

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5683-5696.doi: 10.11843/j.issn.0366-6964.2025.11.027
• Preventive Veterinary Medicine • Previous Articles Next Articles
ZHANG Beiwen1,2(
), LI Hongxi1,2, WENG Chengzhen1,2, HUANG Xinxin1,2, LI Xiaobing2, QIU Longxin2, CHEN Hongbo2,*(
)
Received:2024-09-29
Online:2025-11-23
Published:2025-11-27
Contact:
CHEN Hongbo
E-mail:1092796034@qq.com;lyxy_vet@163.com
CLC Number:
ZHANG Beiwen, LI Hongxi, WENG Chengzhen, HUANG Xinxin, LI Xiaobing, QIU Longxin, CHEN Hongbo. The Mechanism of Bidens pilosa L. in the Treatment of Bacterial Diarrhea in Poultry based on Network Pharmacological Analysis and Experimental Verification[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5683-5696.
Table 1
The main active ingredient information of Bidens pilosa L."
| 分子编号 Mol ID | 活性成分 Active ingredients | 类药性/% OB | 药动学参数 DL | 分子量 MW |
| MOL000006 | 木犀草素 | 36.16 | 0.25 | 286.25 |
| MOL000098 | 槲皮素 | 46.43 | 0.28 | 302.25 |
| MOL006436 | 奥卡宁 | 98.81 | 0.2 | 288.27 |
| MOL006438 | (2E)-2-(3, 4dihydroxybenzylidene)-6, 7-dihydroxy-benzofuran-3-one | 39.48 | 0.25 | 286.25 |
| MOL006441 | 鬼针草酚葡糖苷 | 55.9 | 0.61 | 458.51 |
| MOL006442 | 金鸡菊甙 | 57.1 | 0.21 | 274.24 |
Fig. 4
PPI protein interaction diagram of Bidens pilosa L. in the treatment of diarrhea The circular pattern in the figure represents the main components of Bidens pilosa L., and they are key targets for the treatment of avian diarrhea; the lines between circles indicates target interactions"
Fig. 7
Visualization results of molecular docking between Bidens pilosa L. and key core targets of diarrhea A-D. Molecular docking visualization results of IL-6 with luteolin, quercetin, 6, 7-dihydroxy-benzofuran-3-one, and coreopsin; E-H. Molecular docking visualization results of IL-1β with luteolin, quercetin, 6, 7-dihydroxy-benzofuran-3-one, and coreopsin; I-L. Molecular docking visualization results of CASP3 with luteolin, quercetin, 6, 7-dihydroxy-benzofuran-3-one, and coreopsin; M-P. Molecular docking visualization results of MMP9 with luteolin, quercetin, 6, 7-dihydroxy-benzofuran-3-one, and coreopsin; Q-T. Molecular docking visualization results of HIF-1α with luteolin, quercetin, 6, 7-dihydroxy-benzofuran-3-one, and coreopsin"
Table 2
Core target screening results of Bidens pilosa L. in the treatment of avian diarrhea"
| 基因 Gene | 靶点名称 Target Name | 基因 Gene | 靶点名称 Target Name | |
| IL-6 | Interleukin-6 | EGF | Epidermal growth factor | |
| IL-1β | Interleukin-1 beta | EGFR | Epidermal growth factor receptor | |
| CASP3 | Caspase-3 | CCND1 | G1/S-specific cyclin-D1 | |
| MMP9 | Matrix metalloproteinase-9 | PPARG | Peroxisome proliferator-activated receptor gamma | |
| HIF-1α | Hypoxia-inducible factor 1-alpha | HMOX1 | Heme oxygenase 1 | |
| TGFB1 | Transforming growth factor beta-1 | VCAM1 | Vascular cell adhesion protein 1 | |
| PTGS2 | Prostaglandin G/H synthase 2 | CASP8 | Caspase-8 | |
| IL-10 | Interleukin-10 | AKT1 | AKT serine/threonine kinase 1 | |
| STAT1 | Signal transducer and activator of transcription 1-alpha/beta | CDK2 | Cyclin-dependent kinase 2 |
Table 3
Molecular docking binding energy of Bidens pilosa L. core target and disease core target"
| 化合物 Compound | 结合能/(kJ·mol-1) Binding Energy | ||||
| IL-6 | IL-1β | CASP3 | MMP9 | HIF-1α | |
| 木犀草素Luteolin | -7.72 | -8.47 | -6.6 | -10.06 | -7.2 |
| 槲皮素Quercetin | -7.73 | -7.82 | -6.82 | -9.46 | -7 |
| 6, 7-二羟基苯并呋喃 6, 7-Dihydroxybenzo furan | -8.1 | -8.06 | -6.36 | -9.22 | -7.02 |
| 金鸡菊甙Coreopsin | -6.72 | -7.49 | -6.64 | -8.81 | -6.57 |
| 1 | 王旭贞,芦洪江,郝松华,等.白头翁汤预防禽大肠杆菌病作用机制的研究[J].中国预防兽医学报,2024,46(7):674-682. |
| WANGX Z,LUH J,HAOS H,et al.Study on the mechanism of Baitouweng Decoction in preventing avian colibacillosis[J].Chinese Journal of Preventive Veterinary Medicine,2024,46(7):674-682. | |
| 2 | 任涌志,高凌飞,王小婷,等.车前草水提物抗腹泻作用的研究[J].黑龙江畜牧兽医,2016(18):168-170. |
| RENY Z,GAOL F,WANGX T,et al.Study on the anti-diarrhea effect of plantain water extract[J].Heilongjiang Animal Science and Veterinary Medicine,2016(18):168-170. | |
| 3 |
POHKARELP,DHAKALS,DOZOISC M.The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen[J].Microorganisms,2023,11(2):344.
