畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 953-968.doi: 10.11843/j.issn.0366-6964.2025.02.043
• 研究简报 • 上一篇
白国松(), 滕春然, 王俊洪, 钟儒清, 马腾*(
), 陈亮, 张宏福
收稿日期:
2024-03-03
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
马腾
E-mail:bgsyx2@163.com;mateng@caas.cn
作者简介:
白国松(1999-),男,山东德州人,硕士,主要从事动物营养与饲料研究,E-mail: bgsyx2@163.com
基金资助:
BAI Guosong(), TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng*(
), CHEN Liang, ZHANG Hongfu
Received:
2024-03-03
Online:
2025-02-23
Published:
2025-02-26
Contact:
MA Teng
E-mail:bgsyx2@163.com;mateng@caas.cn
摘要:
旨在探究不同水平酶解玉米蛋白粉(enzymatic corn gluten meal, MCGM)对断奶仔猪生长性能、肠道屏障、消化酶活性和肠道微生物组成的影响。试验选取240头体重为(5.71±0.79) kg的健康断奶仔猪(21日龄,杜×长×大),基于体重接近原则,随机分配至5个试验组:5%普通玉米蛋白粉(corn gluten meal, CGM)组,5%鱼粉(fish meal, FM)组以及5%、10%和15%酶解玉米蛋白粉组(MCGM1、MCGM2和MCGM3),进行为期14 d的饲养试验。结果显示:1)MCGM1和FM组断奶仔猪的料重比(F/G)显著小于CGM、MCGM2和MCGM3组(P<0.05),MCGM2组粪便评分显著高于其他试验组(P<0.05)。2)与CGM、MCGM2和MCGM3组相比,MCGM1和FM组的十二指肠和空肠的胰蛋白酶和糜蛋白酶的活性显著提高(P<0.05)。3)MCGM1和MCGM3组的十二指肠绒毛高度/隐窝深度(绒隐比)极显著高于CGM组和FM组(P<0.05)。同时,与MCGM2和MCGM3组相比,MCGM1组的肠道屏障基因(Occludin和ZO-1)表达水平显著升高(P<0.05)。4)MCGM1组仔猪回肠特征菌为f__Peptostreptococcaceae、o__Peptostreptococcales-Tissierellales和g__Terrisporobacter,盲肠中为o__Veillonellales-Selenomonadales;FM组仔猪回肠特征菌为g__Lactobacillus和g__Prevotella。综上所述,添加5%的MCGM可以显著提高断奶仔猪十二指肠和空肠的消化酶活性,并能增强肠道屏障功能,进而改善生长性能。
中图分类号:
白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968.
BAI Guosong, TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng, CHEN Liang, ZHANG Hongfu. Effects of Enzymatic Corn Gluten Meal on Growth Performance and Intestinal Microorganisms of Weaned Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 953-968.
表 1
玉米蛋白粉和酶解玉米蛋白粉的氨基酸组成(绝干基础)"
项目 Item | 玉米蛋白粉 CGM | 酶解玉米蛋白粉 MCGM |
干物质DM | 91.63 | 88.73 |
粗蛋白质CP | 68.38 | 69.21 |
总能/(MJ·kg-1)GE | 22.86 | 23.6 |
氨基酸组成AA composition | ||
必需氨基酸EAA | ||
精氨酸Arg | 2.19 | 1.79 |
组氨酸His | 1.57 | 1.31 |
异亮氨酸Ile | 3.12 | 2.45 |
亮氨酸Leu | 6 | 9.88 |
赖氨酸Lys | 1.12 | 0.91 |
蛋氨酸Met | 1.65 | 1.43 |
苯丙氨酸Phe | 4.39 | 3.67 |
苏氨酸Thr | 2.36 | 2.01 |
色氨酸Trp | 0.22 | 0.18 |
缬氨酸Val | 3.13 | 2.72 |
平均值Mean | 2.58 | 2.64 |
非必需氨基酸NEAA | ||
丙氨酸Ala | 6.45 | 5.4 |
天冬氨酸Asp | 4.03 | 3.43 |
半胱氨酸Cys | 1.18 | 0.98 |
谷氨酸Glu | 15.7 | 13.95 |
甘氨酸Gly | 2.1 | 1.74 |
脯氨酸Pro | 5.34 | 5.94 |
丝氨酸Ser | 3.61 | 3.01 |
酪氨酸Tyr | 2.98 | 2.43 |
平均值Mean | 5.17 | 4.61 |
