畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2795-2808.doi: 10.11843/j.issn.0366-6964.2024.07.003
窦腾飞(), 吴嘉浩, 吴姿仪, 白利瑶, 李新建, 韩雪蕾, 乔瑞敏, 王克君, 杨峰, 王一宁, 李秀领*(
)
收稿日期:
2024-01-12
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
李秀领
E-mail:tengfeidou@stu.henau.edu.cn;xiulingli@henau.edu.cn
作者简介:
窦腾飞(2000-),男,河南南阳人,硕士生,主要从事猪遗传育种与繁殖研究,E-mail: tengfeidou@stu.henau.edu.cn
基金资助:
Tengfei DOU(), Jiahao WU, Ziyi WU, Liyao BAI, Xinjian LI, Xuelei HAN, Ruimin QIAO, Kejun WANG, Feng YANG, Yining WANG, Xiuling LI*(
)
Received:
2024-01-12
Online:
2024-07-23
Published:
2024-07-24
Contact:
Xiuling LI
E-mail:tengfeidou@stu.henau.edu.cn;xiulingli@henau.edu.cn
摘要:
选种和选配是猪育种工作的核心内容,科学合理的选种选配是加快遗传改良的重要手段。随着生物育种技术的快速发展,基因组选择(genomic selection, GS)和基因组选配(genomic mating, GM)技术在猪遗传改良中发挥了巨大作用。GS是利用覆盖全基因组的分子标记对育种目标个体进行遗传潜能评估和预测的方法,其通过构建模型预测个体基因组育种值实现早期选种。GM则是通过优化交配组合产生更加优秀的后代实现优良性能的快速传递。本文综述了全基因组选择选配技术的发展、在猪育种中的应用研究进展及未来展望,旨在为基因组选择选配技术在我国猪育种的应用提供参考。
中图分类号:
窦腾飞, 吴嘉浩, 吴姿仪, 白利瑶, 李新建, 韩雪蕾, 乔瑞敏, 王克君, 杨峰, 王一宁, 李秀领. 基因组选择和选配技术在猪育种中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2795-2808.
Tengfei DOU, Jiahao WU, Ziyi WU, Liyao BAI, Xinjian LI, Xuelei HAN, Ruimin QIAO, Kejun WANG, Feng YANG, Yining WANG, Xiuling LI. Application Progress of Genomic Selection and Mating Allocation Techniques in Pig Breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2795-2808.
表 1
各种贝叶斯方法的效应及其方差分布"
方法 Method | 所有标记的效应的假设分布 Assumed distribution of effect | 所有标记的效应方差分布公式 Formula of effect variance distribution |
rrBLUP | gi~N(0, σgi2) | constant |
BayesA | gi~N(0, σgi2) | σgi2~X-2(v, s) |
BayesB | ||
BayesC | ||
BayesCπ | ||
BayesDπ | ||
BayesLASSO | gi~N(0, σgi2) | |
BayesR |
表 2
基因组选择在猪中的应用"
分类 Category | 作者 Author | 方法 Method | 应用 Application | 文献 Reference |
直接法 Direct algorithm | Lopez等 | ssGBLUP、BLUP | 在24 828头纯种杜洛克群体中,ssGBLUP估计日增重、背膘厚度、眼肌面积、瘦肉百分比四个性状的GEBV准确度分别为0.30、0.33、0.38、0.40 | [ |
Song等 | ssGBLUP、GBLUP、BLUP | 在大白猪群体中胸宽性状研究中,双性状ssGBLUP模型较传统BLUP模型预测准确性最大增益为2.6%,ssGBLUP较GBLUP和BLUP相比,预测准确性均有所提高 | [ | |
周隽等 | ssGBLUP、GBLUP、BLUP | 在杜洛克群体中,100 kg眼肌面积,100 kg背膘厚和100 kg日龄性状中ssGBLUP较BLUP预测准确性分别提高14.7~51.1%,较GBLUP预测准确性提升13.4%~45.7% | [ | |
Gao等 | ssGBLUP | 在长白猪采食量数据中,ssGBLUP预测准确性提高3.2% | [ | |
张锡飞等 | ssGBLUP | 在杜洛克、长白、大白猪生长性状中,ssGBLUP预测准确性平均提升2%~7%,繁殖性状中预测准确性平均提升1%~13% | [ | |
间接法 Indirect algorithm | Kjetså等 | BayesC、BayesGC | 对长白猪6种母性性状比较了GBLUP,BayesC和BayesGC方法的预测准确性,结果表明3周内仔猪死亡率性状BayesGC较GBLUP相比准确性提高9.8% | [ |
Lee等 | BayesB | 对2 432头大白猪的体高、体长和总乳头数性状用BayesB方法预测,预测准确性分别为0.52、0.60和0.51 | [ | |
Do等 | BayesA、BayesB、BayesLASSO | 在杜洛克猪群体中,对日采食量,剩余采食量性状的研究显示, 预测准确性范围分别是0.508~0.531,0.506到0.532,其中BayesA的预测准确性较好 | [ | |
