畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2809-2824.doi: 10.11843/j.issn.0366-6964.2024.07.004
收稿日期:
2023-12-08
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
盛熙晖,袁经纬
E-mail:xlhuang00@163.com;shengxh03@163.com;amstrongyuan@163.com
作者简介:
黄晓隆(2000-),男,辽宁大连人,硕士生,主要从事鸡遗传育种研究,E-mail: xlhuang00@163.com
基金资助:
Xiaolong HUANG1,2(), Xihui SHENG1,*(
), Jingwei YUAN2,*(
)
Received:
2023-12-08
Online:
2024-07-23
Published:
2024-07-24
Contact:
Xihui SHENG, Jingwei YUAN
E-mail:xlhuang00@163.com;shengxh03@163.com;amstrongyuan@163.com
摘要:
鸡作为世界上分布最为广泛的家养动物之一,对不同环境具有良好的适应能力并形成了稳定的遗传机制,是研究动物环境适应性的重要模型。测序技术的成熟与全球环境数据库的日渐完善使遗传与环境的关联分析成为可能。群体遗传学、景观基因组学、泛基因组学等多种研究方法不断丰富鸡环境适应性的研究,鉴定出一系列与环境适应性相关的候选因子,如与低氧适应性相关的关键因子EPAS1、HIF1A;与鸡寒冷适应性相关的关键因子av-UCP;与鸡高温适应性相关的关键因子HSP,为动物环境适应性遗传机制研究奠定了重要基础。尽管如此,目前鸡环境适应性的分子机制仍不完善。本文从高海拔适应性、冷适应性、热适应性、干旱适应性及综合气候适应性等5个方面,概述近年来鸡的环境适应性研究进展,引出鸡环境适应性研究面临的问题,并对未来的研究趋势进行展望,以期为鸡的种质资源保护与利用提供理论支持。
中图分类号:
黄晓隆, 盛熙晖, 袁经纬. 基于组学分析的鸡环境适应性研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2809-2824.
Xiaolong HUANG, Xihui SHENG, Jingwei YUAN. Research Progress of Environmental Adaptability in Chickens from Perspective of Omics Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2809-2824.
表 1
主要鸡品种的环境适应性研究"
适应能力 Adaptive capacity | 材料 Material | 研究方法 Method | 主要结论 Conclusion | 参考文献 Reference |
高海拔适应性 High altitude adaptability | 藏鸡群体 | Fst、π | 鉴定到732个基因参与钙信号通路、细胞分解代谢、MAPK信号通路、肺泡发育,促进藏鸡中的氧气运输和利用。 | [ |
9个低地鸡群体、6个青藏高原鸡群体、5个红原鸡群体 | Fst、π | 鉴定到EPAS1、EGLN1、PTK2、HIF1A等200多个与鸡低氧适应性相关的候选基因集中于低氧诱导因子信号通路。发现藏鸡与高海拔适应相关的基因功能主要涉及能量代谢、体型维持等方面。 | [ | |
藏鸡、拉萨白鸡 中国5个低地鸡群体 | Fst XP-EHH LSBL | 鉴定到201个候选基因,参与钙信号传导、血管平滑肌收缩和细胞氧化应激途径等生理生化过程 | [ | |
四个高海拔鸡群体 四个低地鸡群体 | 等位基因 | 鉴定到与心血管和呼吸系统发育(FGFR1、CTGF、ADAM9、JPH2、SATB1、BMP4、LOX、LPR、ANGPTL4和HYAL1)、DNA修复和辐射反应(VCP、ASH2L和FANCG)、炎症和免疫反应(AIRE、MYO1F、ZAP70、DDX60、CCL19、CD47、JSC和FAS)有关的基因 | [ | |
5个藏鸡群体 | ROH | 鉴定到AMY2A、NTNG1和VAV3基因与西藏高原本土鸡品种的消化、神经突生长和高海拔适应有关 | [ | |
12个来自不同海拔梯度的鸡群体 | Fst XP-nSL | 鉴定到HBAD等候选基因参与氧气结合,HRG和ANK2等候选基因参与血液凝固和心血管效率 | [ | |
3个西藏鸡群体、3个低地鸡群体 | Fst XP-EHH | 鉴定到89个与低氧适应性相关的基因,其中ARNT、AHR、GSTK1和FGFR1基因被认为是最重要的候选基因 | [ | |
10只独龙鸡 | Fst | 鉴定到FGF10基因与NFIB基因,分别对肺的形成与适应性发育至关重要 | [ | |
藏鸡群体、1个低海拔鸡群体 | qRT-PCR | 发现差异表达的miRNA主要参与细胞凋亡、Toll样受体信号通路和IKB激酶/NF-KB信号传导等生物学过程,并发现miR-34c-5p是与低氧适应性相关的miRNA | [ | |
茶花鸡 藏鸡 | qRT-PCR | 鉴定到PTK2、GPNMB、CALD1、CBWD1、SLC25A1、SPRY2、NUPL2和ST8SIA3在血管生成和发育、能量代谢、血管平滑肌收缩等低氧适应过程中发挥重要作用 | [ | |
