Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (9): 3605-3612.doi: 10.11843/j.issn.0366-6964.2023.09.002
• REVIEW • Previous Articles Next Articles
HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui*
Received:
2023-03-15
Published:
2023-09-22
CLC Number:
HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612.
[1] SUN Y M,CHEN X C,QIN J,et al.Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fat-type and lean-type pigs[J].J Agric Food Chem,2018,66(45):12122-12130. [2] XU Z Y,YOU W J,CHEN W T,et al.Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle[J].J Cachexia Sarcopenia Muscle,2021,12(1):109-129. [3] ZHANG Y F,ZHANG J J,GONG H F,et al.Genetic correlation of fatty acid composition with growth,carcass,fat deposition and meat quality traits based on GWAS data in six pig populations[J].Meat Sci,2019,150:47-55. [4] QIMUGE N,HE Z Z,QIN J,et al.Overexpression of DNMT3A promotes proliferation and inhibits differentiation of porcine intramuscular preadipocytes by methylating p21 and PPARg promoters[J].Gene,2019,696:54-62. [5] ZHAO C Z,WU H G,QIMUGE N,et al.MAT2A promotes porcine adipogenesis by mediating H3K27me3 at Wnt10b locus and repressing Wnt/β-catenin signaling[J].Biochim Biophys Acta Mol Cell Biol Lipids,2018,1863(2):132-142. [6] SHI H L,WEI J B,HE C.Where,when,and how:context-dependent functions of RNA methylation writers,readers,and erasers[J].Mol Cell,2019,74(4):640-650. [7] ZACCARA S,RIES R J,JAFFREY S R.Reading,writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol,2019,20(10):608-624. [8] ROUNDTREE I A,EVANS M E,PAN T,et al.Dynamic RNA modifications in gene expression regulation[J].Cell,2017, 169(7):1187-1200. [9] JIANG X L,LIU B Y,NIE Z,et al.The role of m6A modification in the biological functions and diseases[J].Signal Transduct Target Ther,2021,6(1):74. [10] 张鑫芳,乔成栋.mRNA m6A甲基化修饰在2型糖尿病发生发展中的作用机制研究进展[J].山东医药,2022,62(26):85-88. ZHANG X F,QIAO C D.Research progress on the mechanism of mRNA m6A methylation modification in the occurrence and development of type 2 diabetes[J].Shandong Medicine,2022,62(26):85-88.(in Chinese) [11] MI S Y,SHI Y J,DARI G,et al.Function of m6A and its regulation of domesticated animals' complex traits[J].J Anim Sci,2022,100(3):skac034. [12] OERUM S,MEYNIER V,CATALA M,et al.A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res,2021,49(13):7239-7255. [13] BATISTA P J,MOLINIE B,WANG J K,et al.m6A RNA modification controls cell fate transition in mammalian embryonic stem cells[J].Cell Stem Cell,2014,15(6):707-719. [14] LIU J Z,YUE Y N,HAN D L,et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J].Nat Chem Biol,2014,10(2):93-95. [15] XU W Q,LI J H,HE C X,et al.METTL3 regulates heterochromatin in mouse embryonic stem cells[J].Nature,2021, 591(7849):317-321. [16] JIA G F,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nat Chem Biol,2011,7(12):885-887. [17] HUANG Y,YAN J L,LI Q,et al.Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J].Nucleic Acids Res,2015,43(1):373-384. [18] 潘明敏,王启阳,杨丽萍.FTO介导RNA的m6A修饰与发育的研究进展[J].基础医学与临床,2022,42(10):1591-1595. PAN M M,WANG Q Y,YANG L P.Progress in research on m6A modification of FTO mediated-RNA and development[J].Basic and Clinical Medicine,2022,42(10):1591-1595.(in Chinese) [19] CAO G C,LI H B,YIN Z N,et al.Recent advances in dynamic m6A RNA modification[J].Open Biol,2016,6(4):160003. [20] JIA G F,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nat Chem Biol,2011,7(12):885-887. [21] 宋兴亚,彭巍,刘贤,等.m6A甲基化修饰及其影响动物脂肪生成的分子机制研究进展[J].中国畜牧杂志,2022,58(10):53-58. SONG X Y,PENG W,LIU X,et al.The Research progress in methylation modification of m a and its molecular mechanism affecting the Adipogenesis of animals[J].Chinese Journal of Animal Science,2022,58(10):53-58.