总氨基酸TAA | 67.14 | 63.23 |
表 2
试验饲粮组成及营养水平"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | ||
5% | 10% | 15% | |||
原料(风干基础) Ingredients (air-dry basis) | |||||
玉米Corn | 28.56 | 28.84 | 28.77 | 29.95 | 33.17 |
发酵豆粕Fermented soybean meal | 5.00 | 4.80 | 5.00 | 4.70 | |
次粉Wheat middlings | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
鱼粉Fish meal | 5.00 | ||||
玉米蛋白粉CGM | 5.00 | ||||
酶解玉米蛋白粉MCGM | 5.00 | 10.00 | 15.00 | ||
膨化大豆Extruded soybean | 7.50 | 8.00 | 8.00 | 4.00 | 0.00 |
标准面粉Standard flour | 10.00 | 10.00 | 13.00 | 13.00 | 13.00 |
大豆浓缩蛋白Soy protein concentrate | 3.90 | 3.50 | 3.00 | 0.00 | 0.00 |
乳清粉Whey powder | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
葡萄糖Glucose | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
膨化玉米Puffed corn | 15.00 | 15.00 | 12.00 | 13.00 | 13.00 |
豆油Soybean oil | 2.70 | 2.70 | 2.70 | 2.50 | 2.60 |
L-赖氨酸盐酸盐L-Lys·HCl | 0.93 | 0.76 | 0.97 | 1.19 | 1.43 |
DL-蛋氨酸DL-Met | 0.24 | 0.26 | 0.28 | 0.28 | 0.29 |
L-苏氨酸L-Thr | 0.28 | 0.24 | 0.31 | 0.35 | 0.40 |
L-色氨酸L-Trp | 0.07 | 0.06 | 0.09 | 0.12 | 0.17 |
L-缬氨酸L-Val | 0.28 | 0.30 | 0.34 | 0.37 | 0.40 |
预混料*Premix | 4.54 | 4.54 | 4.54 | 4.54 | 4.54 |
总计Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
营养水平(风干基础)** Nutrient levels (air-dry basis) | |||||
粗蛋白质CP | 17.28 | 17.34 | 17.26 | 17.38 | 17.41 |
粗脂肪EE | 6.33 | 6.57 | 6.11 | 5.24 | 4.59 |
粗纤维CF | 1.50 | 1.45 | 1.44 | 1.26 | 1.09 |
钙Ca | 0.53 | 0.76 | 0.52 | 0.51 | 0.50 |
总磷Total P | 0.52 | 0.64 | 0.48 | 0.46 | 0.44 |
净能/(MJ·kg-1)NE | 10.75 | 10.75 | 10.79 | 10.75 | 10.79 |
表 3
引物序列"
基因 Gene | 引物序列(5′→3′) Primer sequences (5′→3′) |
β-actin-F | GCGTAGCATTTGCTGCATGA |
β-actin-R | GCGTGTGTGTAACTAGGGGT |
GAPDH-F | CGTGTCGGTTGTGGATCTGA |
GAPDH-R | TGACGAAGTGGTCGTTGAGG |
ZO-1-F | CTCCAGGCCCTTACCTTTCG |
ZO-1-R | GGGGTAGGGGTCCTTCCTAT |
Occludin-F | CAGGTGCACCCTCCAGATTG |
Occludin-R | TATGTCGTTGCTGGGTGCAT |
Claudin1-F | TTTCCTCAATACAGGAGGGAAGC |
Claudin1-R | CCCTCTCCCCACATTCGAG |
表 4
不同饲粮处理对断奶仔猪生长性能的影响"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组 MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
初重/kg Initial BW | 5.67 | 5.69 | 5.74 | 5.75 | 5.70 | 0.83 | 1.000 |
末重/kg Final BW | 6.72 | 7.23 | 7.35 | 6.89 | 6.73 | 1.49 | 0.500 |
平均日采食量/g ADFI | 189.29 | 194.29 | 200.00 | 172.86 | 170.71 | 24.21 | 0.371 |