藏鸡群体、低地鸡群体 | qRT-PCR | 鉴定到4种与血管生成相关的circRNA(circBRD1、circPRDM2、circPTPRS和circDENND4C) | [ | |
白来航鸡、雪域白鸡 | qRT-PCR | 鉴定到TENM2、NOG、SMOC1、CCBE1等与鸡胚高原低氧适应性相关的基因 | [ | |
藏鸡群体、低地鸡群体 | 液相色谱 | 鉴定到磷脂酰乙醇胺(PE)、己糖神经酰胺、磷脂酰胆碱(PC) 和磷脂酰丝氨酸(PS)等多种脂质在藏鸡群体中高度表达,使藏鸡能更好地适应低氧环境 | [ | |
冷适应性 Cold adaptability | 2个耐寒鸡群体 | ROH Fst XP-EHH | 鉴定到SOX5、ME3、ZNF536、WWP1、RIPK2、OSGIN2、DECR1、TPO、PPARGC1A、BDNF、MSTN和β角蛋白基因可作为冷适应的候选基因 | [ |
10只Chantecler鸡 来自世界各地的121只鸡 | Fst π ROH | 鉴定到ME3、DDIAS、PRSS23、PRCP、FAM181B和ZNF536等候选基因参与脂肪代谢、神经系统、血管生成等生理过程 | [ | |
文昌鸡 青壳鸡 藏鸡 林甸鸡 | Fst XP-EHH π | 鉴定到SLC33A1基因参与糖代谢、能量代谢;同时发现TSHR基因不仅与增加代谢活性有关,还在鸡高温适应过程中发挥作用 | [ | |
51只伊朗本地鸡 | Fst、π | 鉴定到HSP70、HSPA9、HSPH1、HSP90AB1和PLCB4等与热适应和免疫相关的基因 | [ | |
288只肉鸡 | qRT-PCR | 强烈的寒冷刺激可通过调节肉鸡Nrf2/HO-1通路相关氧化应激来诱导心肌细胞炎症和凋亡;轻度的冷刺激可以提高心脏的冷适应性 | [ | |
96只肉鸡 | qPCR | 预先轻度冷刺激可以改善肉鸡肝脏的能量代谢和抗应激能力,减轻急性冷应激对肉鸡的损害,提高肉鸡冷适应性 | [ | |
热适应性 Heat adaptability | 肯尼亚低地鸡群体 肯尼亚高地鸡群体 | RT-PCR | 在低地鸡基因组中鉴定到5个核心基因(CCNB2、CRB2、CHST9、SESN1和NR4A3)参与 诱发细胞周期和DNA修复过程,在高海拔鸡基因组中鉴定到5个核心基因(COMMD4、TTC32、H1F0、ACYP1和RPS28)参与细胞凋亡与氧化应激过程 | [ |
肉鸡雏鸡 | RT-PCR | 发现肠道微生物群通过肠脑轴调节肉鸡产热作用,并表明下丘脑5-HT通路可能是肠道微生物群影响肉鸡体温调节的潜在机制 | [ | |
泰国商品鸡 | RNA-Seq | 观察到AMPK、MAPK信号传导和肌动蛋白细胞骨架调节在鸡热适应性机制中发挥关键作用 | [ | |
印度地方鸡群体 沙特阿拉伯鸡群体 中国北方鸡群体 | Fst XP-EHH π ROH | 来自不同热带气候地区的本地鸡通过不同途径适应炎热环境,具有不同的热适应性机制 | [ | |
红原鸡 中国北方地方鸡 印度尼西亚本地鸡 斯里兰卡鸡 | Fst、π | 鉴定到与代谢(FABP2、RAMP3、SUGCT和TSHR)和血管平滑肌收缩(CAMK2)相关的 候选基因 | [ |
1 |
张剑搏, 丁学智, AHMADA A, 等. 高原土著动物适应性进化的研究进展[J]. 畜牧兽医学报, 2019, 50 (9): 1723- 1736.
doi: 10.11843/j.issn.0366-6964.2019.09.001 |
ZHANG J B , DING X Z , AHMAD A A , et al. Advances in research on adaptive evolution of native animals of tibetan plateau[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (9): 1723- 1736.
doi: 10.11843/j.issn.0366-6964.2019.09.001 |
|
2 |
RAMÍREZ-AYALA L C , ROCHA D , RAMOS-ONSINS S E , et al. Whole-genome sequencing reveals insights into the adaptation of French Charolais cattle to Cuban tropical conditions[J]. Genet Sel Evol, 2021, 53 (1): 3.
doi: 10.1186/s12711-020-00597-9 |
3 |
TIBARY A , EL ALLALI K . Dromedary camel: A model of heat resistant livestock animal[J]. Theriogenology, 2020, 154, 203- 211.
doi: 10.1016/j.theriogenology.2020.05.046 |
4 |
CASTELLANI J W , YOUNG A J . Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure[J]. Auton Neurosci, 2016, 196, 63- 74.
doi: 10.1016/j.autneu.2016.02.009 |
5 |
BOOTHBY T C . Mechanisms and evolution of resistance to environmental extremes in animals[J]. EvoDevo, 2019, 10, 30.