doi: 10.3390/microorganisms11020344 |
| 4 |
DHAMAK,CHAKRABORTYS,VERMAA K,et al.Fungal/mycotic diseases of poultry-diagnosis, treatment and control: a review[J].Pak J Biol Sci,2013,16(23):1626-1640.
doi: 10.3923/pjbs.2013.1626.1640 |
| 5 |
WANGS,PENGQ,JIAH M,et al.Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1[J].Poult Sci,2017,96(8):2576-2586.
doi: 10.3382/ps/pex061 |
| 6 |
HABIBAUE,KHANA,MMBAGAEJ,et al.Use of antibiotics in poultry and poultry farmers-a cross-sectional survey in Pakistan[J].Front Public Health,2023,11,1154668.
doi: 10.3389/fpubh.2023.1154668 |
| 7 |
ABD EL-HACKME,EL-SAADONYMT,SALEMHM,et al.Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production[J].Poult Sci,2022,101(4):101696.
doi: 10.1016/j.psj.2022.101696 |
| 8 |
RODRÍGUEZ-MESAX M,CONTRERAS BOLAÑOSL A,MEJÍAA,et al.Immunomodulatory properties of natural extracts and compounds derived from Bidens pilosa L.: Literature review[J].Pharmaceutics,2023,15(5):1491.
doi: 10.3390/pharmaceutics15051491 |
| 9 |
RABET,VAN STADENJ.Antibacterial activity of South African plants used for medicinal purposes[J].J Ethnopharmacol,1997,56(1):81-87.
doi: 10.1016/S0378-8741(96)01515-2 |
| 10 | LIANGY C,LINC J,YANGC Y,et al.Toxicity study of Bidens pilosa in animals[J].Tradit Complement Med,2019,10(2):150-157. |
| 11 |
SHENA Z,LIX,HUW,CHENF H.Total flavonoids of Bidens bipinnata L. ameliorate experimental adjuvant-induced arthritis through induction of synovial apoptosis[J].BMC Complement Altern Med,2015,15(1):437.
doi: 10.1186/s12906-015-0962-3 |
| 12 |
CHUNGC Y,YANGW C,LIANGC L,et al.Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidal agent via regulation of macrophages[J].Ethnopharmacol,2016,184,72-80.
doi: 10.1016/j.jep.2016.02.036 |
| 13 | BASTOSC C C,ÁVILAP H M,FILHOE X D S,et al.Use of Bidens pilosa L. (Asteraceae) and Curcuma longa L. (Zingiberaceae) to treat intestinal mucositis in mice: Toxico-pharmacological evaluations[J].Toxicol Rep,2015,3,279-287. |
| 14 |
HORIUCHIM,WACHIH,SEYAMAY.Effects of Bidens pilosa L. var. radiata Scherff on experimental gastric lesion[J].Nat Med,2010,64(4):430-435.
doi: 10.1007/s11418-010-0426-5 |
| 15 |
CHANGC L,CHUNGC Y,KUOC H,et al.Beneficial effect of Bidens pilosa on body weight gain, food conversion ratio, gut bacteria and Coccidiosis in chickens[J].PLoS One,2016,11(1):e0146141.
