Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (10): 4016-4027.doi: 10.11843/j.issn.0366-6964.2023.10.002
• REVIEW • Previous Articles Next Articles
YANG Zhimei1, LIANG Chengcheng1, ZHANG Dianqi1, LI Xuefeng1, ZAN Linsen1,2*
Received:
2023-03-21
Online:
2023-10-23
Published:
2023-10-26
CLC Number:
YANG Zhimei, LIANG Chengcheng, ZHANG Dianqi, LI Xuefeng, ZAN Linsen. Research Progress on the Regulation of circRNA by m6A Modification[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4016-4027.
[1] | SANGER H L, KLOTZ G, RIESNER D, et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].Proc Natl Acad Sci U S A, 1976, 73(11):3852-3856. |
[2] | GROSS H J, DOMDEY H, LOSSOW C, et al.Nucleotide sequence and secondary structure of potato spindle tuber viroid[J].Nature, 1978, 273(5659):203-208. |
[3] | WILUSZ J E.A 360° view of circular RNAs:From biogenesis to functions[J].Wiley Interdiscip Rev RNA, 2018, 9(4):e1478. |
[4] | ZHANG X O, DONG R, ZHANG Y, et al.Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J].Genome Res, 2016, 26(9):1277-1287. |
[5] | SUN T, WU R Y, MING L.The role of m6A RNA methylation in cancer[J].Biomed Pharmacother, 2019, 112:108613. |
[6] | DESROSIERS R, FRIDERICI K, ROTTMAN F.Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J].Proc Natl Acad Sci U S A, 1974, 71(10):3971-3975. |
[7] | AN M J, ZHENG H H, HUANG J, et al.Aberrant nuclear export of circNCOR1 underlies SMAD7-mediated lymph node metastasis of bladder cancer[J].Cancer Res, 2022, 82(12):2239-2253. |
[8] | CHEN R X, CHEN X, XIA L P, et al.N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J].Nat Commun, 2019, 10(1):4695. |
[9] | RONG D W, WU F, LU C, et al.m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J].Mol Ther Nucl Acids, 2021, 26:637-648. |
[10] | BARRETT S P, WANG P L, SALZMAN J.Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J].eLife, 2015, 4:e07540. |
[11] | ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al.circRNA biogenesis competes with pre-mRNA splicing[J].Mol Cell, 2014, 56(1):55-66. |
[12] | JECK W R, SORRENTINO J A, WANG K, et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J].RNA, 2013, 19(2):141-157. |
[13] | ZHANG Y, ZHANG X O, CHEN T, et al.Circular intronic long noncoding RNAs[J].Mol Cell, 2013, 51(6):792-806. |
[14] | ZHANG X O, DONG R, ZHANG Y, et al.Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J].Genome Res, 2016, 26(9):1277-1287. |
[15] | EGER N, SCHOPPE L, SCHUSTER S, et al.Circular RNA splicing[J].Adv Exp Med Biol, 2018, 1087:41-52. |
[16] | SCHINDEWOLF C, BRAUN S, DOMDEY H.In vitro generation of a circular exon from a linear pre-mRNA transcript[J]. Nucl Acids Res, 1996, 24(7):1260-1266. |
[17] | KRAMER M C, LIANG D M, TATOMER D C, et al.Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J].Genes Dev, 2015, 29(20):2168-2182. |
[18] | LIANG D M, WILUSZ J E.Short intronic repeat sequences facilitate circular RNA production[J].Genes Dev, 2014, 28(20):2233-2247. |
[19] | ZHANG X O, WANG H B, ZHANG Y, et al.Complementary sequence-mediated exon circularization[J].Cell, 2014, 159(1):134-147. |
[20] | CONN S J, PILLMAN K A, TOUBIA J, et al.The RNA binding protein quaking regulates formation of circRNAs[J].Cell, 2015, 160(6):1125-1134. |
[21] | TEPLOVA M, HAFNER M, TEPLOV D, et al.Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites[J].Genes Dev, 2013, 27(8):928-940. |