doi: 10.1186/s13227-019-0143-4 |
6 | MOJICA E A , KÜLTZ D . Physiological mechanisms of stress-induced evolution[J]. J Exp Biol, 2022, 225 (S1): jeb243264. |
7 |
SARREMEJANE R , TRUCHY A , MCKIE B G , et al. Stochastic processes and ecological connectivity drive stream invertebrate community responses to short-term drought[J]. J Anim Ecol, 2021, 90 (4): 886- 898.
doi: 10.1111/1365-2656.13417 |
8 |
XIONG X W , LIU J X , RAO Y S . Whole genome resequencing helps study important traits in chickens[J]. Genes (Basel), 2023, 14 (6): 1198.
doi: 10.3390/genes14061198 |
9 |
SHAFFER H B , TOFFELMIER E , CORBETT-DETIG R B , et al. Landscape genomics to enable conservation actions: the California conservation genomics project[J]. J Hered, 2022, 113 (6): 577- 588.
doi: 10.1093/jhered/esac020 |
10 | 冯勉, 张莉. 多组学联合分析在畜禽研究中的应用[J]. 中国畜牧杂志, 2022, 58 (3): 1- 6. |
FENG M , ZHANG L . Application of multi-omics joint analysis in the research of livestock and poultry[J]. Chinese Journal of Animal Science, 2022, 58 (3): 1- 6. | |
11 |
WANG M S , THAKUR M , PENG M S , et al. 863 genomes reveal the origin and domestication of chicken[J]. Cell Res, 2020, 30 (8): 693- 701.
doi: 10.1038/s41422-020-0349-y |
12 |
SHAO D , YANG Y , SHI S R , et al. Three-dimensional organization of chicken genome provides insights into genetic adaptation to extreme environments[J]. Genes (Basel), 2022, 13 (12): 2317.
doi: 10.3390/genes13122317 |
13 |
PHAM L D , GIANG T T N , NGUYEN V B , et al. The complete mitochondrial genome and phylogenetic analyses of to chicken in vietnam[J]. Genes (Basel), 2023, 14 (5): 1088.
doi: 10.3390/genes14051088 |
14 |
SINGH M , PATTON R N , MOLLIER R T , et al. Indigenous chicken production system in different agro-ecology of Indian Himalayan Region: implication on food and economic security[J]. Front Nutr, 2023, 10, 1244413.
doi: 10.3389/fnut.2023.1244413 |
15 |
ZHANG M M , WANG S W , XU R , et al. Managing genomic diversity in conservation programs of Chinese domestic chickens[J]. Genet Sel Evol, 2023, 55 (1): 92.
doi: 10.1186/s12711-023-00866-3 |
16 |
VEKIĆ M , STROIL B K , TRIVUNOVIĆ S , et al. Genetic diversity of Banat Naked Neck, indigenous chicken breed from Serbia, inferred from mitochondrial DNA D-loop sequence and microsatellite markers[J]. Anim Biotechnol, 2023, 34 (7): 2197- 2206.
doi: 10.1080/10495398.2022.2080688 |
17 | 赵禹, 张文才, 刘成武, 等. 动物机体对高原低氧环境适应性的研究进展[J]. 畜牧与兽医, 2021, 53 (12): 128- 133. |
ZHAO Y , ZHANG W C , LIU C W , et al. Progress in research on adaptation of animals to high altitude hypoxia environment[J]. Animal Husbandry & Veterinary Medicine, 2021, 53 (12): 128- 133. | |
18 |
LI X Y , YANG J X , QIAO Y J , et al. Effects of radiation on drug metabolism: a review[J]. Curr Drug Metab, 2019, 20 (5): 350- 360.
doi: 10.2174/1389200220666190405171303 |
19 |
HU J F , FANG H C , WANG J , et al. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin syntnesis in apple[J]. Plant Sci, 2020, 292, 110377.
doi: 10.1016/j.plantsci.2019.110377 |
20 |
VERGNEAU-GROSSET C , PÉRON F . Effect of ultraviolet radiation on vertebrate animals: update from ethological and medical perspectives[J]. Photochem Photobiol Sci, 2020, 19 (6): 752- 762.
doi: 10.1039/c9pp00488b |
21 |
LUO N J , WANG J , HU Y , et al. Cold and heat climatic variations reduce indigenous goat birth weight and enhance pre-weaning mortality in subtropical monsoon region of China[J]. Trop Anim Health Prod, 2020, 52 (3): 1385- 1394.
doi: 10.1007/s11250-019-02142-3 |
22 |
何荣, 张崇志, 张春华, 等. 动物冷应激研究进展[J]. 家畜生态学报, 2022, 43 (9): 7- 12.
doi: 10.3969/j.issn.1673-1182.2022.09.002 |
HE R , ZHANG C Z , ZHANG C H , et al. Research progress on animal cold stress[J]. Acta Ecologae Animalis Domastici, 2022, 43 (9): 7- 12.
doi: 10.3969/j.issn.1673-1182.2022.09.002 |
|
23 | FERNANDES E , RAYMUNDO A , MARTINS L L , et al. The naked neck gene in the domestic chicken: a genetic strategy to mitigate the impact of heat stress in poultry production-a review[J]. Animals (Basel), 2023, 13 (6): 1007. |
24 | 常玮岑, 李雨萌, 钟秋萌, 等. 高空间分辨率环境数据库及其应用[J]. 环境工程, 2022, 40 (6): 1- 11. |
CHANG W C , LI Y M , ZHONG Q M , et al. High spatial resolution environmental dataset and its application[J]. Environmental Engineering, 2022, 40 (6): 1- 11. | |
25 |
邓舒迟, 廖阳春. 环境信息采集大数据统一控制平台设计研究[J]. 环境科学与管理, 2019, 44 (2): 20-23, 38.