doi: 10.1371/journal.pone.0146141 |
| 16 | SHERMAN B T, HAO M, QIU J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Research, 23 March 2022, 50(W1): W216-W221. |
| 17 |
ZHANGL,YANGZ,LIX,et al.Anti-atherosclerotic effects of naringenin and quercetin from Folium Artemisiae argyi by attenuating interleukin-1 beta (IL-1β)/matrix metalloproteinase 9 (MMP9): Network pharmacology-based analysis and validation[J].BMC Complement Med Ther,2023,23(1):378.
doi: 10.1186/s12906-023-04223-1 |
| 18 |
张旭梅,魏玉荣,许丞惠,等.基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J].畜牧兽医学报,2023,54(8):3557-3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
|
ZHANGX M,WEIY R,XUC H,et al.Based on network pharmacology and experimental verification, the mechanism of berberine in the treatment of Salmonella infection in chickens was analyzed[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3557-3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
|
| 19 | HANJ,HOUJ,LIUY,et al.Using network pharmacology to explore the mechanism of panax notoginseng in the treatment of myocardial fibrosis[J].Diabetes Res,2022,2022,8895950. |
| 20 |
ZHANGR,LIZ,GUX,et al.Probiotic Bacillus subtilis LF11 protects intestinal epithelium against Salmonella infection[J].Front Cell Infect Microbiol,2022,12,837886.
doi: 10.3389/fcimb.2022.837886 |
| 21 |
QUAGLIOA E V,CRUZV M,ALMEIDA-JUNIORL D,et al.Bidens pilosa (Black Jack) standardized extract ameliorates acute TNBS-induced intestinal inflammation in rats[J].Planta Med,2020,86(5):319-330.
doi: 10.1055/a-1089-8342 |
| 22 |
MEMONF U,YANGY,LVF,et al.Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection[J].Appl Microbiol,2021,131(1):425-434.
doi: 10.1111/jam.14928 |
| 23 |
巩志国,赵佳敏,顾柏臣,等.基于网络药理学分析党参减轻大肠杆菌感染小鼠急性肺损伤的作用机制[J].畜牧兽医学报,2023,54(8):3571-3581.
doi: 10.11843/j.issn.0366-6964.2023.08.040 |
|
GONGZ G,ZHAOJ M,GUB C,et al.Based on network pharmacology, the mechanism of Codonopsis pilosula in alleviating acute lung injury in mice infected with E.coli[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3571-3581.
doi: 10.11843/j.issn.0366-6964.2023.08.040 |
|
| 24 |
HUANGL,KIMM Y,CHOJ Y.Immunopharmacological activities of Luteolin in chronic diseases[J].Int J Mol Sci,2023,24(3):2136.
doi: 10.3390/ijms24032136 |
| 25 |
QIW,QIW,XIONGD,et al.Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy[J].Molecules,2022,27(19):6545.
doi: 10.3390/molecules27196545 |
| 26 |
HUSSAINM S,GUPTAG,GOYALA,et al.From nature to therapy: Luteolin's potential as an immune system modulator in inflammatory disorders[J].Biochem Mol Toxicol,2023,37(11):e23482.
doi: 10.1002/jbt.23482 |
| 27 | 章捷,田由,吴臻斐,等.木犀草素介导PERK/eIF2α/CHOP信号通路改善新生大鼠坏死性小肠结肠炎的作用研究[J].浙江医学,2023,45(21):2248-2254. |
| ZHANGJ,TIANY,WUZ F,et al.The effect of luteolin-mediated PERK/eIF2α/CHOP signaling pathway on improving necrotizing enterocolitis in neonatal rats[J].Zhejiang Medicine,2023,45(21):2248-2254. | |
| 28 |
文安林,杨芸芸,罗永荣,等.黄连防治鸭病毒性肠炎机制的网络药理学分析及动物试验验证[J].畜牧兽医学报,2024,55(7):3225-3233.
doi: 10.11843/j.issn.0366-6964.2024.07.040 |
|
WENA L,YANGY Y,LUOY Y,et al.Network pharmacological analysis and animal test verification of the mechanism of Rhizoma Coptidis in preventing and treating duck viral enteritis[J].Acta Veterinaria et Zootechnica Sinica,2024,55(7):3225-3233.
doi: 10.11843/j.issn.0366-6964.2024.07.040 |
|
| 29 |
XUB,QINW,XUY,et al.Dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets retracted in: Oxid Med Cell Longev[J].Oxid Med Cell Longev,2021,2021,6221012.
