Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (3): 957-970.doi: 10.11843/j.issn.0366-6964.2024.03.010
• REVIEW • Previous Articles Next Articles
LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao*
Received:
2023-06-07
Online:
2024-03-23
Published:
2024-03-27
CLC Number:
LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao. Research Progress on the Biological Functions of Tegument Proteins Encoded by Pseudorabies Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 957-970.
[1] CHEN J, LI G, WAN C, et al. A comparison of pseudorabies virus latency to other α-herpesvirinae subfamily members[J]. Viruses, 2022, 14(7):1386. [2] ZHOU M M, WU X J, JIANG D D, et al. Characterization of a moderately pathogenic pseudorabies virus variant isolated in China, 2014[J]. Infect Genet Evol, 2019, 68:161-171. [3] NAUWYNCK H, GLORIEUX S, FAVOREEL H, et al. Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract[J]. Vet Res, 2007, 38(2):229-241. [4] WANG Y B, QIAO S L, LI X W, et al. Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China[J]. Virus Genes, 2015, 50(3):401-409. [5] SMITH G A. Assembly and egress of an alphaherpesvirus clockwork[M]//OSTERRIEDER K. Cell Biology of Herpes Viruses. Cham:Springer, 2017:171-193. [6] METTENLEITER T C. Herpesvirus assembly and egress[J]. J Virol, 2002, 76(4):1537-1547. [7] GUO H T, SHEN S, WANG L L, et al. Role of tegument proteins in herpesvirus assembly and egress[J]. Protein Cell, 2010, 1(11):987-998. [8] POMERANZ L E, REYNOLDS A E, HENGARTNER C J. Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine[J]. Microbiol Mol Biol Rev, 2005, 69(3):462-500. [9] OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. [10] DEL RIO T, DECOSTE C J, ENQUIST L W. Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein VP22[J]. J Virol, 2005, 79(13):8614-8619. [11] WONG M L, CHEN C H. Evidence for the internal location of actin in the pseudorabies virion[J]. Virus Res, 1998, 56(2):191-197. [12] BRESNAHAN W A, SHENK T E. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells[J]. Proc Natl Acad Sci U S A, 2000, 97(26):14506-14511. [13] YANG L J, WANG M S, CHENG A C, et al. Innate immune evasion of alphaherpesvirus tegument proteins[J]. Front Immunol, 2019, 10:2196. [14] COLLER K E, SMITH G A. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus[J]. Traffic, 2008, 9(9):1458-1470. [15] KATO A, YAMAMOTO M, OHNO T, et al. Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31[J]. J Virol, 2006, 80(3):1476-1486. [16] CANO-MONREAL G L, WYLIE K M, CAO F, et al. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins[J]. Virology, 2009, 392(1):137-147. [17] VAN CLEEMPUT J, KOYUNCU O O, LAVAL K, et al. CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing[J]. J Virol, 2021, 95(6):e02286-20. [18] ZHAO N N, WANG F, KONG Z J, et al. Pseudorabies virus tegument protein UL13 suppresses RLR-mediated antiviral innate immunity through regulating receptor transcription[J]. Viruses, 2022, 14(7):1465. [19] CHEN X Y, SHAN T L, SUN D G, et al. Host Zinc-finger CCHC-type containing protein 3 inhibits pseudorabies virus proliferation by regulating type I interferon signaling[J]. Gene, 2022, 827:146480. [20] KONG Z J, YIN H Y, WANG F, et al. Pseudorabies virus tegument protein UL13 recruits RNF5 to inhibit STING-mediated antiviral immunity[J]. PLoS Pathog, 2022, 18(5):e1010544. [21] LV L, CAO M Z, BAI J, et al. PRV-encoded UL13 protein kinase acts as an antagonist of