doi: 10.3969/j.issn.1673-1212.2019.02.005 |
DENG S C , LIAO Y C . Design of unified control platform for big data of environmental information collection[J]. Environmental Science and Management, 2019, 44 (2): 20-23, 38.
doi: 10.3969/j.issn.1673-1212.2019.02.005 |
|
26 |
GAO C Q , WANG K J , HU X Y , et al. Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources[J]. Poult Sci, 2023, 102 (11): 103030.
doi: 10.1016/j.psj.2023.103030 |
27 |
SUMIDA T S , HAFLER D A . Population genetics meets single-cell sequencing[J]. Science, 2022, 376 (6589): 134- 135.
doi: 10.1126/science.abq0426 |
28 |
OKAZAKI A , YAMAZAKI S , INOUE I , et al. Population genetics: past, present, and future[J]. Hum Genet, 2021, 140 (2): 231- 240.
doi: 10.1007/s00439-020-02208-5 |
29 | PETEGROSSO R , SONG T C , KUANG R . Hierarchical canonical correlation analysis reveals phenotype, genotype, and geoclimate associations in plants[J]. Plant Phenomics, 2020, 2020, 1969142. |
30 |
GHEYAS A A , VALLEJO-TRUJILLO A , KEBEDE A , et al. Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens[J]. Mol Biol Evol, 2021, 38 (10): 4268- 4285.
doi: 10.1093/molbev/msab156 |
31 |
DAUPHIN B , RELLSTAB C , WÜEST R O , et al. Re-thinking the environment in landscape genomics[J]. Trends Ecol Evol, 2023, 38 (3): 261- 274.
doi: 10.1016/j.tree.2022.10.010 |
32 |
POLEWKO-KLIM A , LESIŃSKI W , GOLIŃSKA A K , et al. Sensitivity analysis based on the random forest machine learning algorithm identifies candidate genes for regulation of innate and adaptive immune response of chicken[J]. Poult Sci, 2020, 99 (12): 6341- 6354.
doi: 10.1016/j.psj.2020.08.059 |
33 |
HOSSEINZADEH S , HASANPUR K . Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress[J]. Front Genet, 2023, 14, 1102136.
doi: 10.3389/fgene.2023.1102136 |
34 | 吕利, 王晓利, 张文娟, 等. 基于三代长读长测序数据的基因组组装算法分析[J]. 宝鸡文理学院学报: 自然科学版, 2023, 43 (1): 54- 61. |
LV L , WANG X L , ZHANG W J , et al. Analysis of genome assembly algorithms for long-read sequencing data[J]. Journal of Baoji university of Arts and Sciences: Natural Science, 2023, 43 (1): 54- 61. | |
35 |
LI C , WU Y J , CHEN B C , et al. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats[J]. Mol Biol Evol, 2022, 39 (12): msac253.
doi: 10.1093/molbev/msac253 |
36 |
GONG Y , LI Y F , LIU X X , et al. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals?[J]. J Anim Sci Biotechnol, 2023, 14 (1): 73.
doi: 10.1186/s40104-023-00860-1 |
37 |
LIANG L , ZHANG J W , XIAO J C , et al. Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation[J]. Front Plant Sci, 2022, 13, 1059804.
doi: 10.3389/fpls.2022.1059804 |
38 | 边培培, 张禹, 姜雨. 泛基因组: 高质量参考基因组的新标准[J]. 遗传, 2021, 43 (11): 1023- 1037. |
BIAN P P , ZHANG Y , JIANG Y . Pan-genome: setting a new standard for high-quality reference genomes[J]. Hereditas, 2021, 43 (11): 1023- 1037. | |
39 |
MELNIK B S , FINKELSTEIN A V . Physical basis of functioning of antifreeze protein[J]. Mol Biol (Mosk), 2022, 56 (2): 297- 305.
doi: 10.1134/S002689332202008X |
40 |
BERG G , RYBAKOVA D , FISCHER D , et al. Microbiome definition re-visited: old concepts and new challenges[J]. Microbiome, 2020, 8 (1): 103.
doi: 10.1186/s40168-020-00875-0 |
41 |
WEI J K , LIU P H , LIU F Y , et al. EDomics: a comprehensive and comparative multi-omics database for animal evo-devo[J]. Nucleic Acids Res, 2023, 51 (D1): D913- D923.
doi: 10.1093/nar/gkac944 |
42 | 陈雪娇, 钟海安, 张博, 等. 藏鸡高原低氧适应性微进化机制研究进展[J]. 中国畜牧杂志, 2023, 59 (2): 1- 5. |
CHEN X J , ZHONG H A , ZHANG B , et al. Research progress on microevolution mechanism of high-altitude hypoxic adaptation in Tibetan chicken[J]. Chinese Journal of Animal Science, 2023, 59 (2): 1- 5. | |
43 |
ZHAO F F , YANG L L , ZHANG T , et al. Gut microbiome signatures of extreme environment adaption in Tibetan pig[J]. NPJ Biofilms Microbiomes, 2023, 9 (1): 27.