[22] | LI X, LIU C X, XUE W, et al.Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J].Mol Cell, 2017, 67(2):214-227.e7. |
[23] | HANSEN T B, JENSEN T I, CLAUSEN B H, et al.Natural RNA circles function as efficient microRNA sponges[J].Nature, 2013, 495(7441):384-388. |
[24] | 林晓冰, 梁小锋, 彭智燊, 等.环状RNA在系统性红斑狼疮中的研究进展[J].现代免疫学, 2022, 42(6):541-546.LIN X B, LIANG X F, PENG Z S, et al.Research progress of circular RNAs in systematic lupus erythematosus[J].Current Immunology, 2022, 42(6):541-546.(in Chinese) |
[25] | YE C Y, CHEN L, LIU C, et al.Widespread noncoding circular RNAs in plants[J].New Phytol, 2015, 208(1):88-95. |
[26] | LU T T, CUI L L, ZHOU Y, et al.Transcriptome-wide investigation of circular RNAs in rice[J].RNA, 2015, 21(12):2076-2087. |
[27] | CHEN L, ZHANG P, FAN Y, et al.Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J].New Phytol, 2018, 217(3):1292-1306. |
[28] | WANG L D, LIANG W S, WANG S S, et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One, 2020, 15(7):e0236069. |
[29] | YAN X M, ZHANG Z, MENG Y, et al.Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle[J].PeerJ, 2020, 8:e8646. |
[30] | SHEN X M, TANG J, HUANG Y Z, et al.CircRNF111 contributes to adipocyte differentiation by elevating PPARγ expression via miR-27a-3p[J].Epigenetics, 2023, 18(1):2145058. |
[31] | ZHANG X Y, YANG S L, KANG Z H, et al.circMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT axis[J].J Agric Food Chem, 2022, 70(26):8145-8163. |
[32] | QI A, RU W X, YANG H Y, et al.Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway[J].J Agric Food Chem, 2022, 70(10):3357-3373. |
[33] | YANG Z X, SONG C C, JIANG R, et al.CircNDST1 regulates bovine myoblasts proliferation and differentiation via the miR-411a/Smad4 axis[J].J Agric Food Chem, 2022, 70(32):10044-10057. |
[34] | FAN Y X, ZHANG Z, DENG K P, et al.CircUBE3A promotes myoblasts proliferation and differentiation by sponging miR-28-5p to enhance expression[J].Int J Biol Macromol, 2023, 226:730-745. |
[35] | ZHANG Z, FAN Y X, DENG K P, et al.Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J].FASEB J, 2022, 36(1):e22097. |
[36] | JIAO P X, ZHANG M M, WANG Z W, et al.Circ003429 regulates unsaturated fatty acid synthesis in the dairy goat mammary gland by interacting with miR-199a-3p, targeting the YAP1 gene[J].Int J Mol Sci, 2022, 23(7):4068. |
[37] | ZHAO J Y, SHEN J C, WANG Z Y, et al.CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression[J].Arch Anim Breed, 2022, 65(1):55-67. |
[38] | ZHUANG X N, LIN Z K, XIE F, et al.Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages[J].BMC Genomics, 2022, 23(1):294. |
[39] | SUN D, AN J Q, CUI Z X, et al.CircCSDE1 regulates proliferation and differentiation of C2C12 myoblasts by sponging miR-21-3p[J].Int J Mol Sci, 2022, 23(19):12038. |
[40] | ZOU Q, WANG X, YUAN R, et al.Circ004463 promotes fibroblast proliferation and collagen I synthesis by sponging miR-23b and regulating CADM3/MAP4K4 via activation of AKT/ERK pathways[J].Int J Biol Macromol, 2023, 226:357-367. |
[41] | DING N, ZHANG Y, HUANG M N, et al.Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p[J].Commun Biol, 2022, 5(1):1339. |
[42] | TIAN W H, ZHANG B, ZHONG H A, et al.Dynamic expression and regulatory network of circular RNA for abdominal preadipocytes differentiation in chicken (Gallus gallus)[J].Front Cell Dev Biol, 2021, 9:761638. |
[43] | JANGA S C, MITTAL N.Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins[J].Adv Exp Med Biol, 2011, 722:103-117. |
