Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2741-2751.doi: 10.11843/j.issn.0366-6964.2025.06.019
• Animal Genetics and Breeding • Previous Articles Next Articles
DONG Jiaojiao1(), DING Hong2, ZHANG Yinliang1, ZHANG Ran1, LIU Huage2, ZANG Sumin1, ZHANG Zhenhong1, ZHOU Rongyan1,*(
), LI Lanhui1
Received:
2024-07-10
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHOU Rongyan
E-mail:1643370307@qq.com;rongyanzhou@126.com
CLC Number:
DONG Jiaojiao, DING Hong, ZHANG Yinliang, ZHANG Ran, LIU Huage, ZANG Sumin, ZHANG Zhenhong, ZHOU Rongyan, LI Lanhui. Differences and Functional Analysis of Cecal Flora in Taihang Chickens Infected with Salmonella Pullorum[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2741-2751.
Table 1
Bacteria showing significant differences between group B and group C at different taxonomic levels"
分类水平 Classification level | 细菌 Bacteria | 均值(C组) Mean(C group) | 均值(B组) Mean(B group) | P值 P-value | Q值 Q value |
科Family | 毛螺菌科(Lachnospiraceae) | 0.001 4 | 0 | 0.007 | 0.191 |
属Genus | 霍尔德曼氏菌属(Holdemania) | 0.067 | 0. | 0.022 | 0.554 |
ZOR0006 | 0.001 6 | 0.007 | 0.044 | 0.554 | |
其他(Other) | 0.001 4 | 0 | 0.003 | 0.188 | |
种 Species | 梭菌 (Clostridiales_bacterium) | 0.003 7 | 0.012 | 0.011 | 0.323 |
g-霍尔德曼氏菌属s-未培养的细菌 (g_Holdemania s_uncultured_bacterium) | 0.066 9 | 0 | 0.019 | 0.324 | |
g_ZOR0006 s_uncultured_bacterium | 0.001 6 | 0.007 | 0.039 | 0.492 | |
f_spiraceae; Other Other | 0.001 4 | 0 | 0.004 | 0.323 | |
g-果胶单核菌属其他 (g_Monoglobus Other) | 0.000 2 | 0.001 | 0.040 | 0.492 | |
g-颤螺旋菌科;其他 (g_Oscillospiraceae; Other) | 0.037 6 | 0.008 | 0.015 | 0.323 | |
s-未培养细菌 (s-uncultured_bacterium) | 0.001 480 212 | 0.025 189 816 | 0.008 | 0.323 |
1 |
ILYAS B , TSAI C N , COOMBES B K . Evolution of Salmonella-host cell interactions through a dynamic bacterial genome[J]. Front Cell Infect Microbiol, 2017, 7, 428.
doi: 10.3389/fcimb.2017.00428 |
2 |
GAL-MOR O , FINLAY B B . Pathogenicity islands: a molecular toolbox for bacterial virulence[J]. Cell Microbiol, 2006, 8 (11): 1707- 1719.
doi: 10.1111/j.1462-5822.2006.00794.x |
3 | SANA T G , FLAUGNATTI N , LUGO K A , et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut[J]. Proc Natl Acad Sci U S A, 2016, 113 (34): E5044- E5051. |
4 | SCHAT K A , NAGARAJA K V , SAIF Y M . Pullorum disease: evolution of the eradication strategy[J]. Avian Dis, 2021, 65 (2): 227- 236. |
5 | 孟繁新. 鸡白痢沙门氏菌病的流行病学、临床症状、诊断与防控措施[J]. 现代畜牧科技, 2020 (11): 90- 91. |
MENG F X . Epidemiology, clinical symptoms, diagnosis and control measures of chicken Salmonella Pullorum[J]. Modern Animal Husbandry Science & Technology, 2020 (11): 90- 91. | |
6 |
WIGLEY P , BERCHIERI A J , PAGE K L , et al. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens[J]. Infect Immun, 2001, 69 (12): 7873- 7879.
doi: 10.1128/IAI.69.12.7873-7879.2001 |
7 |
THOMPSON J L , HINTON M . Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop[J]. Br Poult Sci, 1997, 38 (1): 59- 65.
doi: 10.1080/00071669708417941 |
8 |
RIBEIRO S A , DE PAIVA J B , ZOTESSO F , et al. Molecular differentiation between Salmonella enterica subsp enterica serovar Pullorum and Salmonella enterica subsp enterica serovar Gallinarum[J]. Braz J Microbiol, 2009, 40 (1): 184- 188.