doi: 10.1038/s41522-023-00395-3 |
44 |
LIU J B , YUAN C , GUO T T , et al. Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep[J]. Sci Rep, 2020, 10 (1): 18332.
doi: 10.1038/s41598-020-75428-4 |
45 | AYALEW W , CHU M , LIANG C N , et al. Adaptation mechanisms of yak (Bos grunniens) to high-altitude environmental stress[J]. Animals (Basel), 2021, 11 (8): 2344. |
46 |
张天留, 高雪, 徐凌洋, 等. 高原家养动物环境适应性的研究进展[J]. 畜牧兽医学报, 2020, 51 (7): 1475- 1487.
doi: 10.11843/j.issn.0366-6964.2020.07.001 |
ZHANG T L , GAO X , XU L Y , et al. Research progress on environment adaptation of plateau domestic animals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (7): 1475- 1487.
doi: 10.11843/j.issn.0366-6964.2020.07.001 |
|
47 |
LI S J , ZHANG X J , DONG X Y , et al. Genetic structure and characteristics of Tibetan chickens[J]. Poult Sci, 2023, 102 (8): 102767.
doi: 10.1016/j.psj.2023.102767 |
48 |
GRAY O A , YOO J , SOBREIRA D R , et al. A pleiotropic hypoxia-sensitive EPAS1 enhancer is disrupted by adaptive alleles in Tibetans[J]. Sci Adv, 2022, 8 (47): eade1942.
doi: 10.1126/sciadv.ade1942 |
49 |
LIU X X , ZHANG Y L , LI Y F , et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J]. Mol Biol Evol, 2019, 36 (11): 2591- 2603.
doi: 10.1093/molbev/msz158 |
50 |
GUAN X W , HANIF Q , LI F Y , et al. The three missense mutations of EPAS1, IL37 and EEF1D genes associated with high-altitude adaptation in Chinese cattle[J]. Anim Genet, 2020, 51 (6): 987- 988.
doi: 10.1111/age.12969 |
51 |
YANG Y N , GAO C X , YANG T L , et al. Characteristics of Tibetan pig lung tissue in response to a hypoxic environment on the Qinghai-Tibet Plateau[J]. Arch Anim Breed, 2021, 64 (1): 283- 292.
doi: 10.5194/aab-64-283-2021 |
52 |
WITT K E , HUERTA-SÁNCHEZ E . Convergent evolution in human and domesticate adaptation to high-altitude environments[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374 (1777): 20180235.
doi: 10.1098/rstb.2018.0235 |
53 |
KARAGHIANNIS V , MARIC D , GARREC C , et al. Comprehensive in silico and functional studies for classification of EPAS1/HIF2A genetic variants identified in patients with erythrocytosis[J]. Haematologica, 2023, 108 (6): 1652- 1666.
doi: 10.3324/haematol.2022.281698 |
54 |
TIRPE A A , GULEI D , CIORTEA S M , et al. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes[J]. Int J Mol Sci, 2019, 20 (24): 6140.
doi: 10.3390/ijms20246140 |
55 |
TANG J H , DENG H Y , WANG Z X , et al. EGLN1 prolyl hydroxylation of hypoxia-induced transcription factor HIF1α is repressed by SET7-catalyzed lysine methylation[J]. J Biol Chem, 2022, 298 (6): 101961.
doi: 10.1016/j.jbc.2022.101961 |
56 |
CAO Y Q , ZENG T , HAN W , et al. Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken[J]. Anim Biosci, 2024, 37 (1): 28- 38.
doi: 10.5713/ab.23.0126 |
57 |
TANG R X , WANG J , ZHOU M , et al. Comprehensive analysis of lncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages[J]. Anim Genet, 2020, 51 (5): 731- 740.
doi: 10.1111/age.12990 |
58 |
ZHANG Y W , GOU W Y , MA J , et al. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos[J]. PeerJ, 2017, 5, e3891.
doi: 10.7717/peerj.3891 |
59 |
ZHANG Y W , GOU W Y , ZHANG Y , et al. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics[J]. Comp Biochem Physiol Part D Genomics Proteomics, 2019, 31, 100602.
doi: 10.1016/j.cbd.2019.100602 |
60 | MENG Y Q , CHEN D , QIU N , et al. Comparative N-glycoproteomic analysis of Tibetan and lowland chicken fertilized eggs: Implications on proteins biofunction and species evolution[J]. J Food Biochem, 2022, 46 (1): e14006. |
61 |
DU X X , LI F G , KONG F L , et al. Altitude-adaption of gut microbiota in Tibetan chicken[J]. Poult Sci, 2022, 101 (9): 101998.
doi: 10.1016/j.psj.2022.101998 |
62 |
BHAGAT N R , CHAUHAN P , VERMA P , et al. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity[J]. Sci Rep, 2023, 13 (1): 20856.
doi: 10.1038/s41598-023-48147-9 |
63 |
ELBELTAGY A R , BERTOLINI F , FLEMING D S , et al. Natural selection footprints among African chicken breeds and village ecotypes[J]. Front Genet, 2019, 10, 376.