[44] | JANAS T, JANAS M M, SAPOŃ K, et al.Mechanisms of RNA loading into exosomes[J].FEBS Lett, 2015, 589(13):1391-1398. |
[45] | DU W W, ZHANG C, YANG W N, et al.Identifying and characterizing circRNA-protein interaction[J].Theranostics, 2017, 7(17):4183-4191. |
[46] | CHEN H M, KONG Y, YAO Q, et al.Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients[J].Aging (Albany NY), 2019, 11(3):885-897. |
[47] | MAZUREK S, BOSCHEK C B, HUGO F, et al.Pyruvate kinase type M2 and its role in tumor growth and spreading[J]. Semin Cancer Biol, 2005, 15(4):300-308. |
[48] | WANG H J, HSIEH Y J, CHENG W C, et al.JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism[J].Proc Natl Acad Sci U S A, 2014, 111(1):279-284. |
[49] | SONG J, ZHENG J, LIU X B, et al.A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5[J].J Exp Clin Cancer Res, 2022, 41(1):171. |
[50] | LACERDA R, MENEZES J, ROMÃO L.More than just scanning:the importance of cap-independent mRNA translation initiation for cellular stress response and cancer[J].Cell Mol Life Sci, 2017, 74(9):1659-1680. |
[51] | GODET A C, DAVID F, HANTELYS F, et al.IRES trans-acting factors, key actors of the stress response[J].Int J Mol Sci, 2019, 20(4):924. |
[52] | YANG Y, WANG C F, ZHAO K L, et al.TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation[J].Cell Death Dis, 2018, 9(9):886. |
[53] | YANG Y, FAN X J, MAO M W, et al.Extensive translation of circular RNAs driven by N6-methyladenosine[J].Cell Res, 2017, 27(5):626-641. |
[54] | XIA X, LI X X, LI F Y, et al.A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1[J].Mol Cancer, 2019, 18(1):131. |
[55] | LEGNINI I, DI TIMOTEO G, ROSSI F, et al.Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis[J].Mol Cell, 2017, 66(1):22-37.e9. |
[56] | ZHENG X, CHEN L J, ZHOU Y, et al.A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J].Mol Cancer, 2019, 18(1):47. |
[57] | LI Z Y, HUANG C, BAO C, et al.Exon-intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol, 2015, 22(3):256-264. |
[58] | CONN V M, HUGOUVIEUX V, NAYAK A, et al.A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J].Nat Plants, 2017, 3:17053. |
[59] | XU X L, ZHANG J W, TIAN Y H, et al.CircRNA inhibits DNA damage repair by interacting with host gene[J].Mol Cancer, 2020, 19(1):128. |
[60] | FENG Y, YANG Y X, ZHAO X D, et al.Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP[J].Cell Death Dis, 2019, 10(11):792. |
[61] | CHEN Z Z, LU T K, HUANG L, et al.Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF[J].J Clin Invest, 2021, 131(19):e148020. |
[62] | SALETORE Y, MEYER K, KORLACH J, et al.The birth of the Epitranscriptome:deciphering the function of RNA modifications[J].Genome Biol, 2012, 13(10):175. |
[63] | LIU N, PAN T.N6-methyladenosine-encoded epitranscriptomics[J].Nat Struct Mol Biol, 2016, 23(2):98-102. |
[64] | ZACCARA S, RIES R J, JAFFREY S R.Reading, writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol, 2019, 20(10):608-624. |
[65] | EDENS B M, VISSERS C, SU J, et al.FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J].Cell Rep, 2019, 28(4):845-854.e5. |
[66] | ZHAO B S, ROUNDTREE I A, HE C.Post-transcriptional gene regulation by mRNA modifications[J].Nat Rev Mol Cell Biol, 2017, 18(1):31-42. |
[67] | YU R Q, LI Q M, FENG Z H, et al.m6A reader YTHDF2 regulates LPS-induced inflammatory response[J].Int J Mol Sci, 2019, 20(6):1323. |
