1 |
PURIS,PANZAG,MATEIKAJ H.A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans[J].Exp Neurol,2021,341,113709.
doi: 10.1016/j.expneurol.2021.113709
|
2 |
MALLETR T,BURTSCHERJ,PIALOUXV,et al.Molecular mechanisms of high-altitude acclimatization[J].Int J Mol Sci,2023,24(2):1698.
doi: 10.3390/ijms24021698
|
3 |
LATCHMANH K,WETTES G,ELLULD J,et al.Fiber type identification of human skeletal muscle[J].J Vis Exp,2023,(199):e65750.
|
4 |
LUNAV M,DAIKOKUE,ONOF."Slow" skeletal muscles across vertebrate species[J].Cell Biosci,2015,5,62.
doi: 10.1186/s13578-015-0054-6
|
5 |
VASILEIADOUO,NASTOSG G,CHATZINIKOLAOUP N,et al.Redox profile of skeletal muscles: implications for research design and interpretation[J].Antioxidants (Basel),2023,12(9):1738.
doi: 10.3390/antiox12091738
|
6 |
PETTED,STARONR S.Myosin isoforms, muscle fiber types, and transitions[J].Microsc Res Tech,2000,50(6):500-509.
doi: 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7
|
7 |
CHAILLOUT.Skeletal muscle fiber type in hypoxia: adaptation to high-altitude exposure and under conditions of pathological hypoxia[J].Front Physiol,2018,9,1450.
doi: 10.3389/fphys.2018.01450
|
8 |
MOM J,ZHANGZ H,WANGX T,et al.Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry[J].Front Vet Sci,2023,10,1284551.
doi: 10.3389/fvets.2023.1284551
|
9 |
侯任达,张润,侯欣华,等.畜禽肌纤维发育规律及相关基因研究进展[J].畜牧兽医学报,2022,53(10):3279-3286.
|
|
HOUR D,ZHANGR,HOUX H,et al.Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J].Acta Veterinaria et Zootechnica Sinica,2022,53(10):3279-3286.
|
10 |
CHENR,JIANGT,SHEY L,et al.Effects of cobalt chloride, a hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12 myotubes[J].Biomed Res Int,2017,2017,7097580.
|
11 |
TAYLORC T,MCELWAINJ C.Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans[J].Physiology (Bethesda),2010,25(5):272-279.
|
12 |
FAVIERF B,BRITTOF A,FREYSSENETD G,et al.HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology[J].Cell Mol Life Sci,2015,72(24):4681-4696.
doi: 10.1007/s00018-015-2025-9
|
13 |
KEQ D,COSTAM.Hypoxia-inducible factor-1 (HIF-1)[J].Mol Pharmacol,2006,70(5):1469-1480.
doi: 10.1124/mol.106.027029
|
14 |
LIUL X,LUH,LUOY X,et al.Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1[J].Biochem Biophys Res Commun,2002,291(4):908-914.
doi: 10.1006/bbrc.2002.6551
|
15 |
TANGK C,BREENE C,GERBERH P,et al.Capillary regression in vascular endothelial growth factor-deficient skeletal muscle[J].Physiol Genomics,2004,18(1):63-69.
doi: 10.1152/physiolgenomics.00023.2004
|
16 |
FUJ D,YAOJ J,WANGH,et al.Effects of EGCG on proliferation and apoptosis of gastric cancer SGC7901 cells via down-regulation of HIF-1α and VEGF under a hypoxic state[J].Eur Rev Med Pharmacol Sci,2019,23(1):155-161.
|
17 |
RANAN K,SINGHP,KOCHB.CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis[J].Biol Res,2019,52(1):12.
doi: 10.1186/s40659-019-0221-z
|
18 |
CANHASIL,TINAE,EREMOA G.Hypoxia-mimetic by CoCl2 increases SLC7A5 expression in breast cancer cells in vitro[J].BMC Res Notes,2023,16(1):366.
doi: 10.1186/s13104-023-06650-2
|
19 |
庞立川,单艳菊,刘一帆,等.METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J].畜牧兽医学报,2023,54(2):545-553.
|
|
PANGL C,SHANY J,LIUY F,et al.Expression of METTL16 in different types of chicken muscle and its regulatory role in chicken skeletal muscle function[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):545-553.
|
20 |
ITOHK,ITOHM,TAGUCHIS,et al.Effects of hypobaric-hypoxia on the total number and histochemical properties of the soleus muscle fibers and motoneurons in the rat[J].Nihon Seirigaku Zasshi,1988,50(4):163-168.
|
21 |
ITOHK,ITOHM,ISHIHARAA,et al.Influence of 12 weeks of hypobaric hypoxia on fibre type composition of the rat soleus muscle[J].Acta Physiol Scand,1995,154(3):417-418.