彭潇等 | BayesA、BayesB、BayesC、BayesLASSO、BayesR | 对大白猪100 kg日龄、100 kg背膘厚和母猪乳头数3种性状进行了基因组选择分析,预测准确性都在0.35以下,指出对于低等遗传力性状可以选用BayesA方法 | [ | |
机器学习 Machine learning algorithm | Budhlakoti等 | RKHS | 在母猪繁殖性状中RKHS方法较其它方法相比,模型更适合数据,预测准确性更高 | [ |
Alves等 | SVR、BRANN、RF | 在猪繁殖性状中,机器学习方法较GBLUP,BLASSO方法预测准确性提高了6.3%和4.8%左右 | [ | |
Wang等 | SVR、KRR、RF、Adaboost.RT | 在大白猪繁殖性状中,BayesHE方法较GBLUP方法预测准确性提高了3.8%~20.8% | [ | |
An等 | KcRR、SVR | 在生猪测试数据集中,KcRR较GBLUP预测准确性平均提高4.82% | [ | |
Wang等 | DNNGP | 在模拟数据中,DNNGP较GBLUP预测准确性提高61.5~164.2% | [ | |
Yin等 | KAML | 在测试数据中,KAML计算效率,准确性更高 | [ | |
Piles等 | SVM、Gradient Boosting | 在猪剩余采食量性状中,SVR较GBLUP相比,预测模型稳定性和准确性更好 | [ |
表 3
基因组选配在猪中的应用"
作者Author | 应用Application | 文献Reference |
Zhao等 | 对中国地方猪研究结果表明,OCS和GOCS方法表现出更多的遗传增益,还保持较高水平的遗传多样性 | [ |
Tang等 | 在杜长大商品猪群体中进行选配,基因组选配较随机交配后代料重比下降0.12、30~120 kg日龄降低4.64 d,眼肌面积增加2.65 cm2 | [ |
Zhao等 | 在纯种大白猪群中,以GROH为基础的交配方案ΔG比同质交配高0.9%~2.6%,近交增量率ΔF比同质交配低13%~83.3% | [ |
Pryce等 | 利用基因型信息及ROH矩阵选配较随机交配相比,基因组选配对后代遗传进展影响最小,育种效果更高效 | [ |
Liu等 | 利用基因组信息选配与随机交配方案相比,近交增量降低28%~44%,遗传进展提高14% | [ |
张鹏飞等 | 比较3种基因组选配方案与同质选配的差异,基因组选配近交率低22.2%~94.1%,遗传方差高10.8%~32.2% | [ |
He等 | 对宁乡猪采用基因组GOCS选配时,近交率大多维持在每代5%以下,而不考虑选配时,近交率则增加到每代10.5%至15.3%之间 | [ |
1 | 农业农村部关于印发新一轮全国畜禽遗传改良计划的通知(农种发[2021]2号)[J]. 中华人民共和国农业农村部公报, 2021(6): 20-43. |
Circular of the Ministry of Agriculture and Rural Affairs on printing and distributing the new national livestock and poultry genetic improvement plan[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2021(6): 20-43. (in Chinese) | |
2 | 邢文凯, 刘建, 刘燊, 等. 猪基因组选择育种研究进展[J]. 中国畜牧杂志, 2021, 57 (7): 31- 37. |
XING W K , LIU J , LIU S , et al. Research progress on the genomic selection breeding in swine[J]. Chinese Journal of Animal Science, 2021, 57 (7): 31- 37. | |
3 | 梅步俊, 王志华. 基于全基因组测序的畜禽基因组选择方法[J]. 黑龙江畜牧兽医, 2015, (17): 95- 97. |
MEI B J , WANG Z H . Genomic selection methods in livestock and poultry based on the whole genome sequencing[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015, (17): 95- 97. | |
4 |
尹立林, 马云龙, 项韬, 等. 全基因组选择模型研究进展及展望[J]. 畜牧兽医学报, 2019, 50 (2): 233- 242.
doi: 10.11843/j.issn.0366-6964.2019.02.001 |
YIN L L , MA Y L , XIANG T , et al. The progress and prospect of genomic selection models[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 233- 242.
doi: 10.11843/j.issn.0366-6964.2019.02.001 |
|
5 |
周子文, 付璐, 孟庆利, 等. 利用后裔测定验证大白猪基因组选择实施效果研究[J]. 畜牧兽医学报, 2020, 51 (10): 2367- 2377.
doi: 10.11843/j.issn.0366-6964.2020.10.005 |
ZHOU Z W , FU L , MENG Q L , et al. Using progeny testing to evaluate the efficiency of genomic selection in large white pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (10): 2367- 2377.