平均日增重/g ADG | 104.00 | 121.48 | 124.85 | 93.73 | 96.03 | 66.19 | 0.139 |
料重比F/G | 2.90b | 1.74a | 1.76a | 2.56b | 2.50b | 0.42 | 0.004 |
粪便评分Fecal score | 2.83a | 2.91a | 2.90a | 3.62b | 3.00a | 0.19 | <0.001 |
表 5
不同饲粮处理对断奶仔猪器官指数的影响"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组 MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
心脏指数Heart index | 5.02 | 7.10 | 4.99 | 5.45 | 4.30 | 1.71 | 0.252 |
肝脏指数Liver index | 27.70 | 21.71 | 28.72 | 26.25 | 27.05 | 7.17 | 0.686 |
脾脏指数Spleen index | 1.94 | 2.20 | 2.76 | 1.73 | 2.40 | 0.55 | 0.131 |
肺脏指数Lung index | 13.25 | 11.05 | 16.84 | 13.77 | 12.91 | 3.08 | 0.172 |
肾脏指数Kidney index | 6.04 | 6.32 | 5.41 | 6.13 | 6.20 | 0.80 | 0.551 |
表 6
不同饲粮处理对断奶仔猪肠道长度的影响"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
十二指肠Duodenum | 18.00ab | 15.75a | 16.25a | 19.25bc | 21.00c | 1.68 | 0.003 |
空肠Jejunum | 830.50 | 818.75 | 788.25 | 820.00 | 820.00 | 34.9 | 0.523 |
回肠Ileum | 17.00 | 17.50 | 17.00 | 20.00 | 18.50 | 2.31 | 0.344 |
结肠Colon | 106.25 | 104.25 | 101.25 | 108.75 | 106.25 | 10.16 | 0.872 |
表 7
不同饲粮处理对消化酶活性的影响"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
十二指肠Duodenum | |||||||
淀粉酶/(U·g-1) Amylase | 27.92 | 31.27 | 26.60 | 26.23 | 27.14 | 4.06 | 0.117 |
脂肪酶/(U·g-1) Lipase | 1.17a | 1.18a | 1.13a | 0.94b | 0.92b | 0.10 | <0.001 |
胰蛋白酶/(U·mg-1) Trypsin | 463.43b | 578.27a | 590.55a | 410.25b | 402.74b | 44.85 | <0.001 |
糜蛋白酶/(U·mg-1) Chymotrypsin | 5.64b | 7.63a | 7.26a | 5.75b | 5.69b | 0.80 | <0.001 |
空肠Jejunum | |||||||
淀粉酶/(U·g-1) Amylase | 32.80b | 41.44a | 38.46a | 28.41b | 30.53b | 3.63 | <0.001 |
脂肪酶/(U·g-1) Lipase | 1.16bc | 1.25ab | 1.26a | 1.04cd | 1.08cd | 0.08 | <0.001 |
胰蛋白酶/(U·mg-1) Trypsin | 535.25b | 635.77a | 653.90a | 530.85b | 543.42b | 51.83 | <0.001 |
糜蛋白酶/(U·mg-1) Chymotrypsin | 8.07b | 9.37a | 9.52a | 7.49b | 7.42b | 0.95 | <0.001 |
1 |
LIN H X , DENG Y K , ZHU D W J , et al. Effects of partially replacing fishmeal with corn gluten meal on growth, feed utilization, digestive enzyme activity, and apparent nutrient digestibility for juvenile white shrimp, Litopenaeus vannamei[J]. Front Vet Sci, 2023, 10, 1162599.
doi: 10.3389/fvets.2023.1162599 |
2 |
WANG X C , GENG F F , WU J J , et al. Effects of β-conglycinin on growth performance, immunoglobulins and intestinal mucosal morphology in piglets[J]. Arch Anim Nutr, 2014, 68 (3): 186- 195.