doi: 10.1111/j.1748-1716.1995.tb09925.x
|
22 |
FAUCHERM,GUILLOTC,MARQUESTET,et al.Matched adaptations of electrophysiological, physiological, and histological properties of skeletal muscles in response to chronic hypoxia[J].Pflugers Arch,2005,450(1):45-52.
doi: 10.1007/s00424-004-1370-6
|
23 |
RIZO-ROCAD,BONETJ B,ÍNALB,et al.Contractile activity is necessary to trigger intermittent hypobaric hypoxia-induced fiber size and vascular adaptations in skeletal muscle[J].Front Physiol,2018,9,481.
doi: 10.3389/fphys.2018.00481
|
24 |
KUSHWAHAA D,VARSHNEYR,SARASWATD.Effect of hypobaric hypoxia on the fiber type transition of skeletal muscle: a synergistic therapy of exercise preconditioning with a nanocurcumin formulation[J].J Physiol Biochem,2023,79(3):635-652.
doi: 10.1007/s13105-023-00965-1
|
25 |
SLOTI G M,SCHOLSA M W J,VOSSEB A H,et al.Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1α-dependent manner[J].Cell Signal,2014,26(9):1837-1845.
doi: 10.1016/j.cellsig.2014.04.016
|
26 |
LIX L,JUANW,YUNB,et al.Effect of hypoxia on the muscle fiber switching signal pathways CnA/NFATc1 and myostatin in mouse myocytes[J].Acta Histochem,2019,121(5):539-545.
doi: 10.1016/j.acthis.2019.04.001
|
27 |
CHAILLOUT,KOULMANNN,MEUNIERA,et al.Effect of hypoxia exposure on the recovery of skeletal muscle phenotype during regeneration[J].Mol Cell Biochem,2014,390(1/2):31-40.
|
28 |
GUNDERSENK.Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise[J].Biol Rev Camb Philos Soc,2011,86(3):564-600.
doi: 10.1111/j.1469-185X.2010.00161.x
|
29 |
GEHLERTS,BLOCHW,SUHRF.Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation[J].Int J Mol Sci,2015,16(1):1066-1095.
doi: 10.3390/ijms16011066
|
30 |
LUOP,WANGL N,LUOL,et al.Ca2+-Calcineurin-NFAT pathway mediates the effect of thymol on oxidative metabolism and fiber-type switch in skeletal muscle[J].Food Funct,2019,10(8):5166-5173.
doi: 10.1039/C8FO02248H
|
31 |
MOYENC,GOUDENEGES,POUSSARDS,et al.Involvement of micro-calpain (CAPN 1) in muscle cell differentiation[J].Int J Biochem Cell Biol,2004,36(4):728-743.
doi: 10.1016/S1357-2725(03)00265-6
|
32 |
SHINJ,NUNOMIYAA,KITAJIMAY,et al.Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway[J].Skelet Muscle,2016,6,5.
|
33 |
CHENX,FENGW R,YANF Y,et al.Alteration of antioxidant status, glucose metabolism, and hypoxia signal pathway in Eirocheir sinensis after acute hypoxic stress and reoxygenation[J].Comp Biochem Physiol C Toxicol Pharmacol,2023,268,109604.
doi: 10.1016/j.cbpc.2023.109604
|
34 |
NAVAR C,MCKENNAZ,FENNELZ,et al.Repeated sprint exercise in hypoxia stimulates HIF-1-dependent gene expression in skeletal muscle[J].Eur J Appl Physiol,2022,122(4):1097-1107.
doi: 10.1007/s00421-022-04909-3
|
35 |
LINJ D,WUH,TARRP T,et al.Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres[J].Nature,2002,418(6899):797-801.
doi: 10.1038/nature00904
|
36 |
ZHANGJ Y,LIJ Q,LIUY G,et al.Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes[J].Meat Sci,2023,204,109287.
doi: 10.1016/j.meatsci.2023.109287
|
37 |
TAKAKURAY,SUZUKIT,HIRAIN,et al.VGLL3 confers slow-twitch muscle differentiation via PGC-1α expression in C2C12 myocytes[J].Biochem Biophys Res Commun,2023,669,30-37.
doi: 10.1016/j.bbrc.2023.05.073
|
38 |
LIUY F,ZHANGM,SHANY J,et al.Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification[J].Front Genet,2022,13,1008649.
doi: 10.3389/fgene.2022.1008649
|
39 |
GRANLUNDA,JENSEN-WAERNM,ESSÉN-GUSTAVSSONB.The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs[J].Acta Vet Scand,2011,53(1):20.
doi: 10.1186/1751-0147-53-20
|
40 |
章明,单艳菊,姬改革,等.PRKAG3基因在鸡不同部位肌肉中的表达及其与肌纤维类型的相关性[J].江苏农业科学,2021,49(16):144-147.
|
|
ZHANGM,SHANY J,JIG G,et al.Expression of RKAG3 gene in different parts of muscle and its association with myofiber type in chicken[J].Jiangsu Agricultural Sciences,2021,49(16):144-147.
|