on Superovulation Efficiency in Tan Sheep after Superovulation Treatment [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4422-4431. |
| [3] | LIU Can, SU Yixin, JING Xianjin, LI Wenze, YANG Lepu, WANG Ruijun, ZHANG Yanjun, WANG Zhiying, LÜ Qi, SU Rui. Research Progress of Epigenetics in Sheep and Goats Genetic Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3561-3577. |
| [4] | HU Jinling, ZHONG Qiqi, HUANG Cheng, LEI Minggang. AKR1B1 Regulates Proliferation and Differentiation of Porcine Skeletal Muscle Satellite Cells via the AMPK/mTOR/S6 Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3722-3733. |
| [5] | FAN Jing, LI Wei, ZHU Yan, Wudubala , SHI Jiahui, Husile , WU Jianghong. Study on Rumen Morphological Changes and Gene Expression Differences in Hu Sheep at Different Developmental Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3773-3786. |
| [6] | WEI Kangkang, MA Gui, LI Wendi, TIAN Yu, ZHANG Lingkai, ZHU Jihong, HU Yamei. Research Progress of Single-Cell Sequencing Technology in the Growth and Development Process of Sheep Ovaries [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3080-3087. |
| [7] | ZHANG Jialiang, HUANG Chang, YANG Yonglin, YANG Hua, BAI Wenlin, MA Yuehui, ZHAO Qianjun. Genetic Structure and Wool Trait Selection Signatures Analysis of Chinese Sheep Populations Based on 50K Liquid SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3164-3176. |
| [8] | LAN Mingxi, QIN Qing, ZHANG Chongyan, LIU Zhichen, ZHANG Jingwen, ZHAO Dan, WU Danni, QIN Tian, WANG Zhixin, LIU Zhihong. Determination and Analysis of Slaughtering Performance and Meat Quality of Different Parts of Ujumqin Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3177-3187. |
| [9] | LIU Yumeng, GAO Xing, ZHAO Yali, CAO Di, MANG Lai, ZHANG Xinzhuang. Effects of Selenium Polysaccharides on Oxidative Damage of Equine Skeletal Muscle Satellite Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3357-3367. |
| [10] | LUO Ruijie, WANG Jiankui, CAO Suying. Integrated Sequencing Analysis of lncRNA and mRNA Related to Ancestral-like Coarse in Aohan Fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2685-2700. |
| [11] | ZHU Aiwen, WANG Jian, ZHU Gehui, LIU Haixia, PINGCUO Bandan, WANG Jun, DEQING Zhuoga, YAN Wei, HAN Dayong. Zearalenone Induced Proliferation, Apoptosis, Oxidative Stress and NAC Protective Mechanism of Sertoli Cells in Pengbo Semi-fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2752-2764. |
| [12] | GU Bo, WANG Anqi, YU Xinmiao, GUO Juntong, YANG Yi, DENG Yijie, JIANG Huaizhi. Construction of Ovarian ceRNA Networks and Screening of Key miRNA in Two Different Breeds of Sheep Based on Whole Transcription Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2765-2777. |
| [13] | QIAO Liying, WANG Wannian, ZHANG Li, PANG Zhixu, ZHANG Siying, LI Yifan, LIU Wenzhong. Machine Learning Methods for Sheep Breed Classification Based on Genomic Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2157-2167. |
| [14] | SUN Guoxin, LI Yunhua, SAI Yin, GUO Wenhua, ZHAO Yanhong, ZHANG Manxin, LIU Jiasen. Population Structure Analysis and Economic Traits Related Selection Signal Detection of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2168-2181. |
| [15] | GONG Yuxuan, HEI Wei, BAO Wu, CHEN Jiayi, LI Meng, GUO Xiaohong, LI Bugao. Study on the Regulation of Myogenic Differentiation of Porcine Skeletal Muscle Satellite Cells by Gene TMEM182 [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1676-1688. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||