doi: 10.1155/2021/6221012 |
| 30 |
GONGT,WUD,FENGY,et al.Inhibitory effects of quercetin on porcine epidemic diarrhea virus in vitro and in vivo[J].Virology,2024,589,109923.
doi: 10.1016/j.virol.2023.109923 |
| 31 |
OGUNROO B,OFENIFOROE B,FAKAYODEA E.Quercetin-3-O-β-D-glucopyranoside-rich fraction demonstrated efficacy against infectious, secretory, and osmotic models of diarrhoeal rats[J].Genet Eng Biotechnol,2023,21(1):36.
doi: 10.1186/s43141-023-00489-7 |
| 32 |
ZHANGB,ZHONGQ,LIUN,et al.Dietary glutamine supplementation alleviated inflammation responses and improved intestinal mucosa barrier of LPS-challenged broilers[J].Animals,2022,12(13):1729.
doi: 10.3390/ani12131729 |
| 33 |
DUPAUL-CHICOINEJ,YERETSSIANG,DOIRONK,et al.Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases[J].Immunity,2010,32(3):367-378.
doi: 10.1016/j.immuni.2010.02.012 |
| 34 |
ZHANGH,LIUL,JIANGC,et al.MMP9 protects against LPS-induced inflammation in osteoblasts[J].Innate Immun,2020,26(4):259-269.
doi: 10.1177/1753425919887236 |
| 35 |
NIGHOTP,AL-SADIR,RAWATM,et al.Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis[J].Physiol Gastrointest Liver Physiol,2015,309(12):G988-G997.
doi: 10.1152/ajpgi.00256.2015 |
| 36 |
SINGHALR,SHAHY M.Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine[J].Biol Chem,2020,295(30):10493-10505.
doi: 10.1074/jbc.REV120.011188 |
| 37 |
KERBERE L,PADBERGC,KOLLN,et al.The importance of hypoxia-inducible factors (HIF-1 and HIF-2) for the pathophysiology of inflammatory bowel disease[J].Int J Mol Sci,2020,21(22):8551.
doi: 10.3390/ijms21228551 |
| 38 |
GUC,WUL,LIX.IL-17 family: cytokines, receptors and signaling[J].Cytokine,2013,64(2):477-485.
doi: 10.1016/j.cyto.2013.07.022 |
| 39 |
OWAGAE,HSIEHR H,MUGENDIB,et al.Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases[J].Int J Mol Sci,2015,16(9):20841-20858.
doi: 10.3390/ijms160920841 |
| 40 |
WENY,WANGH,TIAND,et al.TH17 cell: a double-edged sword in the development of inflammatory bowel disease[J].Therap Adv Gastroenterol,2024,17,17562848241230896.
doi: 10.1177/17562848241230896 |
| 41 |
CǍTANǍC S,BERINDAN NEAGOEI,COZMAV,et al.Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease[J].World J Gastroenterol,2015,21(19):5823-5830.
doi: 10.3748/wjg.v21.i19.5823 |
| 42 |
LIY,YUC,ZHUW M,et al.Triptolide ameliorates IL-10-deficient mice colitis by mechanisms involving suppression of IL-6/STAT3 signaling pathway and down-regulation of IL-17[J].Mol Immunol,2010,47(15):2467-2474.
doi: 10.1016/j.molimm.2010.06.007 |
| 43 |
VAN LOOG,BERTRANDM J M.Death by TNF: a road to inflammation[J].Nat Rev Immunol,2023,23(5):289-303.
doi: 10.1038/s41577-022-00792-3 |
| 44 |
WUY,YANGY,WANGL,et al.Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism[J].Front Endocrinol (Lausanne),2023,14,1109296.
doi: 10.3389/fendo.2023.1109296 |
| 45 |
JIS,ZHANGQ.Momordica charantia polysaccharides alleviate diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and barrier via NF-κB pathway[J].Allergol Immunopathol (Madr),2022,50(3):62-70.
doi: 10.15586/aei.v50i3.584 |
| 46 |
KULECKAM,ZEBER-LUBECKAN,BAŁABASA,et al.Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection[J].Front Cell Infect Microbiol,2023,13,1190910.