innate immunity by targeting IRF3-signaling pathways[J]. Vet Microbiol, 2020, 250:108860. [22] BO Z Y, MIAO Y R, XI R, et al. PRV UL13 inhibits cGAS-STING-mediated IFN-β production by phosphorylating IRF3[J]. Vet Res, 2020, 51(1):118. [23] MING X, BO Z Y, MIAO Y R, et al. Pseudorabies virus kinase UL13 phosphorylates H2AX to foster viral replication[J]. FASEB J, 2022, 36(3):e22221. [24] LV L, BAI J, GAO Y N, et al. Peroxiredoxin 1 interacts with TBK1/IKK ε and negatively regulates pseudorabies virus propagation by promoting innate immunity[J]. J Virol, 2021, 95(19):e0092321. [25] YAN K, LIU J, GUAN X, et al. The carboxyl terminus of tegument protein pUL21 contributes to pseudorabies virus neuroinvasion[J]. J Virol, 2019, 93(7):e02052-18. [26] CURANOVIC D, LYMAN M G, BOU-ABBOUD C, et al. Repair of the UL21 locus in pseudorabies virus Bartha enhances the kinetics of retrograde, transneuronal infection in vitro and in vivo[J]. J Virol, 2009, 83(3):1173-1183. [27] LE SAGE V, JUNG M, ALTER J D, et al. The herpes simplex virus 2 UL21 protein is essential for virus propagation[J]. J Virol, 2013, 87(10):5904-5915. [28] THOMAS E C M, BOSSERT M, BANFIELD B W. The herpes simplex virus tegument protein pUL21 is required for viral genome retention within capsids[J]. PLoS Pathog, 2022, 18(11):e1010969. [29] GAO J, FINNEN R L, SHERRY M R, et al. Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids[J]. J Virol, 2020, 94(13):e00738-20. [30] KLUPP B G, BOTTCHER S, GRANZOW H, et al. Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus[J]. J Virol, 2005, 79(3):1510-1522. [31] HAN J, CHADHA P, STARKEY J L, et al. Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail[J]. Proc Natl Acad Sci U S A, 2012, 109(48):19798-19803. [32] MICHAEL K, KLUPP B G, KARGER A, et al. Efficient incorporation of tegument proteins pUL46, pUL49, and pUS3 into pseudorabies virus particles depends on the presence of pUL21[J]. J Virol, 2007, 81(2):1048-1051. [33] MA Z C, BAI J, JIANG C L, et al. Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy[J]. Autophagy, 2023, 19(5):1512-1532. [34] MOHL B S, BOTTCHER S, GRANZOW H, et al. Random transposon-mediated mutagenesis of the essential large tegument protein pUL36 of pseudorabies virus[J]. J Virol, 2010, 84(16):8153-8162. [35] MICHAEL K, BÖTTCHER S, KLUPP B G, et al. Pseudorabies virus particles lacking tegument proteins pUL11 or pUL16 incorporate less full-length pUL36 than wild-type virus, but specifically accumulate a pUL36 N-terminal fragment[J]. J Gen Virol, 2006, 87(Pt 12):3503-3507. [36] KLUPP B G, FUCHS W, GRANZOW H, et al. Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein[J]. J Virol, 2002, 76(6):3065-3071. [37] MOHNKE J, STARK I, FISCHER M, et al. pUL36 deubiquitinase activity augments both the initiation and the progression of lytic herpes simplex virus infection in IFN-primed cells[J]. J Virol, 2022, 96(22):e0096322. [38] BOTTCHER S, KLUPP B G, GRANZOW H, et al. Identification of a 709-amino-acid internal nonessential region within the essential conserved tegument protein (p)UL36 of pseudorabies virus[J]. J Virol, 2006, 80(19):9910-9915. [39] LEE J I H, LUXTON G W G, SMITH G A. Identification of an essential domain in the herpesvirus VP1/2 tegument protein:the carboxy terminus directs incorporation into capsid assemblons[J]. J Virol, 2006, 80(24):12086-12094. [40] BOTTCHER S, MARESCH C, GRANZOW H, et al. Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo[J]. J Virol, 2008, 82(12):6009-6016. [41] BOTTCHER S, GRANZOW H, MARESCH C, et al. Identification of functional domains within the essential large tegument protein pUL36 of pseudorabies virus[J]. J Virol, 2007, 81(24):13403-13411. [42] KLUPP B G, GRANZOW H, MUNDT E, et al. Pseudorabies virus UL37 gene product is involved in secondary envelopment[J]. J Virol, 2001, 75(19):8927-8936. [43] FUCHS W, KLUPP B G, GRANZOW H, et al. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein[J]. J Virol, 2004, 78(21):11879-11889. [44] LUXTON G W G, HAVERLOCK S, COLLER K E, et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins[J]. Proc Natl Acad Sci U S A, 2005, 102(16):5832-5837. [45] ZHOU Z H, CHEN D H, JAKANA J, et al. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions[J]. J Virol, 1999, 73(4):3210-3218. [46] CLARK C M, JAMBUNATHAN N, COLLANTES T M A, et al. Inactivation of the UL37 deamidase enhances virus replication and spread of the HSV-1(VC2) oncolytic vaccine strain and secretion of GM-CSF[J]. Viruses, 2023, 15(2):367. [47] KOENIGSBERG A L, HELDWEIN E E. The dynamic nature of the conserved tegument protein UL37 of herpesviruses[J]. J Biol Chem, 2018, 293(41):15827-15839. [48] KOENIGSBERG A L, HELDWEIN E E. Crystal structure of the N-terminal half of the traffic controller UL37 from herpes simplex virus 1[J]. J Virol, 2017, 91(20):e01244-17. [49] PITTS J D, KLABIS J, RICHARDS A L, et al. Crystal structure of the herpesvirus inner tegument protein UL37 supports its essential role in control of viral trafficking[J]. J Virol, 2014, 88(10):5462-5473. [50] RICHARDS A L, SOLLARS P J, PITTS J D, et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion[J]. PLoS Pathog, 2017, 13(12):e1006741. [51] GRANZOW H, KLUPP B G, METTENLEITER T C. Entry of pseudorabies virus:an immunogold-labeling study[J]. J Virol, 2005, 79(5):3200-3205. [52] GRANZOW H, KLUPP B G, FUCHS W, et al. Egress of alphaherpesviruses:comparative ultrastructural study[J]. J Virol, 2001, 75(8):3675-3684. [53] HENAFF D, RADTKE K, LIPPÉ R. Herpesviruses exploit several host compartments for envelopment[J]. Traffic, 2012, 13(11):1443-1449. [54] HAMBLETON S, GERSHON M D, GERSHON A A. The role of the trans-Golgi network in varicella zoster virus biology[J]. Cell Mol Life Sci, 2004, 61(24):3047-3056. [55] JAMBUNATHAN N, CHOULJENKO D, DESAI P, et al. Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment[J]. J Virol, 2014, 88(11):5927-5935. [56] FUCHS W, GRANZOW H, KLOPFLEISCH R, et al. The UL7 gene of pseudorabies virus encodes a nonessential structural protein which is involved in virion formation and egress[J]. J Virol, 2005, 79(17):11291-11299. [57] KLOPFLEISCH R, KLUPP B G, FUCHS W, et al. Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice[J]. J Virol, 2006, 80(11):5571-5576. [58] YANG L J, WANG M S, CHENG A C, et al. Features and functions of the conserved herpesvirus tegument protein UL11 and its binding partners[J]. Front Microbiol, 2022, 13:829754. [59] METRICK C M, KOENIGSBERG A L, HELDWEIN E E. Conserved outer tegument component UL11 from herpes simplex virus 1 is an intrinsically disordered, RNA-binding protein[J]. mBio, 2020, 11(3):e00810-20. [60] KOPP M, GRANZOW H, FUCHS W, et al. The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm[J]. J Virol, 2003, 77(9):5339-5351. [61] KOPP M, GRANZOW H, FUCHS W, et al. Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment[J]. J Virol, 2004, 78(6):3024-3034. [62] CUNNINGHAM C, DAVISON A J, MACLEAN A R, et al. Herpes simplex virus type 1 gene UL14:phenotype of a null mutant and identification of the encoded protein[J]. J Virol, 2000, 74(1):33-41. [63] 张 辉. 伪狂犬病毒间质蛋白UL14功能研究及TK-/gG-株感染性克隆构建[D]. 武汉:华中农业大学, 2007. ZHANG H. Study on the function of pseudorabies virus tugement protein UL14 and the construction of TK-/gG- strain infectious clone[D]. Wuhan:Huazhong Agricultural University, 2007. (in Chinese) [64] YAMAUCHI Y, KIRIYAMA K, KUBOTA N, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids[J]. J Virol, 2008, 82(3):1094-1106. [65] YAMAUCHI Y, DAIKOKU T, GOSHIMA F, et al. Herpes simplex virus UL14 protein blocks apoptosis[J]. Microbiol Immunol, 2003, 47(9):685-689. [66] XU J J, CHENG X F, LIU Y T, et al. Pseudorabies virus UL16 protein influences the inhibition of LRPPRC for the viral proliferation[J]. Vet Microbiol, 2022, 265:109327. [67] XU J J, CHENG X F, WU J Q, et al. Pseudorabies virus pUL16 assists the nuclear import of VP26 through protein-protein interaction[J]. Vet Microbiol, 2021, 257:109080. [68] JÖNS A, METTENLEITER T C. Identification and characterization of pseudorabies virus dUTPase[J]. J Virol, 1996, 70(2):1242-1245. [69] JÖNS A, GERDTS V, LANGE E, et al. Attenuation of dUTPase-deficient pseudorabies virus for the natural host[J]. Vet Microbiol, 1997, 56(1-2):47-54. [70] ZHANG R, XU A T, QIN C, et al. Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response[J]. J Virol, 2017, 91(21):e01148-17. [71] KLUPP B G, GRANZOW H, KLOPFLEISCH R, et al. Functional analysis of the pseudorabies virus UL51 protein[J]. J Virol, 2005, 79(6):3831-3840. [72] DAVISON A J. Evolution of the herpesviruses[J]. Vet Microbiol, 2002, 86(1-2):69-88. [73] DELVA J L, VAN WAESBERGHE C, VAN DEN BROECK W, et al. The attenuated pseudorabies virus vaccine strain bartha hyperactivates plasmacytoid dendritic cells by generating large amounts of cell-free virus in infected epithelial cells[J]. J Virol, 2022, 96(12):e0219921. [74] SUN L Q, TANG Y J, YAN K J, et al. Construction of a quadruple gene-deleted vaccine confers complete protective immunity against emerging PRV variant challenge in piglets[J]. Virol J, 2022, 19(1):19. [75] LYU C, WANG S W, SUN M X, et al. Deletion of pseudorabies virus US2 gene enhances viral titers in a porcine cerebral cortex primary culture system[J]. Virus Genes, 2018, 54(3):406-413. [76] CLASE A C, LYMAN M G, DEL RIO T, et al. The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells[J]. J Virol, 2003, 77(22):12285-12298. [77] KANG M H, BANFIELD B W. Pseudorabies virus tegument protein Us2 recruits the mitogen-activated protein kinase extracellular-regulated kinase (ERK) to membranes through interaction with the ERK common docking domain[J]. J Virol, 2010, 84(17):8398-8408. [78] LYMAN M G, RANDALL J A, CALTON C M, et al. Localization of ERK/MAP kinase is regulated by the alphaherpesvirus tegument protein Us2[J]. J Virol, 2006, 80(14):7159-7168. [79] FAVOREEL H W, VAN MINNEBRUGGEN G, ADRIAENSEN D, et al. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread[J]. Proc Natl Acad Sci U S A, 2005, 102(25):8990-8995. [80] DERUELLE M, GEENEN K, NAUWYNCK H J, et al. A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction[J]. Virus Res, 2007, 128(1-2):65-70. [81] ZHOU T, WANG M S, CHENG A C, et al. Regulation of alphaherpesvirus protein via post-translational phosphorylation[J]. Vet Res, 2022, 53(1):93. [82] JANSENS R J J, VERHAMME R, MIRZA A H, et al. Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex[J]. Cell Rep, 2022, 40(3):111107. [83] SEHL J, PÖRTNER S, KLUPP B G, et al. Roles of the different isoforms of the pseudorabies virus protein kinase pUS3 in nuclear egress[J]. J Virol, 2020, 94(7):e02029-19. [84] JANSENS R J J, VAN DEN BROECK W, DE PELSMAEKER S, et al. Pseudorabies virus US3-induced tunneling nanotubes contain stabilized microtubules, interact with neighboring cells via cadherins, and allow intercellular molecular communication[J]. J Virol, 2017, 91(19):e00749-17. [85] JACOB T, VAN DEN BROEKE C, VAN TROYS M, et al. Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton[J]. J Virol, 2013, 87(7):4121-4126. [86] LAMOTE J A S, GLORIEUX S, NAUWYNCK H J, et al. The US3 protein of pseudorabies virus drives viral passage across the basement membrane in porcine respiratory mucosa explants[J]. J Virol, 2016, 90(23):10945-10950. [87] JACOB T, VAN DEN BROEKE C, VAN WAESBERGHE C, et al. Pseudorabies virus US3 triggers RhoA phosphorylation to reorganize the actin cytoskeleton[J]. J Gen Virol, 2015, 96(8):2328-2335. [88] ESTEVES A D, KOYUNCU O O, ENQUIST L W. A pseudorabies virus serine/threonine kinase, US3, promotes retrograde transport in axons via Akt/mToRC1[J]. J Virol, 2022, 96(5):e0175221. [89] GRAUWET K, VITALE M, DE PELSMAEKER S, et al. Pseudorabies virus US3 protein kinase protects infected cells from NK cell-mediated lysis via increased binding of the inhibitory NK cell receptor CD300a[J]. J Virol, 2016, 90(3):1522-1533. [90] CHANG C D, LIN P Y, LIAO M H, et al. Suppression of apoptosis by pseudorabies virus Us3 protein kinase through the activation of PI3-K/Akt and NF-κB pathways[J]. Res Vet Sci, 2013, 95(2):764-774. [91] CHULUUNBAATAR U, ROLLER R, FELDMAN M E, et al. Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication[J]. Genes Dev, 2010, 24(23):2627-2639. [92] XIE J Y, ZHANG X B, CHEN L, et al. Pseudorabies virus US3 protein inhibits IFN-β production by interacting with IRF3 to block its activation[J]. Front Microbiol, 2021, 12:761282. [93] SUN M X, HOU L L, TANG Y D, et al. Pseudorabies virus infection inhibits autophagy in permissive cells in vitro[J]. Sci Rep, 2017, 7:39964. [94] FERRARI M, GUALANDI G L, CORRADI A, et al. Experimental infection of pigs with a thymidine kinase negative strain of pseudorabies virus[J]. Comp Immunol Microbiol Infect Dis, 1998, 21(4):291-303. [95] QIN Y F, QIN S Y, HUANG X M, et al. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China[J]. Vet Microbiol, 2023, 280:109703. [96] TENSER R B, RESSEL S J, FRALISH F A, et al. The role of pseudorabies virus thymidine kinase expression in trigeminal ganglion infection[J]. J Gen Virol, 1983, 64(Pt 6):1369-1373. [97] TATAROV G. An apathogenic mutant of the Aujeszky virus induced by 5-iodo-2-deoxyuridine (IDU)[J]. Zentralbl Veterinarmed B, 1968, 15(8):847-853. [98] CONG X, LEI J L, XIA S L, et al. Pathogenicity and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant in susceptible animals[J]. Vet Microbiol, 2016, 182:170-177. [99] WANG J, CUI X, WANG X B, et al. Efficacy of the Bartha-K61 vaccine and a gE-/gI-/TK- prototype vaccine against variant porcine pseudorabies virus (vPRV) in piglets with sublethal challenge of vPRV[J]. Res Vet Sci, 2020, 128:16-23. [100] ZHAO Y, WANG L Q, ZHENG H H, et al. Construction and immunogenicity of a gE/gI/TK-deleted PRV based on porcine pseudorabies virus variant[J]. Mol Cell Probes, 2020, 53:101605. [101] ROMERO C H, MEADE P N, HOMER B L, et al. Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine[J]. J Wildl Dis, 2003, 39(3):567-575. [102] VOLZ D M, LAGER K M, MENGELING W L. Latency of a thymidine kinase-negative pseudorabies vaccine virus detected by the polymerase chain reaction[J]. Arch Virol, 1992, 122(3-4):341-348. [103] MENGELING W L. Virus reactivation in pigs latently infected with a thymidine kinase negative vaccine strain of pseudorabies virus[J]. Arch Virol, 1991, 120(1-2):57-70. [104] FERRARI M, METTENLEITER T C, ROMANELLI M G, et al. A comparative study of pseudorabies virus (PRV) strains with defects in thymidine kinase and glycoprotein genes[J]. J Comp Pathol, 2000, 123(2-3):152-163. [105] SMILEY J R, ELGADI M M, SAFFRAN H A. Herpes simplex virus vhs protein[J]. Methods Enzymol, 2001, 342:440-451. [106] SMILEY J R. Herpes simplex virus virion host shutoff protein:immune evasion mediated by a viral RNase?[J]. J Virol, 2004, 78(3):1063-1068. [107] LIU Y F, TSAI P Y, LIN F Y, et al. Roles of nucleic acid substrates and cofactors in the vhs protein activity of pseudorabies virus[J]. Vet Res, 2015, 46:141. [108] LIN H W, HSU W L, CHANG Y Y, et al. Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-α expression[J]. J Vet Med Sci, 2010, 72(9):1179-1187. [109] YE C, CHEN J, WANG T, et al. Generation and characterization of UL41 null pseudorabies virus variant in vitro and in vivo[J]. Virol J, 2018, 15(1):119. [110] KOPP M, KLUPP B G, GRANZOW H, et al. Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47:role for UL47 in virion morphogenesis in the cytoplasm[J]. J Virol, 2002, 76(17):8820-8833. [111] FUCHS W, GRANZOW H, METTENLEITER T C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48, and UL49 genes is viable in cultured cells[J]. J Virol, 2003, 77(23):12891-12900. [112] XU J J, GAO F, WU J Q, et al. Characterization of nucleocytoplasmic shuttling of pseudorabies virus protein UL46[J]. Front Vet Sci, 2020, 7:484. [113] SCHULZ K S, LIU X Q, KLUPP B G, et al. Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown[J]. J Virol, 2014, 88(11):6003-6011. [114] FUCHS W, GRANZOW H, KLUPP B G, et al. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions[J]. J Virol, 2002, 76(13):6729-6742. [115] HERR W. The herpes simplex virus VP16-induced complex:mechanisms of combinatorial transcriptional regulation[J]. Cold Spring Harb Symp Quant Biol, 1998, 63:599-608. [116] STERN S, TANAKA M, HERR W. The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16[J]. Nature, 1989, 341(6243):624-630. [117] SANTOS V C, OSTLER J B, HARRISON K S, et al. Slug, a stress-induced transcription factor, stimulates herpes simplex virus 1 replication and transactivates a cis-regulatory module within the VP16 promoter[J]. J Virol, 2023, 97(4):e0007323. [118] FUCHS W, KLUPP B G, GRANZOW H, et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49[J]. J Virol, 2002, 76(16):8208-8217. [119] DEL RIO T, WERNER H C, ENQUIST L W. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents[J]. J Virol, 2002, 76(2):774-782. |
[1] | ZHANG Ying, SONG Chunlian, ZHANG Ying, SHEN Hong, SHU Xianghua, YANG Honggui. Study on the Damage of Blood-brain Barrier by Tight Junction Protein Mediated by MMP-9 in Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2186-2194. |