(in Chinese) [22] XIAO W,ADHIKARI S,DAHAL U,et al.Nuclear m6A reader YTHDC1 regulates mRNA splicing[J].Mol Cell,2016,61(4):507-519. [23] ZHAO Y C,SHI Y F,SHEN H F,et al.m6A-binding proteins:the emerging crucial performers in epigenetics[J].J Hematol Oncol,2020,13(1):35. [24] 王静,闫爽.m6A修饰调控成脂分化的研究进展[J].东南大学学报(医学版),2022,41(6):894-898. WANG J,YAN S.Research progress on the regulation of lipid differentiation by m6A modification[J].Journal of Southeast University (Medical Science Edition),2022,41(6):894-898.(in Chinese) [25] HUANG H L,WENG H Y,SUN W J,et al.Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J].Nat Cell Biol,2018,20(3):285-295. [26] DAI N,RAPLEY J,ANGEL M,et al.mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry[J].Genes Dev,2011,25(11):1159-1172. [27] HUANG H L,WENG H Y,SUN W J,et al.Publisher correction:recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J].Nat Cell Biol,2020,22(10):1288. [28] DAI N,ZHAO L P,WRIGHTING D,et al.IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins[J].Cell Metab,2015,21(4):609-621. [29] ZHANG P P,WU W Y,MA C F,et al.RNA-binding proteins in the regulation of adipogenesis and adipose function[J]. Cells,2022,11(15):2357. [30] ZHANG X,YIN H L,ZHANG X F,et al.N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA[J].Nat Commun,2022,13(1):7038. [31] 陈颖.高胰岛素和高血糖对糖尿病患者IGF2BP2基因表达的影响[J].实用糖尿病杂志,2020,16(3):80-81. CHEN Y.Effect of high insulin and high blood glucose on the IGF2BP2 gene expression of diabetes patients[J].Journal of Practical Diabetology,2020,16(3):80-81.(in Chinese) [32] PENG T W,LIU M C,HU L,et al.LncRNA Airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis[J].Biol Direct,2022,17(1):32. [33] XU Z J,QIN Y,LV B B,et al.Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart[J].Nutrients,2022,14(2):251. [34] HU X G,PENG W X,ZHOU H X,et al.IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader[J].Cell Death Differ,2020,27(6):1782-1794. [35] WANG Y,LU J H,WU Q N,et al.LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer[J].Mol Cancer,2019,18(1):174. [36] PENG F,XU J,CUI B,et al.Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells[J].Cell Res,2021,31(3):345-361. [37] LI B T,ZHU L L,LU C L,et al.circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity[J].Nat Commun,2021,12(1):295. [38] GONG C G,LI Z Z,RAMANUJAN K,et al.A long non-coding RNA,LncMyoD,regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation[J].Dev Cell,2015,34(2):181-191. [39] PING X L,SUN B F,WANG L,et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J].Cell Res,2014,24(2):177-189. [40] ZHAO X,YANG Y,SUN B F,et al.FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J].Cell Res,2014,24(12):1403-1419. [41] TANIGUCHI I,OHNO M.ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56[J].Mol Cell Biol,2008,28(2):601-608. [42] ZHENG G Q,DAHL J A,NIU Y M,et al.Sprouts of RNA epigenetics:the discovery of mammalian RNA demethylases[J].RNA Biol,2013,10(6):915-918. [43] ZHENG Q L,HOU J,ZHOU Y,et al.The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus[J].Nat Immunol,2017,18(10):1094-1103. [44] DOMINISSINI D,MOSHITCH-MOSHKOVITZ S,SCHWARTZ S,et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J].Nature,2012,485(7397):201-206. [45] LUO G Z,MACQUEEN A,ZHENG G Q,et al.Unique features of the m6A methylome in Arabidopsis thaliana[J].Nat Commun,2014,5:5630. [46] HINMAN M N,LOU H.Diverse molecular functions of Hu proteins[J].Cell Mol Life Sci,2008,65(20):3168-3181. [47] VISVANATHAN A,PATIL V,ARORA A,et al.Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance[J].Oncogene,2018,37(4):522-533. [48] SIANG D T C,LIM Y C,KYAW A M M,et al.The RNA-binding protein HuR is a negative regulator in adipogenesis[J].Nat Commun,2020,11(1):213. [49] SCHULTZ C,PREET R,DHIR T,et al.Understanding and targeting the disease-related RNA binding protein human antigen R (HuR)[J].Wiley Interdiscip Rev RNA,2020,11(3):e1581. [50] WANG L F,MCFADDEN J W,YANG G Q,et al.Effect of melatonin on visceral fat deposition,lipid metabolism and hepatic lipo-metabolic gene expression in male rats[J].J Anim Physiol Anim Nutr (Berl),2021,105(4):787-796. [51] WANG J Y,LU A Q.The biological function of m6A reader YTHDF2 and its role in human disease[J].Cancer Cell Int,2021, 21(1):109. [52] GEULA S,MOSHITCH-MOSHKOVITZ S,DOMINISSINI D,et al.m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J].Science,2015,347(6225):1002-1006. [53] WANG Y,LI Y,TOTH J I,et al.N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J].Nat Cell Biol,2014,16(2):191-198. [54] 宋丹丹,宋延彬,张富洋,等.白色脂肪组织来源细胞外囊泡在代谢性心血管疾病发病中的作用机制研究进展[J].山东医药,2021,61(32):89-93. SONG D D,SONG Y B,ZHANG F Y,et al.Research progress on the Mechanism of White Adipose tissue-derived extracellular vesicles in the pathogenesis of Metabolic cardiovascular disease[J].Shandong Med J,2021,61(32):89-93.(in Chinese) [55] LIU F,CAI Z X,YANG Y,et al.The adipocyte-enriched secretory protein tetranectin exacerbates type 2 diabetes by inhibiting insulin secretion from β cells[J].Sci Adv,2022,8(38):eabq1799. [56] 唐妮,王书瑶,齐锦雯,等.脂联素调控脂质代谢的研究进展[J].畜牧兽医学报,2018,49(12):2550-2557. TANG N,WANG S Y,QI J W,et al.Research progress on adiponectin regulating lipid metabolism[J].Acta Veterinaria et Zootechnica Sinica,2018,49(12):2550-2557.(in Chinese) [57] ALVAREZ-DOMINGUEZ J R,WINTHER S,HANSEN J B,et al.An adipose lncRAP2-Igf2bp2 complex enhances adipogenesis and energy expenditure by stabilizing target mRNAs[J].iScience,2021,25(1):103680. [58] 孟珊,杨阳,李睿霄,等.lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J].畜牧兽医学报,2022, 53(6):1712-1722. MENG S,YANG Y,LI R X,et al.Screening and functional study of lncRNA-6617 regulating porcine intramuscular preadipocytes differentiation[J].Acta Veterinaria et Zootechnica Sinica,2022,53(6):1712-1722.(in Chinese) [59] JIANG Y,PENG J Y,SONG J W,et al.Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2[J].Nat Metab,2021,3(11):1569-1584. [60] REGUÉ L,MINICHIELLO L,AVRUCH J,et al.Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation[J].J Biol Chem,2019,294(31):11944-11951. [61] TYBL E,SHI F D,KESSLER S M,et al.Overexpression of the IGF2-mRNA binding protein p62 in transgenic mice induces a steatotic phenotype[J].J Hepatol,2011,54(5):994-1001. [62] LAGGAI S,KESSLER S M,BOETTCHER S,et al.The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis[J].J Lipid Res,2014,55(6):1087-1097. [63] KESSLER S M,LAGGAI S,VAN WONTERGHEM E,et al.Transient hepatic overexpression of insulin-like growth factor 2 induces free cholesterol and lipid droplet formation[J].Front Physiol,2016,7:328. [64] NIKOLAOU K C,VATANDASLAR H,MEYER C,et al.The RNA-Binding protein A1CF regulates hepatic fructose and glycerol metabolism via alternative RNA splicing[J].Cell Rep,2019,29(2):283-300.e8. [65] XIAO P,GOODARZI P,PEZESHKI A,et al.RNA-seq reveals insights into molecular mechanisms of metabolic restoration via tryptophan supplementation in low birth weight piglet model[J].J Anim Sci,2022,100(5):skac156. [66] CAI Z X,SARUP P,OSTERSEN T,et al.Genomic diversity revealed by whole-genome sequencing in three Danish commercial pig breeds[J].J Anim Sci,2020,98(7):skaa229. [67] YOUNIS S,SCHÖNKE M,MASSART J,et al.The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals[J].Proc Natl Acad Sci USA,2018,115(9):E2048-E2057. [68] 辛东芸.