doi: 10.3389/fcimb.2023.1190910 |
| 47 | 郭世伟,金晓,徐元庆,等.植物源饲料添加剂缓解家禽大肠杆菌病的研究进展[J].动物营养学报,2023,35(9):5441-5452. |
| GUOS W,JINX,XUY Q,et al.Research progress of plant-derived feed additives to alleviate avian colibacillosis[J].Chinese Journal of Animal Nutrition,2023,35(9):5441-5452. |
| [1] | WANG Yanbo, ZHANG Xiaomeng, JING Xiujuan, FENG Xiaoyi, ZHANG Yuanqing, ZHAO Xueming. Advances in Nanoparticle Applications for Animal Germplasm Cryopreservation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4156-4164. |
| [2] | WANG Youdong, CAO Zhiping, LI Yumao, LUAN Peng, LI Hui, BAI Xue. The Principle of SNP Chip Technology and Its Application in Chicken Genetic Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4165-4175. |
| [3] | PAN Yandi, ZHANG Tingting, FANG Rendong, PENG Lianci. Research Progress on the Mechanism of Host Defense Peptides against Microorganisms [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4294-4302. |
| [4] | ZHAO Yujie, WAN Baoxia, WANG Jiaqi, SUN Siyu, LENG Xinyang, CUI Yizhe. Mechanism of Action of Dandelion Addition to Ration to Enhance the Immune Performance of Geese Based on Network Pharmacological Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4698-4707. |
| [5] | WANG Chaohui, LIU Xiaoying, YANG Xiaojun, LIU Yanli. The Mechanism of Betaine in Alleviating Abnormal Lipid Metabolism and Oxidative Stress Induced by Oleic Acid in Chicken Embryo Liver Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4741-4749. |
| [6] | LI Xiaodie, PAN Shiqin, WANG Lu, CHENG Zhentao, OU Deyuan, SONG Xuqin, YANG Jian. Research Progress on the Anti-inflammatory Mechanism of Traditional Chinese Veterinary Medicine based on Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3701-3721. |
| [7] | FU Wei, ZHANG Ran, DING Hong, ZANG Sumin, LI Xianglong, CHU Suqiao, LIU Huage, ZHOU Rongyan. Screening and Identification of Molecular Markers for Differentiating Taihang Chickens and Bashang Long-tailed Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3761-3772. |
| [8] | XUE Xiaoxiao, MENG Lingzhai, WANG Suyan, YU Mengmeng, CHEN Yuntong, QI Xiaole, LI Liuan, YU Xiaoxue, GAO Yulong. Study on Immune Effect of Subtype B Attenuated Avian Metapneumovirus Disease Vaccine on Commercial Layer Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3958-3966. |
| [9] | ZHAO Jingyu, LI Dan, ZHANG Bing, ZHANG Qianyi, ZHANG Jinhua, SONG Yafen, YANG Chenghuai. Genome Sequencing and Pathogenicity Analysis of Infectious Bronchitis Virus M41 Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3967-3975. |
| [10] | ZONG Yunhe, YANG Yuze, SUN Yanyan, CHEN Jilan, LI Yunlei. Research Advances in the Investigation of the Protective Role of Lysine Acetylation in Chicken Semen Cryopreservation and Its Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3071-3079. |
| [11] | DONG Jiaojiao, DING Hong, ZHANG Yinliang, ZHANG Ran, LIU Huage, ZANG Sumin, ZHANG Zhenhong, ZHOU Rongyan, LI Lanhui. Differences and Functional Analysis of Cecal Flora in Taihang Chickens Infected with Salmonella Pullorum [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2741-2751. |
| [12] | CHEN Zehan, ZHANG Ruoyi, LIN Huiying, ZENG Chunli, LIN Fu, LI Jian. Anti-inflammatory Effects of Chelidonium majus on IPEC-J2 Cells based on HPLC Fingerprint and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2466-2480. |
| [13] | QIU Qian, SANG Rui, WANG Wei, LIU Xinman, YU Minghong, LIU Xiaotong, YU Tian, ZHANG Xuemei. Study on the Activity of Huning Powder against Chicken Lung-derived E. coli and the in vitro Effects of Anti-inflammation and Anti-oxidation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1969-1980. |
| [14] | LI Yuanfang, ZHANG Hongyuan, LI Hongtai, LI Zhi, WEI Qianran, WANG Yadong, LI Guoxi, WANG Dandan, LIU Qiaoming. The Effect of Riboflavin Supplementation in Embryonic Eggs on the Development of Skeletal Muscle of Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1159-1169. |
| [15] | YAN Yan, LIU Yanchen, WANG Zhongfa, LI Minjuan, HE Yunan, GUAN Weijun, JIANG Yunliang. Isolation, Culture and Differentiation Potential of Mesenchymal Stem Cells of Yolk Sacs from Rhode Island Red Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1252-1263. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||