doi: 10.1590/S1517-83822009000100032 |
9 |
BERCHIERI A J , MURPHY C K , MARSTON K , et al. Observations on the persistence and vertical transmission of Salmonella enterica serovars Pullorum and Gallinarum in chickens: effect of bacterial and host genetic background[J]. Avian Pathol, 2001, 30 (3): 221- 231.
doi: 10.1080/03079450120054631 |
10 |
CALENGE F , KAISER P , VIGNAL A , et al. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review[J]. Genet Sel Evol, 2010, 42 (1): 11.
doi: 10.1186/1297-9686-42-11 |
11 | 周雪雁, 李琼毅, 丁功涛, 等. 鸡肠道微生物菌群的建立发育、分布和生理学意义[J]. 微生物学报, 2020, 60 (4): 641- 652. |
ZHOU X Y , LI Q Y , DING G T , et al. Establishment, development, distribution and physiological significance of chicken intestinal microflora[J]. Acta Microbiologica Sinica, 2020, 60 (4): 641- 652. | |
12 | 陈东虹, 袁岩聪, 马雪惠, 等. 家禽肠道微生物的组成、分布及功能研究进展[J]. 中国家禽, 2022, 44 (11): 121- 127. |
CHEN D H , YUAN Y C , MA X H , et al. Research progress on the composition, distribution and function of intestinal microorganisms in poultry[J]. China Poultry, 2022, 44 (11): 121- 127. | |
13 |
WICKRAMASURIYA S S , PARK I , LEE K , et al. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry[J]. Vaccines (Basel), 2022, 10 (2): 172.
doi: 10.3390/vaccines10020172 |
14 |
STANLEY D , KEYBURN A L , DENMAN S E , et al. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis[J]. Vet Microbiol, 2012, 159 (1-2): 155- 162.
doi: 10.1016/j.vetmic.2012.03.032 |
15 |
HU G , LIU L , MIAO X , et al. The response of cecal microbiota to inflammatory state induced by Salmonella enterica serovar Enteritidis[J]. Front Microbiol, 2022, 13, 963678.
doi: 10.3389/fmicb.2022.963678 |
16 | 胡耿, 杨光会, 任艳茹, 等. 家禽肠道微生物与健康养殖[J]. 养禽与禽病防治, 2023 (7): 2- 6. |
HU G , YANG G H , REN Y R , et al. Intestinal microbiota and healthy breeding of poultry[J]. Poultry Husbandry and Disease Control, 2023 (7): 2- 6. | |
17 |
李想, 王巧, 李庆贺, 等. 肠道微生物对家禽抗病力的影响研究进展[J]. 中国畜禽种业, 2024, 20 (1): 29- 35.
doi: 10.3969/j.issn.1673-4556.2024.01.006 |
LI X , WANG Q , LI Q H , et al. Research progress on the effect of intestinal microorganisms on disease resistance of poultry[J]. The Chinese Livestock and Poultry Breeding, 2024, 20 (1): 29- 35.
doi: 10.3969/j.issn.1673-4556.2024.01.006 |
|
18 |
QIN J , LI R , RAES J , et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464 (7285): 59- 65.
doi: 10.1038/nature08821 |
19 |
NIU Q , WANG X , QI X , et al. Identification of the gut microbiota affecting Salmonella pullorum and their relationship with reproductive performance in hens[J]. Front Microbiol, 2023, 14, 1216542.
doi: 10.3389/fmicb.2023.1216542 |
20 | 于曦. 鲎素抗菌肽对感染鸡白痢沙门菌雏鸡肠道菌群变化的研究[D]. 长春: 吉林大学, 2019. |
YU X. The effect of tachyplesin antimicrobial peptides on intestinal microflora of chivkens infected with Salmonella pullorum[D]. Changchun: Jilin University, 2019. (in Chinese) | |
21 |
BOLYEN E , RIDEOUT J R , DILLON M R , et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37 (8): 852- 857.
doi: 10.1038/s41587-019-0209-9 |
22 | AMIR A , MCDONALD D , NAVAS-MOLINA J A , et al. Deblur rapidly resolves single-nucleotide community sequence patterns[J]. mSystems, 2017, 2 (2): e00191- 16. |
23 |
BOKULICH N A , KAEHLER B D , RIDEOUT J R , et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6 (1): 90.
doi: 10.1186/s40168-018-0470-z |
24 |
SEGATA N , IZARD J , WALDRON L , et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12 (6): R60.