doi: 10.3389/fgene.2019.00376 |
64 | 王晨寅, 祁得胜, 刘育昆, 等. 紫外辐射机制对生物生长发育的影响及紫外损伤修复作用的研究进展[J]. 农家参谋, 2022, (18): 34- 36. |
WANG C Y , QI D S , LIU Y K , et al. Progress in the influence of UV radiation mechanism on biological growth and development and the repair effect of UV damage[J]. The Farmers Consultant, 2022, (18): 34- 36. | |
65 |
XIONG Y , XING Q , MÜLLER-XING R . A novel UV-B priming system reveals an UVR8-depedent memory, which provides resistance against UV-B stress in Arabidopsis leaves[J]. Plant Signal Behav, 2021, 16 (4): 1879533.
doi: 10.1080/15592324.2021.1879533 |
66 |
PRITCHETT E M , VAN GOOR A , SCHNEIDER B K , et al. Chicken pituitary transcriptomic responses to acute heat stress[J]. Mol Biol Rep, 2023, 50 (6): 5233- 5246.
doi: 10.1007/s11033-023-08464-8 |
67 |
LIM C , LIM B , KIL D Y , et al. Hepatic transcriptome profiling according to growth rate reveals acclimation in metabolic regulatory mechanisms to cyclic heat stress in broiler chickens[J]. Poult Sci, 2022, 101 (12): 102167.
doi: 10.1016/j.psj.2022.102167 |
68 | LIU Y Y , XING L , ZHANG Y , et al. Mild intermittent cold stimulation affects cardiac substance metabolism via the neuroendocrine pathway in broilers[J]. Animals (Basel), 2023, 13 (22): 3577. |
69 | FEDOROVA E S , DEMENTIEVA N V , SHCHERBAKOV Y S , et al. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation[J]. Biology (Basel), 2022, 11 (4): 547. |
70 |
ZHAO X R , ZHANG J X , WANG H E , et al. Genomic and transcriptomic analyses reveal genetic adaptation to cold conditions in the chickens[J]. Genomics, 2022, 114 (6): 110485.
doi: 10.1016/j.ygeno.2022.110485 |
71 |
SOTOME R , HIRASAWA A , KIKUSATO M , et al. In vivo emergence of beige-like fat in chickens as physiological adaptation to cold environments[J]. Amino Acids, 2021, 53 (3): 381- 393.
doi: 10.1007/s00726-021-02953-5 |
72 |
ZENG T , YIN J M , FENG P S , et al. Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation[J]. Commun Biol, 2022, 5 (1): 952.
doi: 10.1038/s42003-022-03907-7 |
73 |
FALLAHSHAHROUDI A , JOHNSSON M , SORATO E , et al. Effects of the domestic thyroid stimulating hormone receptor (TSHR) variant on the hypothalamic-pituitary-thyroid axis and behavior in chicken[J]. Genetics, 2021, 217 (1): iyaa050.
doi: 10.1093/genetics/iyaa050 |
74 |
NAFSTAD Å M , RØNNING B , AASE K , et al. Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in a wild bird[J]. J Evol Biol, 2023, 36 (4): 650- 662.
doi: 10.1111/jeb.14164 |
75 | 王风琴, 韩亚鹏, 许姝娟, 等. 笼养普通朱雀适应北方冬季气候的体温调节特征[J]. 动物学杂志, 2021, 56 (4): 591- 596. |
WANG F Q , HAN Y P , XU S J , et al. Thermoregulatory characteristics in winter-acclimatized common rosefinch Carpodacus erythrinus[J]. Chinese Journal of Zoology, 2021, 56 (4): 591- 596. | |
76 |
NAWAZ A H , LIN S D , WANG F J , et al. Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size[J]. Animal, 2023, 17 (3): 100707.
doi: 10.1016/j.animal.2023.100707 |
77 |
ABIOJA M O , OMOTARA O P , IYASERE O S , et al. Comparative study of adaptation in three chicken genotypes under humid tropical conditions of Nigeria[J]. J Anim Physiol Anim Nutr (Berl), 2020, 104 (5): 1401- 1409.
doi: 10.1111/jpn.13381 |
78 |
FATHI M M , GALAL A , RADWAN L M , et al. Using major genes to mitigate the deleterious effects of heat stress in poultry: an updated review[J]. Poult Sci, 2022, 101 (11): 102157.
doi: 10.1016/j.psj.2022.102157 |
79 |
WALUGEMBE M , BERTOLINI F , DEMATAWEWA C M B , et al. Detection of selection signatures among Brazilian, Sri Lankan, and egyptian chicken populations under different environmental conditions[J]. Front Genet, 2019, 9, 737.
doi: 10.3389/fgene.2018.00737 |
80 |
TIAN S L , ZHOU X M , PHUNTSOK T , et al. Genomic analyses reveal genetic adaptations to tropical climates in chickens[J]. iScience, 2020, 23 (11): 101644.
doi: 10.1016/j.isci.2020.101644 |
81 |
SRIKANTH K , KUMAR H , PARK W , et al. Corrigendum: cardiac and skeletal muscle transcriptome response to heat stress in Kenyan chicken ecotypes adapted to low and high altitudes reveal differences in thermal tolerance and stress response[J]. Front Genet, 2020, 11, 197.
