Acta Veterinaria et Zootechnica Sinica ›› 2020, Vol. 51 ›› Issue (12): 2954-2963.doi: 10.11843/j.issn.0366-6964.2020.12.005
• REVIEW • Previous Articles Next Articles
WU Fuxin1, XIONG Benhai2, TONG Jinjin1*, JIANG Linshu1*
Received:
2020-06-29
Online:
2020-12-25
Published:
2020-12-23
CLC Number:
WU Fuxin, XIONG Benhai, TONG Jinjin, JIANG Linshu. Advances on Virulence Factors of Streptococcus agalactiae of Dairy Cows Mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2954-2963.
[1] | GUSSMANN M, STEENEVELD W, KIRKEBY C, et al. Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis[J]. Prev Vet Med, 2019, 166:78-85. |
[2] | LAKEW B T, FAYERA T, ALI Y M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia[J]. Trop Anim Health Prod, 2019, 51(6):1507-1513. |
[3] | VORNHAGEN J, WALDORF K M A, RAJAGOPAL L. Perinatal group B streptococcal infections:virulence factors, immunity, and prevention strategies[J]. Trends Microbiol, 2017, 25(11):919-931. |
[4] | SIEMENS N, OEHMCKE-HECHT S, HOßMANN J, et al. Prothrombotic and proinflammatory activities of the β-hemolytic group B streptococcal pigment[J]. J Innate Immu, 2020, 12(4):291-303. |
[5] | GORI A, HARRISON O B, MLIA E, et al. Pan-GWAS of Streptococcus agalactiae highlights lineage-specific genes associated with virulence and niche adaptation[J]. mBio, 2020, 11(3):e00728-20. |
[6] | ARMISTEAD B, OLER E, WALDORF K A, et al. The double life of Group B Streptococcus:asymptomatic colonizer and potent pathogen[J]. J Mol Biol, 2019, 431(16):2914-2931. |
[7] | CARVALHO-CASTRO G A, SILVA J R, PAIVA L V, et al. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds[J]. Braz J Microbiol, 2017, 48(3):551-559. |
[8] | PICKERING A C, VITRY P, PRYSTOPIUK V, et al. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion[J]. PLoS Pathog, 2019, 15(6):e1007816. |
[9] | THOMAS L, COOK L. Two-component signal transduction systems in the human pathogen, Streptococcus agalactiae[J]. Infect Immun, 2020, 88(7):e00931-19. |
[10] | SAFADI R A, MEREGHETTI L, SALLOUM M, et al. Two-component system RgfA/C Activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B streptococcus[J]. PLoS One, 2011, 6(2):e14658. |
[11] | RAGUNATHAN P, PONNURAJ K. Expression, purification and structural analysis of a fibrinogen receptor FbsA from Streptococcus agalactiae[J]. Protein J, 2011, 30(3):159-166. |
[12] | DEVI A S, PONNURAJ K. Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae[J]. Protein Expr Purif, 2010, 74(2):148-155. |
[13] | 杜琳, 吕天星, 赵红梅, 等. 无乳链球菌CP+Sip-FbsA偶联蛋白免疫学特性的研究[J]. 中国预防兽医学报, 2016, 38(12):976-980.DU L, LV T X, ZHAO H M, et al. The immune effect of Streptococcus agalactiae recombinant CP+Sip-FbsA fusion protein on S. agalactiae induced mouse mastitis[J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(12):976-980. (in Chinese) |
[14] | BUSCETTA M, PAPASERGI S, FIRON A, et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions[J]. J Biol Chem, 2014, 289(30):21003-21015. |
[15] | 柴晨. 无乳链球菌α-enolase, PGK和GAPDH基因的克隆、表达及对罗非鱼免疫效果研究[D]. 广州:中山大学, 2017.CHAI C. Studies on cloning, expression and immune effect of α-enolase, PGK and GAPDH genes of Streptococcus lactobacillus on tilapia[D]. Guangzhou:Sun Yat-sen University, 2017. (in Chinese) |
[16] | SEO H S, MINASOV G, SEEPERSAUD R, et al. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae[J]. J Biol Chem, 2013, 288(50):35982-35996. |
[17] | MISTOU M Y, DRAMSI S, BREGA S, et al. Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence[J]. J Bacteriol, 2009, 191(13):4195-4206. |
[18] | SEIFERT K N, ADDERSON E E, WHITING A A, et al. A unique serine-rich repeat protein (Srr-2) and novel surface antigen (ε) associated with a virulent lineage of serotype Ⅲ Streptococcus agalactiae[J]. Microbiology, 2006, 152(4):1029-1040. |