陕北白绒山羊IGF2BP2和IGF2BP3基因mRNA表达、变异位点检测及遗传效应研究[D].杨凌:西北农林科技大学,2022. XIN D Y.mRNA expression,mutation locus detection and genetic effects of IGF2BP2 and IGF2BP3 genes in Shaanbei White Cashmere goat[D].Yangling:Northwest A&F University,2022.(in Chinese) [69] WANG W S,SEALE P.Control of brown and beige fat development[J].Nat Rev Mol Cell Biol,2016,17(11):691-702. [70] MARLATT K L,RAVUSSIN E.Brown adipose tissue:an update on recent findings[J].Curr Obes Rep,2017,6(4):389-396. [71] DAI N,ZHAO L P,WRIGHTING D,et al.IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins[J].Cell Metab,2015,21(4):609-621. |
[1] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[2] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[3] | LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873. |
[4] | WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182. |
[5] | HU Xiuhua, SUN Zhixin, ZHAO Mengyang, XIE Jiaqi, WANG Min, CHEN Hailiang, GE Xin, LIU Tianlong, WANG Shaolin. Pathogenicity and Resistance Analysis of Enterococcus faecium from Wild Squirrels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3012-3021. |
[6] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[7] | WANG Lin, MA Li, ZHANG Bo, DENG Jun, ZHANG Hao, OUYANG Xiaofang, YAN Dawei, DONG Xinxing. Key Genes and Regulatory Network Analysis of Lipid Metabolism Differences between Back Fat and Abdominal Fat of Large Diqing Tibetan Pigs at Different Growth Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 520-533. |
[8] | SONG Shuzhen, LIU Junbin, ZHU Caiye, XU Hongwei, LIU Lishan, KONG Yanlong. The Effect of Tail Docking on Growth Performance, Fat Deposition Distribution and Slaughter Performance in Lanzhou Fat-tailed Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 642-655. |
[9] | YANG Zhimei, LIANG Chengcheng, ZHANG Dianqi, LI Xuefeng, ZAN Linsen. Research Progress on the Regulation of circRNA by m6A Modification [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4016-4027. |
[10] | GAO Feng, HE Qifu, WU Shenghui, WANG Shaowen, XU Xuerui, KANG Jian, ZHANG Yong, QUAN Fusheng. Mammalian Gametes Cryopreserved and Applied to Technical Strategies for the Protection of Rare and Endangered Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2479-2489. |
[11] | ZHAI Liwei, ZHAO Yanhui, LI Wenjun, XING Kai, WANG Chuduan. System Analysis of Multi Tissue Transcriptome to Identify Key Genes Affecting Porcine Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1702-1711. |
[12] | WANG Yuanxia, LIU Xiuting, ZHANG Xiaojun, XIANG Yun, XU E, LÜ Wentao, YANG Hua, XIAO Yingping. The Developmental Changes of Ileal Microbiota and Fatty Acid Binding Proteins and Its Correlation with Fat Deposition in Jinhua Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 723-732. |
[13] | LI Wufeng, SUN Yutong, GUAN Jiawei, ZHAO Jingwei, DU Min. Key Regulatory Factors of Intramuscular Fat Deposition in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 364-375. |
[14] | LIU Tianyi, FENG Hui, Salsabeel Yousuf, XIE Lingli, MIAO Xiangyang. Transcriptome Analysis of Subcutaneous Adipose Tissue of Duolang Sheep and Small Tail Han Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3403-3412. |
[15] | ZHANG Hailiang, CHANG Yao, MU Baiyu, WANG Kai, YANG Minglu, WANG Lei, MA Longgang, NING Jingyang, GUO Gang, WANG Yachun. Genetic Analysis on Skinfold Thickness and Body Condition Score Traits in Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3089-3098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||