doi: 10.11843/j.issn.0366-6964.2020.10.005 |
|
6 | 张瑞锋, 黄珍, 谢水华, 等. 猪全基因组选择技术发展现状和应用前景[J]. 中国畜牧杂志, 2023, 59 (10): 21- 29. |
ZHANG R F , HUANG Z , XIE S H , et al. The development status and application prospect of genomic selection for pigs[J]. Chinese Journal of Animal Science, 2023, 59 (10): 21- 29. | |
7 |
PONG-WONG R , WOOLLIAMS J A . Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming (Open Access publication)[J]. Genet Sel Evol, 2007, 39 (1): 3.
doi: 10.1186/1297-9686-39-1-3 |
8 |
AVENDAÑO S , WOOLLIAMS J A , VILLANUEVA B . Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding[J]. Genet Res, 2004, 83 (1): 55- 64.
doi: 10.1017/S0016672303006566 |
9 |
HENRYON M , BERG P , SØRENSEN A C . Animal-breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains[J]. Livest Sci, 2014, 166, 38- 47.
doi: 10.1016/j.livsci.2014.06.016 |
10 |
DAETWYLER H D , VILLANUEVA B , BIJMA P , et al. Inbreeding in genome-wide selection[J]. J Anim Breed Genet, 2007, 124 (6): 369- 376.
doi: 10.1111/j.1439-0388.2007.00693.x |
11 | AKDEMIR D , SÁNCHEZ J I . Efficient breeding by genomic mating[J]. Front Genet, 2016, 7, 210. |
12 |
SONESSON A K , WOOLLIAMS J A , MEUWISSEN T H . Genomic selection requires genomic control of inbreeding[J]. Genet Sel Evol, 2012, 44 (1): 27.
doi: 10.1186/1297-9686-44-27 |
13 | 高振东, 何俊. 基因组选配: 基因组时代的高效育种[J]. 黑龙江畜牧兽医, 2020, (24): 61-64, 175. |
GAO Z D , HE J . Genome matching: Efficient breeding in the genome era[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020, (24): 61-64, 175. | |
14 | 何俊, LOPESF B, 吴晓林. 动物基因组选配方法与应用[J]. 遗传, 2019, 41 (6): 486- 493. |
HE J , LOPES F B , WU X L . Methods and applications of animal genomic mating[J]. Hereditas, 2019, 41 (6): 486- 493. | |
15 |
JANNINK J L . Dynamics of long-term genomic selection[J]. Genet Sel Evol, 2010, 42 (1): 35.
doi: 10.1186/1297-9686-42-35 |
16 |
MEUWISSEN T H E , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
17 | 丁向东, 王楚端, 张勤. 基于液相芯片的猪基因组选择实施新策略[J]. 中国畜牧杂志, 2022, 58 (4): 65- 69. |
DING X D , WANG C D , ZHANG Q . New strategy for implementation of pig genome selection based on liquid phase chip[J]. Chinese Journal of Animal Science, 2022, 58 (4): 65- 69. | |
18 |
孙东晓, 张胜利, 张勤, 等. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54 (10): 4028- 4039.
doi: 10.11843/j.issn.0366-6964.2023.10.003 |
SUN D X , ZHANG S L , ZHANG Q , et al. Application progress on genomic selection technology for dairy cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4028- 4039.
doi: 10.11843/j.issn.0366-6964.2023.10.003 |
|
19 | GARCÍA-RUIZ A , COLE J B , VANRADEN P M , et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J]. Proc Natl Acad Sci U S A, 2016, 113 (28): E3995- E4004. |
20 |
SAMORÈ A B , FONTANESI L . Genomic selection in pigs: state of the art and perspectives[J]. Ital J Anim Sci, 2016, 15 (2): 211- 232.
doi: 10.1080/1828051X.2016.1172034 |
21 |
JIBRILA I , VANDENPLAS J , TEN NAPEL J , et al. Impact of genomic preselection on subsequent genetic evaluations with ssGBLUP using real data from pigs[J]. Genet Sel Evol, 2022, 54 (1): 48.
doi: 10.1186/s12711-022-00727-5 |
22 | 叶健, 郑恩琴, 胡晓湘, 等. 基因组选择技术及其在猪育种中的应用探讨[J]. 中国畜牧杂志, 2017, 53 (11): 5- 10. |
YE J , ZHENG E Q , HU X X , et al. The genomic selection and its application in pig breeding[J]. Chinese Journal of Animal Science, 2017, 53 (11): 5- 10. | |
23 | 张哲, 张勤, 丁向东. 畜禽基因组选择研究进展[J]. 科学通报, 2011, 56 (26): 2212- 2222. |
ZHANG Z , ZHANG Q , DING X D . Advances in genomic selection in domestic animals[J]. Chinese Science Bulletin, 2011, 56 (25): 2655- 2663. | |
24 |
SONG H L , DONG T , YAN X Y , et al. Genomic selection and its research progress in aquaculture breeding[J]. Rev Aquacult, 2023, 15 (1): 274- 291.