[68] | DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J].Nature, 2012, 485(7397):201-206. |
[69] | MEYER K D, SALETORE Y, ZUMBO P, et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J].Cell, 2012, 149(7):1635-1646. |
[70] | LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al.Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J].Nat Methods, 2015, 12(8):767-772. |
[71] | MEYER K D.DART-seq:an antibody-free method for global m6A detection[J].Nat Methods, 2019, 16(12):1275-1280. |
[72] | IMAM H, KHAN M, GOKHALE N S, et al.N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J].Proc Natl Acad Sci U S A, 2018, 115(35):8829-8834. |
[73] | PING X L, SUN B F, WANG L, et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189. |
[74] | SCHÖLLER E, WEICHMANN F, TREIBER T, et al.Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J].RNA, 2018, 24(4):499-512. |
[75] | BODI Z, ZHONG S L, MEHRA S, et al.Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J].Front Plant Sci, 2012, 3:48. |
[76] | XU K, YANG Y, FENG G H, et al.Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9):1100-1114. |
[77] | KABECHE L, NGUYEN H D, BUISSON R, et al.A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation[J].Science, 2017, 359(6371):108-114. |
[78] | YANG X, LIU Q L, XU W, et al.m6A promotes R-loop formation to facilitate transcription termination[J].Cell Res, 2019, 29(12):1035-1038. |
[79] | FEDELES B I, SINGH V, DELANEY J C, et al.The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases:repairing nucleic acid alkylation damage and beyond[J].J Biol Chem, 2015, 290(34):20734-20742. |
[80] | 史源钧, 米思远, 俞 英.m6A表观遗传修饰及其调控机制研究进展[J].中国畜牧兽医, 2022, 49(1):197-207.SHI Y J, MI S Y, YU Y.Research progress on m6A epigenetic modification and its regulation mechanism[J].China Animal Husbandry & Veterinary Medicine, 2022, 49(1):197-207.(in Chinese) |
[81] | JIA G F, YANG C G, YANG S D, et al.Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO[J].FEBS Lett, 2008, 582(23-24):3313-3319. |
[82] | JIA G F, FU Y, ZHAO X, et al.N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nat Chem Biol, 2011, 7(12):885-887. |
[83] | MAUER J, LUO X B, BLANJOIE A, et al.Reversible methylation of m6Am in the 5'cap controls mRNA stability[J].Nature, 2017, 541(7637):371-375. |
[84] | MAUER J, SINDELAR M, DESPIC V, et al.FTO controls reversible m6Am RNA methylation during snRNA biogenesis[J]. Nat Chem Biol, 2019, 15(4):340-347. |
[85] | WU R F, LIU Y H, YAO Y X, et al.FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism[J].Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10):1323-1330. |
[86] | ZHENG G Q, DAHL J A, NIU Y M, et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J].Mol Cell, 2013, 49(1):18-29. |
[87] | LI S W, XU S Y, CHEN Y H, et al.Metal exposure promotes colorectal tumorigenesis via the aberrant N6-methyladenosine modification of ATP13A3[J].Environ Sci Technol, 2023, 57(7):2864-2876. |
[88] | SUN R, YUAN L, JIANG Y, et al.ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer[J].Theranostics, 2023, 13(2):833-848. |
[89] | WANG X, ZHAO B S, ROUNDTREE I A, et al.N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399. |
[90] | WANG X, LU Z K, GOMEZ A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature, 2014, 505(7481):117-120. |
[91] | SHI H L, WANG X, LU Z K, et al.YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J].Cell Res, 2017, 27(3):315-328. |