doi: 10.1080/1745039X.2014.919733 |
3 |
BU X Y , LIAN X Q , ZHANG Y , et al. Effects of replacing fish meal with corn gluten meal on growth, feed utilization, nitrogen and phosphorus excretion and IGF-I gene expression of juvenile Pseudobagrus ussuriensis[J]. Aquac Res, 2018, 49 (2): 977- 987.
doi: 10.1111/are.13545 |
4 | WU Z H , YU X J , GUO J S , et al. Effects of replacing fish meal with corn gluten meal on growth performance, intestinal microbiota, mTOR pathway and immune response of abalone Haliotis discus hannai[J]. Aquacult Rep, 2022, 23, 101007. |
5 |
JACKSON N , SQUANCE E . Evaluation of maize gluten meal—peruvian fish meal mixtures as protein supplements for egg production[J]. J Sci Food Agric, 1968, 19 (7): 389- 392.
doi: 10.1002/jsfa.2740190709 |
6 |
REGOST C , ARZEL J , KAUSHIK S J . Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima)[J]. Aquaculture, 1999, 180 (1-2): 99- 117.
doi: 10.1016/S0044-8486(99)00026-5 |
7 |
CHANAJON P , NOISA P , YONGSAWATDIGUL J . Prolyl oligopeptidase inhibition and cellular antioxidant activities of a corn gluten meal hydrolysate[J]. Cereal Chem, 2022, 99 (6): 1183- 1195.
doi: 10.1002/cche.10586 |
8 |
HUANG P M , ZHAO W K , CAI L , et al. Enhancement of functional properties, digestive properties, and in vitro digestion product physiological activity of extruded corn gluten meal by enzymatic modification[J]. J Sci Food Agric, 2024, 104 (6): 3477- 3486.
doi: 10.1002/jsfa.13233 |
9 |
FAN L , LIU X L , DENG Y P , et al. Preparation of glutamine-enriched fermented feed from corn gluten meal and its functionality evaluation[J]. Foods, 2023, 12 (23): 4336.
doi: 10.3390/foods12234336 |
10 |
SINGH U , KAUR D , MISHRA V , et al. Combinatorial approach to prepare antioxidative protein hydrolysate from corn gluten meal with dairy whey: preparation, kinetics, nutritional study and cost analysis[J]. LWT, 2022, 153, 112437.
doi: 10.1016/j.lwt.2021.112437 |
11 |
HELM E T , CURRY S , TRACHSEL J M , et al. Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics[J]. PLoS One, 2019, 14 (4): e0216070.
doi: 10.1371/journal.pone.0216070 |
12 | KOGUT M H , ARSENAULT R J . Editorial: gut health: the new paradigm in food animal production[J]. Front Vet Sci, 2016, 3, 71. |
13 |
ZHAO B C , WANG T H , CHEN J , et al. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota[J]. Anim Nutr, 2024, 16, 174- 188.
doi: 10.1016/j.aninu.2023.10.007 |
14 |
BRON P A , KLEEREBEZEM M , BRUMMER R J , et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Br J Nutr, 2017, 117 (1): 93- 107.
doi: 10.1017/S0007114516004037 |
15 | 王申锋, 钱明珠, 李爱心, 等. 植物提取物对感染产肠毒性大肠杆菌仔猪生长性能、粪便特性及肠道健康的影响[J]. 中国饲料, 2021, (20): 33- 36. |
WANG S F , QIAN M Z , LI A X , et al. Effects of plant extracts on growth performance, fecal characteristics and intestinal health of piglets infected with enterotoxigenic Escherichia coli[J]. China Feed, 2021, (20): 33- 36. | |
16 | LUO C Z , XIA B , ZHONG R Q , et al. Early-life nutrition interventions improved growth performance and intestinal health via the gut microbiota in piglets[J]. Front Nutr, 2021, 8, 783688. |
17 |
WU Y H , PAN X C , ZHANG S X , et al. Protective effect of corn peptides against alcoholic liver injury in men with chronic alcohol consumption: a randomized double-blind placebo-controlled study[J]. Lipids Health Dis, 2014, 13 (1): 192.
doi: 10.1186/1476-511X-13-192 |
18 |
LIN F , CHEN L , LIANG R , et al. Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro[J]. Food Chem, 2011, 124 (3): 801- 807.