doi: 10.1111/raq.12716 |
25 |
VANRADEN P M . Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980 |
26 |
LEGARRA A , AGUILAR I , MISZTAL I . A relationship matrix including full pedigree and genomic information[J]. J Dairy Sci, 2009, 92 (9): 4656- 4663.
doi: 10.3168/jds.2009-2061 |
27 |
AGUILAR I , MISZTAL I , JOHNSON D L , et al. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score[J]. J Dairy Sci, 2010, 93 (2): 743- 752.
doi: 10.3168/jds.2009-2730 |
28 |
GAO H D , CHRISTENSEN O F , MADSEN P , et al. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population[J]. Genet Sel Evol, 2012, 44 (1): 8.
doi: 10.1186/1297-9686-44-8 |
29 |
HABIER D , TETENS J , SEEFRIED F R , et al. The impact of genetic relationship information on genomic breeding values in German Holstein cattle[J]. Genet Sel Evol, 2010, 42 (1): 5.
doi: 10.1186/1297-9686-42-5 |
30 |
HAYES B J , BOWMAN P J , CHAMBERLAIN A J , et al. Invited review: Genomic selection in dairy cattle: progress and challenges[J]. J Dairy Sci, 2009, 92 (2): 433- 443.
doi: 10.3168/jds.2008-1646 |
31 |
MEUWISSEN T H . Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping[J]. Genet Sel Evol, 2009, 41 (1): 35.
doi: 10.1186/1297-9686-41-35 |
32 |
MOSER G , LEE S H , HAYES B J , et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model[J]. PLoS Genet, 2015, 11 (4): e1004969.
doi: 10.1371/journal.pgen.1004969 |
33 |
USAI M G , GODDARD M E , HAYES B J . LASSO with cross-validation for genomic selection[J]. Genet Res (Camb), 2009, 91 (6): 427- 436.
doi: 10.1017/S0016672309990334 |
34 |
李棉燕, 王立贤, 赵福平. 机器学习在动物基因组选择中的研究进展[J]. 中国农业科学, 2023, 56 (18): 3682- 3692.
doi: 10.3864/j.issn.0578-1752.2023.18.015 |
LI M Y , WANG L X , ZHAO F P . Research progress on machine learning for genomic selection in animals[J]. Scientia Agricultura Sinica, 2023, 56 (18): 3682- 3692.
doi: 10.3864/j.issn.0578-1752.2023.18.015 |
|
35 |
JORDAN M I , MITCHELL T M . Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349 (6245): 255- 260.
doi: 10.1126/science.aaa8415 |
36 |
DOUAK F , MELGANI F , BENOUDJIT N . Kernel ridge regression with active learning for wind speed prediction[J]. Appl Energy, 2013, 103, 328- 340.
doi: 10.1016/j.apenergy.2012.09.055 |
37 | AWAD M, KHANNA R. Support vector regression[M]//AWAD M, KHANNA R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. Berkeley, CA; Apress, 2015: 67-80. |
38 |
GONZÁLEZ-RECIO O , ROSA G J M , GIANOLA D . Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits[J]. Livest Sci, 2014, 166, 217- 231.
doi: 10.1016/j.livsci.2014.05.036 |
39 |
SHRESTHA D L , SOLOMATINE D P . Experiments with AdaBoost.RT, an improved boosting scheme for regression[J]. Neural Comput, 2006, 18 (7): 1678- 1710.
doi: 10.1162/neco.2006.18.7.1678 |
40 | 高宁, 黄珍, 谢水华, 等. 集团化种猪企业基因组选育方案制定与基因组早期选择[J]. 中国畜牧杂志, 2022, 58 (8): 209- 214. |
GAO N , HUANG Z , XIE S H , et al. Formulation of genomic breeding plans and early genome selection for group pig breeding enterprises[J]. Chinese Journal of Animal Science, 2022, 58 (8): 209- 214. | |
41 | 罗文学, 段晓红, 张军辉, 等. 河北开展猪基因组联合育种初探[J]. 今日畜牧兽医, 2021, 37 (8): 68- 69. |
LUO W X , DUAN X H , ZHANG J H , et al. A preliminary study on pig genome joint breeding in Hebei[J]. Today Animal Husbandry and Veterinary Medicine, 2021, 37 (8): 68- 69. | |
42 | 唐韶青, 肖炜, 杨宇泽, 等. 北京市种猪基因组选择育种平台的构建与应用[J]. 中国畜牧杂志, 2022, 58 (8): 79- 82. |
TANG S Q , XIAO W , YANG Y Z , et al. Construction and application of Beijing pig genome selective breeding platform[J]. Chinese Journal of Animal Science, 2022, 58 (8): 79- 82. | |
43 |
张金鑫, 唐韶青, 宋海亮, 等. 北京地区大白猪基因组联合育种研究[J]. 中国农业科学, 2019, 52 (12): 2161- 2170.