[92] | ROUNDTREE I A, LUO G Z, ZHANG Z J, et al.YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J].eLife, 2017, 6:e31311. |
[93] | LI T, HU P S, ZUO Z X, et al.METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J].Mol Cancer, 2019, 18(1):112. |
[94] | CHEN H H, YU H I, YANG M H, et al.DDX3 activates CBC-eIF3-mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC[J].Cancer Res, 2018, 78(16):4512-4523. |
[95] | ZHANG J, ZHANG X L, LI C D, et al.Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J].RNA Biol, 2019, 16(2):220-232. |
[96] | HUANG C, LIANG D M, TATOMER D C, et al.A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J].Genes Dev, 2018, 32(9-10):639-644. |
[97] | SHEN H H.UAP56-a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export[J].BMB Rep, 2009, 42(4):185-188. |
[98] | HUANG C, LIANG D M, TATOMER D C, et al.A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J].Genes Dev, 2018, 32(9-10):639-644. |
[99] | PRATS A C, DAVID F, DIALLO L H, et al.Circular RNA, the key for translation[J].Int J Mol Sci, 2020, 21(22):8591. |
[100] | ZHOU J, WAN J, GAO X W, et al.Dynamic m6A mRNA methylation directs translational control of heat shock response[J].Nature, 2015, 526(7574):591-594. |
[101] | DI TIMOTEO G, DATTILO D, CENTRÓN-BROCO A, et al.Modulation of circRNA metabolism by m6A modification[J]. Cell Rep, 2020, 31(6):107641. |
[102] | DUAN J L, CHEN W, XIE J J, et al.A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma[J].Mol Cancer, 2022, 21(1):93. |
[103] | HANSEN T B, WIKLUND E D, BRAMSEN J B, et al.miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J].EMBO J, 2011, 30(21):4414-4422. |
[104] | LUO Y, NA Z K, SLAVOFF S A.P-bodies:composition, properties, and functions[J].Biochemistry, 2018, 57(17):2424-2431. |
[105] | JIA R R, XIAO M S, LI Z G, et al.Defining an evolutionarily conserved role of GW182 in circular RNA degradation[J].Cell Discov, 2019, 5:45. |
[106] | PARK O H, HA H, LEE Y, et al.Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex[J].Mol Cell, 2019, 74(3):494-507.e8. |
[107] | GUO Y X, GUO Y Y, CHEN C, et al.Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer:involvement of miR-30c-5p/TCF7 axis[J].Mol Cancer, 2021, 20(1):93. |
[108] | LIU Y X, YANG Y H, LIN Y C, et al.N6-methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation[J].Cell Prolif, 2023, 56(1):e13297. |
[109] | SCHLEE M, HARTMANN G.Discriminating self from non-self in nucleic acid sensing[J].Nat Rev Immunol, 2016, 16(9):566-580. |
[110] | GARCIA M A, MEURS E F, ESTEBAN M.The dsRNA protein kinase PKR:virus and cell control[J].Biochimie, 2007, 89(6-7):799-811. |
[111] | LIU C X, GUO S K, NAN F, et al.RNA circles with minimized immunogenicity as potent PKR inhibitors[J].Mol Cell, 2022, 82(2):420-434.e6. |
[112] | MOLDOVAN L I, HANSEN T B, VENO M T, et al.High-throughput RNA sequencing from paired lesional-and non-lesional skin reveals major alterations in the psoriasis circRNAome[J].BMC Med Genomics, 2019, 12(1):174. |
[113] | REIKINE S, NGUYEN J B, MODIS Y.Pattern recognition and signaling mechanisms of RIG-I and MDA5[J].Front Immunol, 2014, 5:342. |
[114] | RIES R J, ZACCARA S, KLEIN P, et al.m6A enhances the phase separation potential of mRNA[J].Nature, 2019, 571(7765):424-428. |
[115] | CHEN Y G, CHEN R, AHMAD S, et al.N6-methyladenosine modification controls circular RNA immunity[J].Mol Cell, 2019, 76(1):96-109.e9. |