[2] | CHEN Hongjian, CAO Yan, FAN Jie, GAN Rongxuan, SONG Wenbo, YU Shengwei, YANG Ting, ZHAO Yanxia, WEI Chunyan, XIE Rui, HUA Lin, PENG Zhong, WU Bin. Prevalence and Phylogenetic Analysis of Pseudorabies Virus within Pig Slaughterhouses in Hubei Province of China during 2020-2022 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2972-2981. |
[3] | YUAN Sheng, LI Anqi, Lü Wenke, YANG Lulu, ZHOU Feng, HUANG Liangzong, BAI Aiquan, WEN Feng, HUANG Shujian, GUO Jinyue. Analysis of Variation in Major Virulence-related Genes of a Strain of Pseudorabies Virus and Its Pathogenicity to Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2195-2199. |
[4] | NI Zheng, YE Weicheng, CHEN Liu, YUN Tao, HUA Jionggang, ZHU Yinchu, ZHANG Cun. Genetic Variation and Pathogenicity of a Pseudorabies Virus Variant Strain in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1766-1770. |
[5] | WU Xuemin, CHEN Rujing, CHEN Qiuyong, CHE Yongliang, YAN Shan, LIU Yutao, ZHOU Lunjiang, WANG Longbai. Establishment and Preliminary Application of Indirect ELISA for Detection of Variant Pseudorabies Virus gC Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 2029-2034. |
[6] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[7] | GUO Zhenhua, LI Xiang, WENG Maoyang, JIN Qianyue, GUO Junqing, XING Guangxu, ZHANG Gaiping. Host Annexin A2 Interacts with US3 of PRV and Its Effects on Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3927-3935. |
[8] | WANG Jiamin, LI Ziliang, MA Fangfang, KANG Bijing, TIAN Ling, LI Zhuo, MA Zhongren, QIAO Zilin. Optimization of BHK-21 Suspension Cells to Propagate Pseudorabies Virus in Bioreactor [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3936-3947. |
[9] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
[10] | ZHAI Yunyun, LI Jiajia, ZHANG Shuang, REN Ziyu, JIN Qianyue, DU Yongkun, WAN Bo. Establishment of Apoptosis Associated Dot Like Protein Knockout PK-15 Cell Line and Its Effect on Porcine Pseudorabies Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 478-487. |
[11] | ZHAO Shuo, WANG Ruomu, DANG Jiajia, XU Lishi, QIN Shuying, XUE Hui, WEI Zuzhang, CHEN Ying, OUYANG Kang, HUANG Weijian. Genetic Variation Analysis of gB, gE and TK Genes of Pseudorabies Virus in Guangxi from 2013 to 2018 [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 810-819. |
[12] | MA Zhenyuan, WANG Shujuan, YAN Ruoqian, BAN Fuguo, ZHAO Xueli, XIE Caihua, WANG Huajun, WANG Dongfang. Establishment of Competitive Chemiluminescent Enzyme Immunoassay for Detecting Antibodies against gB Protein of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 574-583. |
[13] | SUN Ying, WANG Xueying, LIANG Wan, XIE Sisi, PENG Zhong, CHEN Hongjian, HUA Lin, SONG Wenbo, TANG Xibiao, CHEN Huanchun, WU Bin. Epidemiological and Evolutionary Characteristics of Pseudorabies Virus in China in 2018 [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 584-593. |
[14] | FANG Juan, CHEN Zhilong, LI Chen, ZHANG Feng, WU Xiaosong, YANG Qing. Effect of Porcine Pseudorabies Virus Infection on Proliferation of PK-15 Cell and Expression of Heat Shock Protein 27,70 and 90 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(7): 1441-1448. |
[15] | LIU Xiaohe, BA Gen, LI Jian, HAN Yingqian, ZHANG Shuang, MING Shengli, DU Yongkun, CHU Beibei, YANG Guoyu, WANG Jiang. Genetic Knockout of TANK-binding Kinase 1 Gene in PK-15 Cells Promotes Pseudorabies Virus Replication [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(6): 1239-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||