[19] | PIETROCOLA G, ARCIOLA C R, RINDI S, et al. Streptococcus agalactiae Non-Pilus, cell wall-anchored proteins:involvement in colonization and pathogenesis and potential as vaccine candidates[J]. Front Immunol, 2018, 9:602. |
[20] | GENDRIN C, LEMBO A, WHIDBEY C, et al. The sensor Histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA[J]. Infect Immun, 2015, 83(3):1078-1088. |
[21] | 吴金花, 布日额, 王金良, 等. 奶牛乳腺炎无乳链球菌sip、pgk及FbsA基因主要抗原区域的融合表达及抗原性鉴定[J]. 中国兽医学报, 2017, 37(7):1292-1299.WU J H, BU R E, WANG J L, et al. Fusion expression of main antigen area of sip, pgk and FbsA subunit genes and the antigenicity identification in Streptococcus agalactiae for dairy cow mastitis[J]. Chinese Journal of Veterinary Science, 2017, 37(7):1292-1299. (in Chinese) |
[22] | LIN S. Immunization of 13 amino acid peptide targeting Srr proteins provide a broad spectrum of protections against group B streptococcal infections[M]//2016 International Meeting of the Microbiological Society of Korea, 2016:166. |
[23] | MAIONE D, MARGARIT I, RINAUDO C D, et al. Identification of a universal group B Streptococcus vaccine by multiple genome screen[J]. Science, 2005, 309(5731):148-150. |
[24] | DRAMSI S, CALIOT E, BONNE I, et al. Assembly and role of pili in group B streptococci[J]. Mol Microbiol, 2006, 60(6):1401-1413. |
[25] | 白文丽, 王金良, 锡林高娃, 等. 奶牛乳腺炎无乳链球菌菌毛岛屿PI-2a骨架蛋白BP基因的克隆及其抗原性预测[J]. 中国病原生物学杂志, 2017, 12(4):294-297.BAI W L, WANG J L, XILIN G W, et al. Cloning and prediction of the antigenicity of a gene that codes for a pilus backbone protein (PI-2a) in Streptococcus agalactiae causing bovine mastitis[J]. Journal of Parasitic Biology, 2017, 12(4):294-297. (in Chinese) |
[26] | MAELAND J A, AFSET J E, LYNG R V, et al. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae[J]. Clinical Vaccine Immunol, 2015, 22(2):153-159. |
[27] | KONG F R, GOWAN S, MARTIN D, et al. Molecular profiles of group B streptococcal surface protein antigen genes:relationship to molecular serotypes[J]. J Clinical Microbiol, 2002, 40(2):620-626. |
[28] | BARON M J, FILMAN D J, PROPHETE G A, et al. Identification of a glycosaminoglycan binding region of the alpha C protein that mediates entry of group B Streptococci into host cells[J]. J Biol Chem, 2007, 282(14):10526-10536. |
[29] | CRETI R, FABRETTI F, OREFICI G, et al. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes[J]. J Clinical Microbiol, 2004, 42(3):1326-1329. |
[30] | 张保海, 罗梓丹, 芦彪, 等. 四川部分地区奶牛源无乳链球菌的分离鉴定、毒力基因检测及耐药性分析[J]. 西北农业学报, 2020, 29(3):327-333.ZHANG B H, LUO Z D, LU B, Isolation, Virulence gene test and drug resistance analysis of Streptococcus agalactiae from dairy cows in some areas of Sichuan[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(3):327-333. (in Chinese) |
[31] | WÄSTFELT M, STÅLHAMMAR-CARLEMALM M, DELISSE A M, et al. Identification of a family of streptococcal surface proteins with extremely repetitive structure[J]. J Biol Chem, 1996, 271(31):18892-18897. |
[32] | NAGARAJAN R, SANKAR S, PONNURAJ K. Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules[J]. Microb Pathog, 2019, 127:359-367. |
[33] | SPENCER B L, DENG L W, PATRAS K A, et al. Cas9 contributes to group B streptococcal colonization and disease[J]. Front Microbiol, 2019, 10:1930. |
[34] | BOLDENOW E, GENDRIN C, NGO L, et al. Group B Streptococcus circumvents neutrophils and neutrophil extracellular traps during amniotic cavity invasion and preterm labor[J]. Sci Immunol, 2016, 1(4):eaah4576. |
[35] | ROSA-FRAILE M, DRAMSI S, SPELLERBERG B. Group B streptococcal haemolysin and pigment, a tale of twins[J]. FEMS Microbiol Rev, 2014, 38(5):932-946. |