doi: 10.3864/j.issn.0578-1752.2019.12.013 |
ZHANG J X , TANG S Q , SONG H L , et al. Joint genomic selection of yorkshire in Beijing[J]. Scientia Agricultura Sinica, 2019, 52 (12): 2161- 2170.
doi: 10.3864/j.issn.0578-1752.2019.12.013 |
|
44 | 丁向东, 邱小田, 王志刚, 等. 全国生猪遗传改良计划(2009—2020)给我国生猪种业带来的变化和未来工作建议[J]. 中国畜牧杂志, 2020, 56 (6): 169- 174. |
DING X D , QIU X T , WANG Z G . Changes and future work suggestions brought by the National Pig Genetic Improvement Plan (2009-2020) to my country's pig breeding industry[J]. Chinese Journal of Animal Science, 2020, 56 (6): 169- 174. | |
45 |
LOPEZ B I , VITERBO V , SONG C W , et al. Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs[J]. Czech J Anim Sci, 2019, 64 (4): 160- 165.
doi: 10.17221/150/2018-CJAS |
46 |
SONG H L , ZHANG J X , ZHANG Q , et al. Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig[J]. Front Genet, 2019, 9, 730.
doi: 10.3389/fgene.2018.00730 |
47 |
周隽, 林清, 邵宝全, 等. 猪群体一步法基因组选择应用效果评估[J]. 中国农业科学, 2022, 55 (15): 3042- 3049.
doi: 10.3864/j.issn.0578-1752.2022.15.014 |
ZHOU J , LIN Q , SHAO B Q , et al. Evaluating the application effect of single-step genomic selection in pig populations[J]. Scientia Agricultura Sinica, 2022, 55 (15): 3042- 3049.
doi: 10.3864/j.issn.0578-1752.2022.15.014 |
|
48 |
GAO H D , SU G S , JENSEN J , et al. Genetic parameters and genomic prediction for feed intake recorded at the group and individual level in different production systems for growing pigs[J]. Genet Sel Evol, 2021, 53 (1): 33.
doi: 10.1186/s12711-021-00624-3 |
49 | 张锡飞, 张兴, 闫之春, 等. 大白、长白和杜洛克猪多品种多性状一步法基因组选择准确性分析[J]. 中国畜牧杂志, 2023, 59 (8): 152- 159. |
ZAHNG X F , ZHANG X , YAN Z C , et al. Accuracy analysis of one-step genomic selection for multiple traits in multiple breeds of Large White, Long White and Duroc pigs[J]. Chinese Journal of Animal Science, 2023, 59 (8): 152- 159. | |
50 |
KJETSÅ M V , GJUVSLAND A B , NORDBØ Ø , et al. Accuracy of genomic prediction of maternal traits in pigs using Bayesian variable selection methods[J]. J Anim Breed Genet, 2022, 139 (6): 654- 665.
doi: 10.1111/jbg.12729 |
51 |
LEE J , LEE S , PARK J E , et al. Genome-wide association study and genomic predictions for exterior traits in Yorkshire pigs[J]. J Anim Sci, 2019, 97 (7): 2793- 2802.
doi: 10.1093/jas/skz158 |
52 |
DO D N , JANSS L L G , JENSEN J , et al. SNP annotation-based whole genomic prediction and selection: an application to feed efficiency and its component traits in pigs[J]. J Anim Sci, 2015, 93 (5): 2056- 2063.
doi: 10.2527/jas.2014-8640 |
53 |
彭潇, 尹立林, 梅全顺, 等. 猪主要经济性状的基因组选择研究[J]. 畜牧兽医学报, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
PENG X , YIN L L , MEI Q S , et al. A Study of genome selection based on the porcine major economic traits[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
|
54 |
BUDHLAKOTI N , KUSHWAHA A K , RAI A , et al. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops[J]. Front Genet, 2022, 13, 832153.
doi: 10.3389/fgene.2022.832153 |
55 |
ALVES A A C , ESPIGOLAN R , BRESOLIN T , et al. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods[J]. Anim Genet, 2021, 52 (1): 32- 46.
doi: 10.1111/age.13021 |
56 |
WANG X , SHI S L , WANG G J , et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 60.
doi: 10.1186/s40104-022-00708-0 |
57 |
AN B X , LIANG M , CHANG T P , et al. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency[J]. Brief Bioinform, 2021, 22 (6): bbab132.
doi: 10.1093/bib/bbab132 |
58 |
WANG K L , ABID M A , RASHEED A , et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Mol Plant, 2023, 16 (1): 279- 293.