doi: 10.1186/gb-2011-12-6-r60 |
25 |
LANGILLE M G , ZANEVELD J , CAPORASO J G , et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013, 31 (9): 814- 821.
doi: 10.1038/nbt.2676 |
26 | DING J , ZHOU H , LUO L , et al. Heritable gut microbiome associated with Salmonella enterica serovar Pullorum infection in chickens[J]. mSystems, 2021, 6 (1): e01192- 20. |
27 | MON K K , SAELAO P , HALSTEAD M M , et al. Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks[J]. Front Vet Sci, 2015, 2, 61. |
28 |
LIU L , LIN L , ZHENG L , et al. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken[J]. Gut Pathog, 2018, 10, 34.
doi: 10.1186/s13099-018-0261-x |
29 |
JUMPERTZ R , LE D S , TURNBAUGH P J , et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. Am J Clin Nutr, 2011, 94 (1): 58- 65.
doi: 10.3945/ajcn.110.010132 |
30 |
WONG J M , DE SOUZA R , KENDALL C W , et al. Colonic health: fermentation and short chain fatty acids[J]. J Clin Gastroenterol, 2006, 40 (3): 235- 243.
doi: 10.1097/00004836-200603000-00015 |
31 | LABBE A , GANOPOLSKY J G , MARTONI C J , et al. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes[J]. PLoS One, 2014, 9 (12): e115175. |
32 | LI S , ZHUGE A , WANG K , et al. Ketogenic diet aggravates colitis, impairs intestinal barrier and alters gut microbiota and metabolism in DSS-induced mice[J]. Food Funct, 2021, 12 (20): 10210- 10225. |
33 | KAAKOUSH N O . Insights into the role of erysipelotrichaceae in the human host[J]. Front Cell Infect Microbiol, 2015, 5, 84. |
34 | CAI S , YANG Y , KONG Y , et al. Gut bacteria erysipelatoclostridium and its related metabolite ptilosteroid a could predict radiation-induced intestinal injury[J]. Front Public Health, 2022, 10, 862598. |
35 | CHEN Z , WU S , ZENG Y , et al. Fuzhenghuayujiangzhutongluofang prescription modulates gut microbiota and gut-derived metabolites in UUO rats[J]. Front Cell Infect Microbiol, 2022, 12, 837205. |
36 | WALTER J , O'TOOLE P W . Microbe profile: the Lactobacillaceae[J]. Microbiology (Reading), 2023, 169 (12): 001414. |
37 | DO C M , NORONHA F M , ARRUDA M O , et al. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp[J]. Front Microbiol, 2016, 7, 1722. |
38 | VACCA M , CELANO G , CALABRESE F M , et al. The controversial role of human gut lachnospiraceae[J]. Microorganisms, 2020, 8 (4): 573. |
39 | MUNIZ P D , CHEN J , HILLMANN B , et al. An increased abundance of clostridiaceae characterizes arthritis in inflammatory bowel disease and rheumatoid arthritis: a cross-sectional study[J]. Inflamm Bowel Dis, 2019, 25 (5): 902- 913. |
40 | JANG J H , YEOM M J , AHN S , et al. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson's disease[J]. Brain Behav Immun, 2020, 89, 641- 655. |
41 | LI Y , CHEN X . Sialic acid metabolism and sialyltransferases: natural functions and applications[J]. Appl Microbiol Biotechnol, 2012, 94 (4): 887- 905. |
42 | MCDONALD N D , LUBIN J B , CHOWDHURY N , et al. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo[J]. mBio, 2016, 7 (2): e02215- e02237-15. |
43 | LUBIN J B , LEWIS W G , GILBERT N M , et al. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo[J]. Infect Immun, 2015, 83 (8): 3126- 3136. |
44 | PAWLAK A , RYBKA J , DUDEK B , et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide o-antigen containing sialic acid[J]. Int J Mol Sci, 2017, 18 (10): 2022. |
[1] | MEN Kaikai, LIU Jialong, GUO Yage, HE Lei, JIA Yanyan, YU Zuhua. Effects of Chicken TGF-β1 on the Adhesion of Escherichia coli and Salmonella pullorum to DF1 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4000-4007. |
[2] | ZHANG Beibei, LI Mengxiao, MA Tenghe, LI Xuenan, WEI Jiarong, KANG Guolei, WANG Hongna, LIU Chao, WANG Bin, SUN Yanyan. Cloning, Bioinformatics and Expression Analysis of FST Gene in Taihang Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3064-3075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||