[36] | 布日额, 吴金花, 锡林高娃, 等. 牛乳腺炎无乳链球菌β溶血素基因cylE缺失突变株的构建[J]. 中国病原生物学杂志, 2019, 14(7):773-779.BU R E, WU J H, XILIN G W, et al. Construction of a β-hemolysin gene deletion mutant strain of bovine mastitis Streptococcus agalactiae[J]. Journal of Pathogen Biology, 2019, 14(7):773-779. (in Chinese) |
[37] | 杨学云, 李建军, 王蒴, 等. 改良格拉纳达培养基分离奶牛乳房炎奶样中无乳链球菌的效果评价[J]. 新疆农业科学, 2014, 51(11):2093-2098.YANG X Y, LI J J, WANG S, et al. Evaluation of the modified granada medium for detection of Streptococcus agalactiae from mastitis samples[J]. Xinjiang Agricultural Sciences, 2014, 51(11):2093-2098. (in Chinese) |
[38] | 阚威, 樊杰, 武小虎, 等. 奶牛乳房炎无乳链球菌的分离及PCR鉴定[J]. 中国兽医学报, 2014, 34(8):1261-1266.KAN W, FAN J, WU X H, et al. Isolation and PCR-identification of Streptococcus agalactiaee in milk sampled from mastitic dairy cows[J]. Chinese Journal of Veterinary Science, 2014, 34(8):1261-1266. (in Chinese) |
[39] | BAKER J R, PRITCHARD D G. Action pattern and substrate specificity of the hyaluronan lyase from group B streptococci[J]. Biochem J, 2000, 348(2):465-471. |
[40] | KOLAR S L, KYME P, TSENG C W, et al. Group B Streptococcus evades host immunity by degrading hyaluronan[J]. Cell Host Microbe, 2015, 18(6):694-704. |
[41] | 刘龙海. 奶牛乳房炎无乳链球菌血清型分布、耐药性及其相关基因的研究[D]. 北京:中国农业科学院, 2017.LIU L H. Distribution of serotypes, antimicrobial susceptibility and related genes of S. agalactiae isolates from mastitis cases[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017. (in Chinese) |
[42] | HEATH C. Evolution of Streptococcus iniae after vaccination and molecular underpinnings of capsular antigenicity[D]. Brisbane:The University of Queensland, 2016. |
[43] | PODBIELSKI A, BLANKENSTEIN O, LVTTICKEN R. Molecular characterization of the cfb gene encoding group B streptococcal CAMP-factor[J]. Me Microbiol Immunol, 1994, 183(5):239-256. |
[44] | FOUAD M, ZAKARIA S, METWALLY L, et al. Detection of maternal colonization of group B Streptococcus by PCR targeting cfb and scpb genes[J]. J Microbiol Biotechnol Food Sci, 2016, 6(1):713-716. |
[45] | VIEIRA L L, PEREZ A V, MACHADO M M, et al. Group B Streptococcus detection in pregnant women:comparison of qPCR assay, culture, and the Xpert GBS rapid test[J]. BMC Pregnancy Childbirth, 2019, 19(1):532. |
[46] | 王向柳. 奶牛乳腺炎三联苗田间试验及牛源无乳链球菌CAMP因子的克隆表达[D]. 乌鲁木齐:新疆农业大学, 2008.WANG X L. Field trial of triple inactivated vaccine against mastitis of cows and cloning and expression CAMP gene of Streptococcus agalactiae from mastitis milk[D]. Urumqi:Xinjiang Agricultural University, 2008. (in Chinese) |
[47] | PAOLETTI L C, KASPER D L. Glycoconjugate vaccines to prevent group B streptococcal infections[J]. Expert Opin Biol Ther, 2003, 3(6):975-984. |
[48] | SEVERI E, HOOD D W, THOMAS G H. Sialic acid utilization by bacterial pathogens[J]. Microbiology, 2007, 153(9):2817-2822. |
[49] | 姚晶, 任婧, 吴正钧, 等. 唾液酸化路易斯-X合成关键酶基因的克隆表达[J]. 中国生物工程杂志, 2011, 31(12):51-56.YAO J, REN J, WU Z J, et al. Cloning and expression of the key enzyme gene in biosynthesis of sialyl lewis X[J]. China Biotechnology, 2011, 31(12):51-56. (in Chinese) |
[50] | TONG J, FU Y G, WU N H, et al. Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism[J]. Cell Microbiol, 2018, 20(4):e12818. |
[51] | LEWIS A L, CAO H Z, PATEL S K, et al. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus[J]. J Biol Chem, 2007, 282(38):27562-27571. |
[52] | TAMURA G S, KUYPERS J M, SMITH S, et al. Adherence of group B streptococci to cultured epithelial cells:roles of environmental factors and bacterial surface components[J]. Infect Immun, 1994, 62(6):2450-2458. |
[53] | NIZET V, KIM K S, STINS M, et al. Invasion of brain microvascular endothelial cells by group B streptococci[J]. Infect Immun, 1997, 65(12):5074-5081. |