doi: 10.1016/j.molp.2022.11.004 |
59 |
YIN L L , ZHANG H H , ZHOU X , et al. KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters[J]. Genome Biol, 2020, 21 (1): 146.
doi: 10.1186/s13059-020-02052-w |
60 |
PILES M , BERGSMA R , GIANOLA D , et al. Feature selection stability and accuracy of prediction models for genomic prediction of residual feed intake in pigs using machine learning[J]. Front Genet, 2021, 12, 611506.
doi: 10.3389/fgene.2021.611506 |
61 |
MEUWISSEN T , HAYES B , GODDARD M . Accelerating improvement of livestock with genomic selection[J]. Annu Rev Anim Biosci, 2013, 1 (1): 221- 237.
doi: 10.1146/annurev-animal-031412-103705 |
62 |
DE LOS CAMPOS G , HICKEY J M , PONG-WONG R , et al. Whole-genome regression and prediction methods applied to plant and animal breeding[J]. Genetics, 2013, 193 (2): 327- 345.
doi: 10.1534/genetics.112.143313 |
63 |
LOURENCO D A L , TSURUTA S , FRAGOMENI B O , et al. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus[J]. J Anim Sci, 2015, 93 (6): 2653- 2662.
doi: 10.2527/jas.2014-8836 |
64 |
AKDEMIR D , BEAVIS W , FRITSCHE-NETO R , et al. Multi-objective optimized genomic breeding strategies for sustainable food improvement[J]. Heredity (Edinb), 2019, 122 (5): 672- 683.
doi: 10.1038/s41437-018-0147-1 |
65 |
CABALLERO A , SANTIAGO E , TORO M A . Systems of mating to reduce inbreeding in selected populations[J]. Anim Sci, 1996, 62 (3): 431- 442.
doi: 10.1017/S1357729800014971 |
66 |
MEUWISSEN T H . Maximizing the response of selection with a predefined rate of inbreeding[J]. J Anim Sci, 1997, 75 (4): 934- 940.
doi: 10.2527/1997.754934x |
67 |
SUN C , VANRADEN P M , O'CONNELL J R , et al. Mating programs including genomic relationships and dominance effects[J]. J Dairy Sci, 2013, 96 (12): 8014- 8023.
doi: 10.3168/jds.2013-6969 |
68 |
WOOLLIAMS J A , BERG P , DAGNACHEW B S , et al. Genetic contributions and their optimization[J]. J Anim Breed Genet, 2015, 132 (2): 89- 99.
doi: 10.1111/jbg.12148 |
69 |
TORO M A , VARONA L . A note on mate allocation for dominance handling in genomic selection[J]. Genet Sel Evol, 2010, 42 (1): 33.
doi: 10.1186/1297-9686-42-33 |
70 |
XIANG T , CHRISTENSEN O F , VITEZICA Z G , et al. Genomic evaluation by including dominance effects and inbreeding depression for purebred and crossbred performance with an application in pigs[J]. Genet Sel Evol, 2016, 48 (1): 92.
doi: 10.1186/s12711-016-0271-4 |
71 |
DAGNACHEW B S , MEUWISSEN T H E . A fast Newton-Raphson based iterative algorithm for large scale optimal contribution selection[J]. Genet Sel Evol, 2016, 48 (1): 70.
doi: 10.1186/s12711-016-0249-2 |
72 |
WELLMANN R . Optimum contribution selection for animal breeding and conservation: the R package optiSel[J]. BMC Bioinformatics, 2019, 20 (1): 25.
doi: 10.1186/s12859-018-2450-5 |
73 |
AKDEMIR D , RIO S , ISIDRO Y SÁNCHEZ Y . Trainsel: an r package for selection of training populations[J]. Front Genet, 2021, 12, 655287.
doi: 10.3389/fgene.2021.655287 |
74 |
YIN L L , ZHANG H H , TANG Z S , et al. HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J]. Nucleic Acids Res, 2023, 51 (8): 3501- 3512.
doi: 10.1093/nar/gkad074 |
75 |
ZHAO Q B , LIU H M , QADRI Q R , et al. Long-term impact of conventional and optimal contribution conservation methods on genetic diversity and genetic gain in local pig breeds[J]. Heredity (Edinb), 2021, 127 (6): 546- 553.
doi: 10.1038/s41437-021-00484-z |
76 | TANG Z S , YIN L L , YIN D , et al. Development and application of an efficient genomic mating method to maximize the production performances of three-way crossbred pigs[J]. Brief Bioinform, 2023, 24 (1): bbac587. |
77 | ZHAO F P , ZHANG P F , WANG X Q , et al. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J]. J Anim Sci Biotechnol, 2023, 14 (1): 87. |
78 | PRYCE J E , HAYES B J , GODDARD M E . Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information[J]. J Dairy Sci, 2012, 95 (1): 377- 388. |
79 | LIU H , HENRYON M , SØRENSEN A C . Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain[J]. Animal, 2017, 11 (4): 547- 555. |
80 |
张鹏飞, 何俊, 王立贤, 等. 基于基因组和系谱信息的不同选配方案效果模拟研究[J]. 畜牧兽医学报, 2022, 53 (10): 3448- 3458.