doi: 10.3389/fgene.2020.00197 |
82 |
BORHAN A Z M , MUSA S K , KHEER A M M . Effects of pre-hatch thermal manipulation and post-hatch acute heat stress on the mRNA expression of interleukin-6 and genes involved in its induction pathways in 2 broiler chicken breeds[J]. Poult Sci, 2019, 98 (4): 1805- 1819.
doi: 10.3382/ps/pey499 |
83 | RAMIAH S K , BALAKRISHNAN K N , SUBRAMANIAM Y , et al. Effects of thermal manipulation on mRNA regulation of response genes regarding improvement of thermotolerance adaptation in chickens during embryogenesis[J]. Animals (Basel), 2022, 12 (23): 3354. |
84 |
TE PAS M F W , PARK W , SRIKANTH K , et al. Transcriptomic profiles of muscle, heart, and spleen in reaction to circadian heat stress in Ethiopian highland and lowland male chicken[J]. Cell Stress Chaperones, 2019, 24 (1): 175- 194.
doi: 10.1007/s12192-018-0954-6 |
85 | 段滇宁, 陈超, 杨润泽, 等. 急性热应激对鸡呼吸系统损伤及肺脏热休克蛋白表达的影响[J]. 畜牧与兽医, 2021, 53 (3): 65- 70. |
DUAN D N , CHEN C , YANG R Z , et al. Effects of heat stress on lung tissue damage and heat shock protein expression in chicken[J]. Animal Husbandry & Veterinary Medicine, 2021, 53 (3): 65- 70. | |
86 | SHEHATA A M , SAADELDIN I M , TUKUR H A , et al. Modulation of heat-shock proteins mediates chicken cell survival against thermal stress[J]. Animals (Basel), 2020, 10 (12): 2407. |
87 |
ABARE M Y , RAHAYU S , TUGIYANTI E . Review: The role of heat shock proteins in chicken: Insights into stress adaptation and health[J]. Res Vet Sci, 2023, 165, 105057.
doi: 10.1016/j.rvsc.2023.105057 |
88 |
RIMOLDI S , LASAGNA E , SARTI F M , et al. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions[J]. Meta Gene, 2015, 6, 17- 25.
doi: 10.1016/j.mgene.2015.08.003 |
89 | MACKEI M , MOLNÁR A , NAGY S , et al. Effects of acute heat stress on a newly established chicken hepatocyte-nonparenchymal cell co-culture model[J]. Animals (Basel), 2020, 10 (3): 409. |
90 |
YIN B , DI L J , TANG S , et al. Vitamin C-Na enhances the antioxidant ability of chicken myocardium cells and induces heat shock proteins to relieve heat stress injury[J]. Res Vet Sci, 2020, 133, 124- 130.
doi: 10.1016/j.rvsc.2020.09.008 |
91 |
GU J J , LIANG Q Q , LIU C , et al. Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China[J]. Front Genet, 2020, 11, 582355.
doi: 10.3389/fgene.2020.582355 |
92 |
ROCHA J L , GODINHO R , BRITO J C , et al. Life in deserts: the genetic basis of mammalian desert adaptation[J]. Trends Ecol Evol, 2021, 36 (7): 637- 650.
doi: 10.1016/j.tree.2021.03.007 |
93 |
张政凯, 李业芳, 叶绍辉, 等. 山羊环境适应性的研究进展[J]. 畜牧兽医学报, 2022, 53 (7): 2035- 2046.
doi: 10.11843/j.issn.0366-6964.2022.07.001 |
ZHANG Z K , LI Y F , YE S H , et al. Research progress of environmental adaptability in goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2035- 2046.
doi: 10.11843/j.issn.0366-6964.2022.07.001 |
|
94 |
KRISTENSEN T N , KETOLA T , KRONHOLM I . Adaptation to environmental stress at different timescales[J]. Ann N Y Acad Sci, 2020, 1476 (1): 5- 22.
doi: 10.1111/nyas.13974 |
95 |
FENG J , ZHU W , SHI H R , et al. Analysis of the selection signal of the tibetan black chicken genome based on whole-genome sequencing[J]. Genes (Basel), 2023, 14 (9): 1672.
doi: 10.3390/genes14091672 |
96 |
LI D Y , LI Y , LI M , et al. Population genomics identifies patterns of genetic diversity and selection in chicken[J]. BMC Genomics, 2019, 20 (1): 263.