[54] | FARHAT K, SAUTER K S, BRCIC M, et al. The response of HEK293 cells transfected with bovine TLR2 to established pathogen-associated molecular patterns and to bacteria causing mastitis in cattle[J]. Vet Immunol Immunopathol, 2008, 125(3-4):326-336. |
[55] | POYART C, PELLEGRINI E, GAILLOT O, et al. Contribution of Mn-cofactored superoxide dismutuse (SodA) to the virulence of Streptococcus agalactiae[J]. Infect Immun,2001,69(8):5098-5106. |
[56] | ZHANG H M, JIANG H R, FAN Y L, et al. Transcriptomics and iTRAQ-Proteomics analyses of bovine mammary tissue with Streptococcus agalactiae-induced mastitis[J]. J Agric Food Chem, 2018, 66(42):11188-11196. |
[57] | BOHNSACK J F, CHANG J K, HILL H R. Restricted ability of group B streptococcal C5a-ase to inactivate C5a prepared from different animal species[J]. Infect Immun, 1993, 61(4):1421-1426. |
[58] | SANTILLAN D A, ANDRACKI M E, HUNTER S K. Protective immunization in mice against group B streptococci using encapsulated C5a peptidase[J]. Am J Obstet Gynecol, 2008, 198(1):114.E1-114.E6. |
[59] | MARQUES M B, KASPER D L, PANGBURN M K, et al. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci[J]. Infect Immun, 1992, 60(10):3986-3993. |
[60] | MOULIN P, RONG V, SILVA A R E, et al. Defining the role of the Streptococcus agalactiae Sht-family proteins in zinc acquisition and complement evasion[J]. J Bacteriol, 2019, 201(8):e00757-18. |
[61] | MAISEY H C, DORAN K S, NIZET V. Recent advances in understanding the molecular basis of group B Streptococcus virulence[J]. Exp Rev Mol Med, 2008, 10:e27. |
[62] | PETERS J, PRICE J, LLEWELYN M. Staphylococcal and streptococcal infections[J]. Medicine, 2017, 45(12):727-734. |
[1] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[2] | LU Jinye, GAO Yabing, HAN Xinru, LIU Yuzhen, ZHAO Jiayu. The Effect of Streptococcus uberis Infection on Amino Acid Metabolism in Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1766-1776. |
[3] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[4] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[5] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[6] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[7] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
[8] | HUANG Shangzhen, MA Longgang, LOU Wenqi, NING Jingyang, ZHANG Hailiang, HU Lirong, ZHA Qiong, LI Bin, XU Qing, BASANG Luobu, WANG Yachun. Analysis of Influencing Factors on Blood Indicators of Dairy Cows at High-altitude Area [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1964-1978. |
[9] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[10] | YU Shiqiang, LI Liuxue, ZHAO Xiaobo, ZHAO Huiying, TU Yan, ZHAO Yuchao, JIANG Linshu. Differences and Correlations of Lactation Performance in Chinese Holstein Dairy Cows at Different Lactation Stages and Somatic Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1003-1014. |
[11] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
[12] | HUO Xiangyu, GAO Jiarui, JIN Jiaqi, LI Yan, GAO Yuan, LIU Menghan, JIANG Linshu, TONG Jinjin. Antibacterial Activity of Martine against Bovine Streptococcus agalactiae in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1300-1309. |
[13] | LU Bikai, YUAN Xiufang, XU Lihua, YU Bin, SU Fei, YE Shiyi, CHEN Yijie, JIANG Liming, ZHANG Hui, LI Junxing. Molecular Serotyping and Apx Gene Profile Analysis of Actinobacillus pleuropneumoniae Isolates [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1341-1346. |
[14] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[15] | ZHI Yan, MEI Chen, LIU Zhenyi, WUYUN Gerile, WANG Hongjun, HU Ge. Research Progress on the Virulence Factors of Avibacterium paragallinarum [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4934-4942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||