doi: 10.11843/j.issn.0366-6964.2022.10.017 |
ZHANG P F , HE J , WANG L X , et al. Simulation study on the effects of different mating schemes based on genomic and pedigree information[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3448- 3458.
doi: 10.11843/j.issn.0366-6964.2022.10.017 |
|
81 | HE J , WU X L , ZENG Q H , et al. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs[J]. PLoS One, 2020, 15 (8): e0236629. |
82 | 王亦秋, 姜自琴, 王宇哲, 等. 全基因组SNP分型策略及基因组选择在畜禽中的应用[J]. 广东畜牧兽医科技, 2023, 48 (5): 1- 6. |
WANG Y Q , JIANG Z Q , WANG Y Z , et al. Genomic-wide SNP genotyping methods and the application of genomic selection in livestock and poultry[J]. Guangdong Journal of Animal and Veterinary Science, 2023, 48 (5): 1- 6. | |
83 | 徐云碧, 杨泉女, 郑洪建, 等. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53 (15): 2983- 3004. |
XU Y B , YANG Q N , ZHENG H J , et al. Genotyping by Target Sequencing (GBTS) and its applications[J]. Scientia Agricultura Sinica, 2020, 53 (15): 2983- 3004. | |
84 | 林雨浓, 王泽昭, 陈燕, 等. 不同筛选方法的低密度SNP集合填充准确性比较[J]. 中国农业科学, 2023, 56 (8): 1585- 1593. |
LIN Y N , WANG Z Z , CHEN Y , et al. Comparison of imputation accuracy for different low-density SNP selection strategies[J]. Scientia Agricultura Sinica, 2023, 56 (8): 1585- 1593. | |
85 |
阳文攀, 叶绍潘, 叶浩强, 等. 参考群筛选方法及规模对基因型填充准确性的影响[J]. 畜牧兽医学报, 2021, 52 (12): 3357- 3365.
doi: 10.11843/j.issn.0366-6964.2021.012.004 |
YANG W P , YE S P , YE H Q , et al. Effect of reference population selection method and size on genotype imputation accuracy[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3357- 3365.
doi: 10.11843/j.issn.0366-6964.2021.012.004 |
|
86 |
邓天宇, 杜立新, 王立贤, 等. 基因型填充策略研究[J]. 畜牧兽医学报, 2020, 51 (9): 2068- 2078.
doi: 10.11843/j.issn.0366-6964.2020.09.004 |
DENG T Y , DU L X , WANG L X , et al. Study on the strategies of genotype lmputation[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (9): 2068- 2078.
doi: 10.11843/j.issn.0366-6964.2020.09.004 |
|
87 | GORSSEN W , WINTERS C , MEYERMANS R , et al. Estimating genetics of body dimensions and activity levels in pigs using automated pose estimation[J]. Sci Rep, 2022, 12 (1): 15384. |
88 | ZHANG Z , OBER U , ERBE M , et al. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies[J]. PLoS One, 2014, 9 (3): e93017. |
89 | ZHANG C Y , KEMP R A , STOTHARD P , et al. Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K, 650K and whole-genome sequence variants[J]. Genet Sel Evol, 2018, 50 (1): 14. |
90 | SARUP P , JENSEN J , OSTERSEN T , et al. Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs[J]. BMC Genet, 2016, 17, 11. |
91 | SONG H L , YE S P , JIANG Y F , et al. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs[J]. Genet Sel Evol, 2019, 51 (1): 58. |
92 |
袁泽湖, 葛玲, 李发弟, 等. 整合生物学先验信息的全基因组选择方法及其在家畜育种中的应用进展[J]. 畜牧兽医学报, 2021, 52 (12): 3323- 3334.
doi: 10.11843/j.issn.0366-6964.2021.012.001 |
YUAN Z H , GE L , LI F D , et al. The method of genomic selection by integrating biological prior information and its application in livestock breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3323- 3334.