doi: 10.1186/s12864-019-5622-4 |
97 | NAN J H , YANG S D , ZHANG X J , et al. Identification of candidate genes related to highland adaptation from multiple Chinese local chicken breeds by whole genome sequencing analysis[J]. Anim Genet, 2023, 54 (1): 55- 67. |
98 | ZHANG Q , GOU W Y , WANG X T , et al. Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments[J]. Genome Biol Evol, 2016, 8 (3): 765- 776. |
99 | YUAN J W , LI S J , SHENG Z Y , et al. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens[J]. BMC Genomics, 2022, 23 (1): 91. |
100 | ZHONG H A , KONG X Y , ZHANG Y W , et al. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient[J]. Evol Appl, 2022, 15 (12): 2100- 2112. |
101 | LIU X Y , WANG X C , LIU J , et al. Identifying candidate genes for hypoxia adaptation of Tibet chicken embryos by selection signature analyses and RNA sequencing[J]. Genes (Basel), 2020, 11 (7): 823. |
102 | WANG Q , LI D , GUO A , et al. Whole-genome resequencing of Dulong Chicken reveal signatures of selection[J]. Br Poult Sci, 2020, 61 (6): 624- 631. |
103 | ZHANG Z , QIU M , DU H , et al. Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken[J]. Br Poult Sci, 2020, 61 (6): 632- 639. |
104 | ZHANG Y , ZHANG H L , ZHANG B , et al. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos[J]. Gene, 2020, 729, 144321. |
105 | CHEN X J , ZHANG Y , ZHANG W H , et al. Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos[J]. J Anim Sci, 2023, 101, skad344. |
106 |
陈雪娇, 刘会杰, 臧蕾, 等. 鸡胚心脏组织转录组数据鉴定雪域白鸡高原低氧适应性关键基因[J]. 畜牧兽医学报, 2023, 54 (10): 4154- 4163.
doi: 10.11843/j.issn.0366-6964.2023.10.014 |
CHEN X J , LIU H J , ZANG L , et al. Transcriptome data from chicken embryo heart tissue identified key genes for altitude hypoxia adaptation in Xueyu white chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4154- 4163.
doi: 10.11843/j.issn.0366-6964.2023.10.014 |
|
107 | YU R J , XIE F Y , TANG Q G . Insight into adaption to hypoxia in Tibetan chicken embryonic brains using lipidomics[J]. Biochem Biophys Res Commun, 2023, 671, 183- 191. |
108 | ROMANOV M N , ABDELMANOVA A S , FISININ V I , et al. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds[J]. J Anim Sci Biotechnol, 2023, 14 (1): 35. |
109 | 徐乃一. 家鸡冷热适应性研究及其多组学数据库构建[D]. 杨凌: 西北农林科技大学, 2022. |
XU N Y. Study on cold and hot adaptation and construction of multi-omics database for domestic chicken[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
110 | SHI S R , SHAO D , YANG L Y , et al. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments[J]. J Adv Res, 2023, 47, 13- 25. |
111 | NANAEI H A , KHARRATI-KOOPAEE H , ESMAILIZADEH A . Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens[J]. BMC Genomics, 2022, 23 (1): 224. |
112 | WEI H D , LI T T , ZHANG Y , et al. Cold stimulation causes oxidative stress, inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1 and NF-κB pathway[J]. J Therm Biol, 2023, 116, 103658. |
113 | GONG R X , XING L , YIN J W , et al. Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers[J]. J Anim Sci, 2023, 101, skad185. |
114 | LI S , LI X Q , WANG K , et al. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway[J]. J Anim Sci Biotechnol, 2023, 14 (1): 159. |
115 | MALILA Y , UENGWETWANIT T , SANPINIT P , et al. Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds[J]. Anim Biosci, 2024, 37 (1): 61- 73. |
116 | XU N Y , LIU Z Y , YANG Q M , et al. Genomic analyses for selective signatures and genes involved in hot adaptation among indigenous chickens from different tropical climate regions[J]. Front Genet, 2022, 13, 906447. |
117 | GUO X , XING C H , WEI W , et al. Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia[J]. Poult Sci, 2022, 101 (7): 101821. |
[1] | 王一诺, 徐丹, 杨建华, 刘洋, 田尧夫, 赵小玲. 基于超声波测量胸肌厚预测肉鸡产肉性能的选育方法研究[J]. 畜牧兽医学报, 2024, 55(7): 2901-2912. |
[2] | 谢兵红, 刘一帆, 薛夫光, 单艳菊, 屠云洁, 姬改革, 巨晓军, 束婧婷, 吴红翔. 缺氧对鸡成肌细胞肌纤维类型转化作用的机制探究[J]. 畜牧兽医学报, 2024, 55(6): 2397-2408. |
[3] | 周思含, 李天恩, 邓金华, 孙洪超, 闫文朝, 石团员, 王天奇. 浙江省部分地区鸡球虫感染情况调查分析[J]. 畜牧兽医学报, 2024, 55(6): 2629-2640. |
[4] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[5] | 李明, 崔洪伟, 高婕, 安乐乐, 李松励, 饶正华. 白羽肉鸡小肠内容物中致病性大肠杆菌的鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(6): 2692-2700. |
[6] | 邹紫莹, 黄安雄, 阮紫涵, 郝海红. 鸡滑液囊支原体对常用抗菌药流行病学临界值的建立[J]. 畜牧兽医学报, 2024, 55(6): 2701-2715. |
[7] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[8] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[9] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[10] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[11] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[12] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[13] | 罗晓琴, 郭志廷, 王贺, 张景艳, 张康, 王磊, 马永华, 李建喜. 常山口服液治疗鸡球虫病的效果分析[J]. 畜牧兽医学报, 2024, 55(4): 1747-1755. |
[14] | 苏传琛, 焦静娅, 王永帅, 罗朋娜, 昌兴海, 黄艳群. 导入25%洛岛红鸡血缘对河南斗鸡相关指标的影响[J]. 畜牧兽医学报, 2024, 55(3): 1007-1018. |
[15] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||