doi: 10.1016/j.foodchem.2010.06.099 |
19 |
POTKI N , FALAHATKAR B , ALIZADEH A . Growth, hematological and biochemical indices of common carp Cyprinus carpio fed diets containing corn gluten meal[J]. Aquacult Int, 2018, 26 (6): 1573- 1586.
doi: 10.1007/s10499-018-0304-9 |
20 |
GHAZAGHI M , HASSANABADI A , MEHRI M . Apparent and standardized ileal amino acid digestibilities of corn, wheat, soybean meal, and corn gluten meal in quail chicks[J]. Poult Sci, 2023, 102 (2): 102314.
doi: 10.1016/j.psj.2022.102314 |
21 |
PETERSEN G I , LIU Y , STEIN H H . Coefficient of standardized ileal digestibility of amino acids in corn, soybean meal, corn gluten meal, high-protein distillers dried grains, and field peas fed to weanling pigs[J]. Anim Feed Sci Technol, 2014, 188, 145- 149.
doi: 10.1016/j.anifeedsci.2013.11.002 |
22 |
LI X X , HAN L J , CHEN L J . In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal[J]. J Sci Food Agric, 2008, 88 (9): 1660- 1666.
doi: 10.1002/jsfa.3264 |
23 |
WANG X J , ZHENG X Q , KOPPARAPU N K , et al. Purification and evaluation of a novel antioxidant peptide from corn protein hydrolysate[J]. Process Biochem, 2014, 49 (9): 1562- 1569.
doi: 10.1016/j.procbio.2014.05.014 |
24 |
JIANG X , LIU X , LIU S , et al. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage[J]. Anim Feed Sci Technol, 2019, 249, 1- 9.
doi: 10.1016/j.anifeedsci.2019.01.012 |
25 | 李云亮, 王晓静, 阮思煜, 等. 玉米多肽制备方法及其功能活性研究进展[J]. 食品工业科技, 2022, 43 (2): 434- 441. |
LI Y L , WANG X J , RUAN S Y , et al. Research progress on preparation and functional activity of corn polypeptides[J]. Science and Technology of Food Industry, 2022, 43 (2): 434- 441. | |
26 | KYRIAZAKIS I , ALAMEER A , BU AČG KOVÁ K , et al. Toward the automated detection of behavioral changes associated with the post-weaning transition in pigs[J]. Front Vet Sci, 2023, 9, 1087570. |
27 | XU X F , HUANG P , CUI X M , et al. Effects of dietary coated lysozyme on the growth performance, antioxidant activity, immunity and gut health of weaned piglets[J]. Antibiotics (Basel), 2022, 11 (11): 1470. |
28 | OTERI M , CHIOFALO B , MARICCHIOLO G , et al. Black soldier fly larvae meal in the diet of gilthead sea bream: effect on chemical and microbiological quality of filets[J]. Front Nutr, 2022, 9, 896552. |
29 | LONG S F , LIU S J , WANG J , et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs[J]. Anim Nutr, 2021, 7 (2): 305- 314. |
30 | ALUKO R E , MONU E . Functional and bioactive properties of quinoa seed protein hydrolysates[J]. J Food Sci, 2003, 68 (4): 1254- 1258. |
31 | HE L Q , ZHOU X H , HUANG N , et al. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets[J]. Oncotarget, 2017, 8 (54): 91965- 91978. |
32 | WIJTTEN P J A , VAN DER MEULEN J , VERSTEGEN M W A . A Intestinal barrier function and absorption in pigs after weaning: a review[J]. Br J Nutr, 2011, 105 (7): 967- 981. |
33 | WANG T X , YAO W L , LI J , et al. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets[J]. J Anim Sci Biotechnol, 2020, 11, 12. |
34 | WU Y L , LI X , LIU H N , et al. A water-soluble β-glucan improves growth performance by altering gut microbiome and health in weaned pigs[J]. Anim Nutr, 2021, 7 (4): 1345- 1351. |
35 | ZHANG L H , LIU S J , LI M , et al. Effects of maternal 25-hydroxycholecalciferol during the last week of gestation and lactation on serum parameters, intestinal morphology and microbiota in suckling piglets[J]. Arch Anim Nutr, 2020, 74 (6): 445- 461. |
