[1] KUIKEN T, HOLMES E C, MCCAULEY J, et al. Host species barriers to influenza virus infections[J]. Science, 2006, 312(5772):394-397. [2] PARRISH C R, VOORHEES I E H. H3N8 and H3N2 canine influenza viruses:understanding these new viruses in dogs[J]. Vet Clin North Am Small Anim Pract, 2019, 49(4):643-649. [3] LI S J, SHI Z H, JIAO P R, et al. Avian-origin H3N2 canine influenza A viruses in Southern China[J]. Infect Genet Evol, 2010, 10(8):1286-1288. [4] OU J J, ZHENG F Y, CHENG J J, et al. Isolation and genetic characterization of emerging H3N2 canine influenza virus in Guangdong Province, southern China, 2018-2021[J]. Front Vet Sci, 2022, 9:810855. [5] LI Y G, ZHANG X H, LIU Y X, et al. Characterization of canine influenza virus A (H3N2) circulating in dogs in China from 2016 to 2018[J]. Viruses, 2021, 13(11):2279. [6] CHEN Y, ZHONG G X, WANG G J, et al. Dogs are highly susceptible to H5N1 avian influenza virus[J]. Virology, 2010, 405(1):15-19. [7] HAI-XIA F, YUAN-YUAN L, QIAN-QIAN S, et al. Interspecies transmission of canine influenza virus H5N2 to cats and chickens by close contact with experimentally infected dogs[J]. Vet Microbiol, 2014, 170(3-4):414-417. [8] 曾 昊, 何剑桥, 崔柏杨, 等. 犬源H9N2亚型流感病毒的遗传进化及其致病性分析[J]. 南方农业学报, 2022, 53(11):3266-3275. ZENG H, HE J Q, CUI B Y, et al. Genetic evolution and pathogenicity analysis of a canine-origin H9N2 subtype influenza virus[J]. Journal of Southern Agriculture, 2022, 53(11):3266-3275.(in Chinese) [9] SU S, QI W B, ZHOU P, et al. First evidence of H10N8 avian influenza virus infections among feral dogs in live poultry markets in Guangdong province, China[J]. Clin Infect Dis, 2014, 59(5):748-750. [10] CHEN Y, TROVÃO N S, WANG G J, et al. Emergence and evolution of novel reassortant influenza A viruses in canines in southern China[J]. mBio, 2018, 9(3):e00909-18. [11] REILLY P T, YU Y, HAMICHE A, et al. Cracking the ANP32 whips:important functions, unequal requirement, and hints at disease implications[J]. BioEssays, 2014, 36(11):1062-1071. [12] LONG J S, GIOTIS E S, MONCORGÉ O, et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction[J]. Nature, 2016, 529(7584):101-104. [13] PEACOCK T P, SWANN O C, SALVESEN H A, et al. Swine ANP32A supports avian influenza virus polymerase[J]. J Virol, 2020, 94(12):e00132-20. [14] ZHANG H L, LI H X, WANG W Q, et al. A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs[J]. PLoS Pathog, 2020, 16(2):e1008330. [15] 张 媛, 于萌萌, 孙留克, 等. 犬ANP32蛋白多态性及其对A型流感病毒RNA聚合酶活性的影响[J]. 中国畜牧兽医, 2022, 49(7):2462-2473. ZHANG Y, YU M M, SUN L K, et al. Analysis of canine ANP32 protein polymorphism and effect on RNA polymerase activity of influenza A virus[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(7):2462-2473.(in Chinese) [16] DOMINGUES P, ELETTO D, MAGNUS C, et al. Profiling host ANP32A splicing landscapes to predict influenza A virus polymerase adaptation[J]. Nat Commun, 2019, 10(1):3396. [17] 毕振威. ANP32A调控流感病毒聚合酶活性的机制研究[D]. 南京:南京农业大学, 2019. BI Z W. Mechanisms of ANP32A regulating polymerase activity of influenza virus[D]. Nanjing:Nanjing Agricultural University, 2019.(in Chinese) [LL] [18] 王晓丽, 毕振威, 王永山, 等. 一株H3N2亚型犬流感病毒的分离与进化分析[J]. 中国动物传染病学报, 2015, 23(2):32-40. WANG X L, BI Z W, WANG Y S, et al. Characterization of H3N2 subtype canine influenza virus isolated in 2012 in Nanjing, China[J]. Chinese Journal of Animal Infectious Diseases, 2015, 23(2):32-40.(in Chinese) [19] 朱 琳, 鲜凤君, 张倩楠, 等. RNA编辑的研究进展[J]. 生物技术通报, 2022, 38(1):1-14. ZHU L, XIAN F J, ZHANG Q N, et al. Research progress of RNA editing[J]. Biotechnology Bulletin, 2022, 38(1):1-14.(in Chinese) [20] DOMINGUES P, HALE B G. Functional insights into ANP32A-dependent influenza A virus polymerase host restriction[J]. Cell Reports, 2017, 20(11):2538-2546. [21] BI Z W, YE H L, WANG X B, et al. Insights into species-specific regulation of ANP32A on the mammalian-restricted influenza virus polymerase activity[J]. Emerg Microbes Infect, 2019, 8(1):1465-1478. [22] PEACOCK T P, SHEPPARD C M, LISTER M G, et al. Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus[J]. J Virol, 2023, 97(5):e0021323. [23] SUZUKI Y, ITO T, SUZUKI T, et al. Sialic acid species as a determinant of the host range of influenza A viruses[J]. J Virol, 2000, 74(24):11825-11831. [24] CHEN M Y, LYU Y L, WU F, et al. Increased public health threat of avian-origin H3N2 influenza virus caused by its evolution in dogs[J/OL]. Elife, 2023, 12:e83470.[2024-01-25] https://elifesciences.org/articles/83470. |