[1] | LÜ Shiqi, ZHOU Rongyan, TIAN Shujun, CHEN Xiaoyong. Study on the Physiological Mechanism of Mitochondrial tRNA-Lys(T7719G) Gene Variation Affecting Apoptosis of Ovine Granulosa Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2011-2021. |
[2] | LUO Ting, HAN Zhu, XU Yefen, CAI Lin, SUOLANG Sizhu, XU Jinhua, NIU Jiaqiang. Whole Genome Sequencing and Sequence Analysis on T10 of Mycoplasma bovis Strain from Yaks in Xizang [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2154-2167. |
[3] | NIU Xiaoyu, XING Yuanyuan, LI Dabiao. Advances in Regulation and Mechanism of Plant Bioactive Compounds on Intestinal Barrier Function in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1467-1477. |
[4] | ZHONG Zhuxia, HU Xiuzhong, XIANG Min, YU Jie, LIU Chenhui, ZHAO Shenglan, WAN Pingmin, WANG Dingfa, ZHOU Yuan, CHENG Lei. Research Progress on Biological Function and Application of Pregnancy Associated Glycoproteins in Livestock Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 874-881. |
[5] | LIU Qiang, NIU Xiaoxia, FANG Min, LIU Yanling, GAO Hui, CHEN Jixiang, JIAHUA Cairang, ZHANG Sinong, LI Yong. Research Progress of Bovine Coronavirus Spike Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 944-956. |
[6] | LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao. Research Progress on the Biological Functions of Tegument Proteins Encoded by Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 957-970. |
[7] | CAO Jinkang, ZHANG Chun, WANG Jiayao, LI Xiaotong, WANG Pengyu, FANG Yingyan, ZHANG Yu, DING Ning, JIANG Li. Proteomic Analysis of Sperm with Different Freezability in Chinese Holstein Bulls [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1052-1061. |
[8] | MU Xiangyu, XU Yunruo, HU Jingyi, ZHOU Xinyan, ZHU Yongwen. Advances in Research on the Nutritional Requirements of Branched-Chain Amino Acids in Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 31-38. |
[9] | HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612. |
[10] | WANG Hui, FENG Baoliang, WU Dan, XIANG Guangming, WANG Nan, MU Yulian, LI Kui, LIU Zhiguo. Research Progress of CD163 Gene and Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3127-3138. |
[11] | GUO Yanli, LI Keqiang, BAI Shaochuan, WANG Tao, WANG Dehe, WANG Qi, LI Lanhui. The Structure, Activity Regulation of ALV-E and Its Effects on Host Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2683-2691. |
[12] | ZHOU Weiwei, WANG Xuefeng, ZHANG Mengjie, YANG Juan, SUN Yuelong, ZHANG Zufeng, ZHANG Yuxin, DOU Jiahong, WANG Ziying, DAI Xiaofeng, LI Xiumei. Analysing the Mechanism of Sihuang Zhili Granule in the Treatment of Piglet Diarrhea Based on Biological Network Function Modules and Compatibility Rules [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3031-3043. |
[13] | CHEN Fangfang, LI Zhonghua, ZHU Zhiwei, LI Jinchun, LIU Cuiyan. Recent Advances in Multifunctional Research of Invariant Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1824-1833. |
[14] | CAO Xiuyun, LIU Jiwen, TANG Zhihui, ZHENG Ziyi, YAN Liping, SONG Suquan. Isolation, Identification and Pathogenicity Analysis of a Duck Adenovirus Type 3 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2050-2061. |
[15] | HU Yamei, SONG Xiangrong, HUANG Liang, ZHANG Lutong, GAO Lei, PANG Weijun, YANG Gongshe, CHU Guiyan. FGF21 Enhances Mitochondrial Function and Inhibits Apoptosis of Porcine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1034-1045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||