36 | DOWD S E , SUN Y , WOLCOTT R D , et al. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs[J]. Foodborne Pathog Dis, 2008, 5 (4): 459- 472. |
37 | CASAS G A , BLAVI L , CROSS T W L , et al. Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance[J]. J Anim Sci, 2020, 98 (1): skz372. |
38 | YU T , WANG Y , CHEN S C , et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the Cecal contents of weanling pigs[J]. Front Microbiol, 2017, 8, 2182. |
39 | JAKOBSSON H E , ABRAHAMSSON T R , JENMALM M C , et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section[J]. Gut, 2014, 63 (4): 559- 566. |
40 | HE W , GAO Y A , GUO Z Q , et al. Effects of fermented wheat bran and yeast culture on growth performance, immunity, and intestinal microflora in growing-finishing pigs[J]. J Anim Sci, 2021, 99 (11): skab308. |
41 | DEVRIESE L A , HOMMEZ J , POT B , et al. Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs[J]. J Appl Bacteriol, 1994, 77 (1): 31- 36. |
42 | LESER T D , AMENUVOR J Z , JENSEN T K , et al. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited[J]. Appl Environ Microbiol, 2002, 68 (2): 673- 690. |
43 | COUDERT P . The main diseases of pigs[J]. Actual Pharm, 2018, 57 (580): 50- 55. |
44 | CHEON D S , CHAE C . Outbreak of diarrhea associated with Enterococcus durans in piglets[J]. J Vet Diagn Invest, 1996, 8 (1): 123- 124. |
45 | YANG I , CLAUSSEN H , ARTHUR R A , et al. Subgingival microbiome in pregnancy and a potential relationship to early term birth[J]. Front Cell Infect Microbiol, 2022, 12, 873683. |
46 | GAO H , LIN J Q , XIONG F , et al. Urinary microbial and metabolomic profiles in kidney stone disease[J]. Front Cell Infect Microbiol, 2022, 12, 953392. |
47 | HE Y , JIANG H J , DU K Q , et al. Exploring the mechanism of Taohong Siwu decoction on the treatment of blood deficiency and blood stasis syndrome by gut microbiota combined with metabolomics[J]. Chin Med, 2023, 18 (1): 44. |
48 | ABDELSALAM N A , HEGAZY S M , AZIZ R K . The curious case of Prevotella copri[J]. Gut Microbes, 2023, 15 (2): 2249152. |
49 | FALKOW S , SCHNEIDER H , BARON L S , et al. Virulence of Escherichia-shigella genetic hybrids for the guinea pig[J]. J Bacteriol, 1963, 86 (6): 1251- 1258. |
50 | ZHANG L , WU W D , LEE Y K , et al. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract[J]. Front Microbiol, 2018, 9, 48. |
[1] | 张雨, 王琪茹, 师鑫潮, 郭子明, 何欣, 张铁, 赵兴华. 厚朴酚固体分散体对犊牛生长性能、血清抗氧化能力和肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(2): 943-952. |
[2] | 范定坤, 张涛, 焦帅, 陆伟, 付域泽, 杨宏, 屠焰, 石玲元, 张乃锋. 基于斜率比法评价断奶仔猪对高温烧结法磷酸三钙的相对生物学利用率[J]. 畜牧兽医学报, 2025, 56(1): 269-280. |
[3] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[4] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[5] | 陈雨, 修子清, MGENIMusa, 施屹, 张俊秋, 蒋小雨, 吕景智, 孙雅望. 蒲公英与木通提取物对断奶仔兔生长性能、肠道健康和药物转运体基因相对表达量的影响[J]. 畜牧兽医学报, 2024, 55(8): 3725-3739. |
[6] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
[7] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[8] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[9] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[10] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[11] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[12] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[13] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[14] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[15] | 陈鑫珠, 岳稳, 方桂友, 缪伏荣, 黄庆祥, 林平冬, 李忠荣, 刘景. 纤维对白羽肉鸡生长性能、生理生化、胃肠结构和盲肠微生物的影响[J]. 畜牧兽医学报, 2024, 55(12): 5602-5619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||