doi: 10.11843/j.issn.0366-6964.2021.012.001 |
|
93 | CHAKRABORTY D , SHARMA N , KOUR S , et al. Applications of omics technology for livestock selection and improvement[J]. Front Genet, 2022, 13, 774113. |
94 | GAO N , TENG J Y , YE S P , et al. Genomic prediction of complex phenotypes using genic similarity based relatedness matrix[J]. Front Genet, 2018, 9, 364. |
95 | GAO N , MARTINI J W R , ZHANG Z , et al. Incorporating gene annotation into genomic prediction of complex phenotypes[J]. Genetics, 2017, 207 (2): 489- 501. |
96 | DÉRU V , TIEZZI F , CARILLIER-JACQUIN C , et al. The potential of microbiota information to better predict efficiency traits in growing pigs fed a conventional and a high-fiber diet[J]. Genet Sel Evol, 2024, 56, 8. |
97 | EDWARDS S M , SØRENSEN I F , SARUP P , et al. Genomic prediction for quantitative traits is improved by mapping variants to gene ontology categories in Drosophila melanogaster[J]. Genetics, 2016, 203 (4): 1871- 1883. |
98 | ABDOLLAHI-ARPANAHI R , MOROTA G , VALENTE B D , et al. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens[J]. Genet Sel Evol, 2016, 48, 10. |
99 | BHAT S A , MALIK A A , AHMAD S M , et al. Advances in genome editing for improved animal breeding: A review[J]. Vet World, 2017, 10 (11): 1361- 1366. |
100 | JENKO J , GORJANC G , CLEVELAND M A , et al. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[J]. Genet Sel Evol, 2015, 47 (1): 55. |
101 | TU C F , CHUANG C K , YANG T S . The application of new breeding technology based on gene editing in pig industry—A review[J]. Anim Biosci, 2022, 35 (6): 791- 803. |
102 | SU G S , CHRISTENSEN O F , OSTERSEN T , et al. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers[J]. PLoS One, 2012, 7 (9): e45293. |
103 | WU Z Y , DOU T F , BAI L Y , et al. Genomic prediction and genome-wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high-density SNP genotypes in Yunong-black pigs[J]. J Anim Breed Genet, 2024, 141 (2): 124- 137. |
104 | GONZÁLEZ-DIÉGUEZ D , TUSELL L , CARILLIER-JACQUIN C , et al. SNP-based mate allocation strategies to maximize total genetic value in pigs[J]. Genet Sel Evol, 2019, 51 (1): 55. |
105 | ALILOO H , PRYCE J E , GONZÁLEZ-RECIO O , et al. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability[J]. J Dairy Sci, 2017, 100 (2): 1203- 1222. |
106 | WIENTJES Y C J , CALUS M P L . BOARD INVITED REVIEW: The purebred-crossbred correlation in pigs: A review of theory, estimates, and implications[J]. J Anim Sci, 2017, 95 (8): 3467- 3478. |
107 | LIU S Y , YAO T X , CHEN D , et al. Genomic prediction in pigs using data from a commercial crossbred population: insights from the Duroc x (Landrace x Yorkshire) three-way crossbreeding system[J]. Genet Sel Evol, 2023, 55 (1): 21. |
[1] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[2] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[3] | 刘维哲, 罗成刚, 袁蓉, 廖艺杰, 文艺悯, 孙莹, 俞恩波, 曹三杰, 黄小波. 一株猪流行性腹泻病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 2024, 55(7): 3049-3063. |
[4] | 高一鸣, 陈国盛, 倪诗婷, 佟泽, 王豪男, 杨钒, 杨丽君, 莫玉鹏, 谭臣. 2022年中国南方部分地区猪肺炎支原体感染状况的调查与分析[J]. 畜牧兽医学报, 2024, 55(7): 3064-3074. |
[5] | 田思瑾, 赵佳琪, 王晓明, 王丽平, 黄金虎. 我国猪链球菌对常用抗菌药物耐药性的Meta分析[J]. 畜牧兽医学报, 2024, 55(7): 3163-3176. |
[6] | 吕英光, 焦广明, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞对巴马小型猪自体皮肤移植愈合过程的影响[J]. 畜牧兽医学报, 2024, 55(7): 3193-3204. |
[7] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
[8] | 闫田田, 武建亮, 王朝军, 徐利, 孟庆利, 苏美玉, 李涵乔, 黄国英, 王超, 林佳琪. 法系大白猪繁殖性状遗传参数估计及遗传进展分析[J]. 畜牧兽医学报, 2024, 55(6): 2388-2396. |
[9] | 周琦璐, 刘金松, 吴超, 杨彩梅, 刘玉兰, 张瑞强. 单宁酸对脂多糖应激仔猪肝组织的功能、抗氧化能力和炎症应答的影响[J]. 畜牧兽医学报, 2024, 55(6): 2519-2529. |
[10] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[11] | 辛航阔, 谢青青, 刘坤, 林圣宇, 陈炜, 郑小惠, 朱婷. 一株猪CD56单克隆抗体的制备及抗原表位的初步鉴定[J]. 畜牧兽医学报, 2024, 55(6): 2662-2671. |
[12] | 肖书奇, 刘俊, 冯英桐, 李洋, 徐乐乐. 围产期使用抗菌药物对PRRSV阳性猪场母猪和仔猪生产性能的影响[J]. 畜牧兽医学报, 2024, 55(6): 2751-2760. |
[13] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[14] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[15] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||