Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 4029-4040.doi: 10.11843/j.issn.0366-6964.2024.09.027
• Preventive Veterinary Medicine • Previous Articles Next Articles
Kangning ZHAO1,2(), Zhonglong YANG1,2, Yi CHEN1,2, Chuncheng ZHU1,2, Yunfei GUO1,2, Yuncong YIN1,2, Tao QIN1,2, Sujuan CHEN1,2,*(), Daxin PENG1,2,*()
Received:
2023-09-28
Online:
2024-09-23
Published:
2024-09-27
Contact:
Sujuan CHEN, Daxin PENG
E-mail:zhaokangningzkn@163.com;chensj@yzu.edu.cn;pengdx@yzu.edu.cn
CLC Number:
Kangning ZHAO, Zhonglong YANG, Yi CHEN, Chuncheng ZHU, Yunfei GUO, Yuncong YIN, Tao QIN, Sujuan CHEN, Daxin PENG. Genetic Variation Analysis of Sixteen Novel H3N3 Subtype Avian Influenza Viruses[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4029-4040.
Table 1
Background information for research related to avian influenza viruses"
毒株名称 | 缩写 | 宿主 | 日期 | 来源 |
Virus names | Abbreviation | Host | Date | Source |
A/China/ZMD-22-2/2022(H3N8)* | ZMD-22-2 | Human | 2022/04 | Human |
A/China/CSKFQ-22-5/2022(H3N8)* | CSKFQ-22-5 | Human | 2022/05 | Human |
A/China/0428/2021(H10N3)* | 0428 | Human | 2021/04 | Human |
A/duck/Fujian/SD063/2017(H3N3)* | SD063 | Duck | 2017/03 | Unknown |
A/chicken/Jiangsu/W23910/2017(H3N2)* | W23910 | Chicken | 2017/02 | LBM |
A/chicken/YangZhou/YZ12145/2022(H3N3) | YZ12145 | Chicken | 2022/12 | LBM |
A/chicken/YangZhou/YZ01082/2023(H3N3) | YZ01082 | Chicken | 2023/01 | Specimen |
A/chicken/NanTong/NT02101/2023(H3N3) | NT02101 | Chicken | 2023/02 | Specimen |
A/chicken/YangZhou/YZ02283/2023(H3N3) | YZ02283 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02284/2023(H3N3) | YZ02284 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02285/2023(H3N3) | YZ02285 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02288/2023(H3N3) | YZ02288 | Chicken | 2023/02 | LBM |
A/chicken/NanTong/NT030601/2023(H3N3) | NT030601 | Chicken | 2023/03 | Specimen |
A/duck/YangZhou/YZD031512/2023(H3N3) | YZ031512 | Duck | 2023/03 | LBM |
A/chicken/YangZhou/YZ031524/2023(H3N3) | YZ031524 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ031542/2023(H3N3) | YZ031542 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ031554/2023(H3N3) | YZ031554 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ032702/2023(H3N3) | YZ032702 | Chicken | 2023/03 | Specimen |
A/chicken/YangZhou/YZ042881/2023(H3N3) | YZ042881 | Chicken | 2023/04 | LBM |
A/chicken/YangZhou/YZ042893/2023(H3N3) | YZ042893 | Chicken | 2023/04 | LBM |
A/wildfowl/HuaDong/SY01/2023(H3N3) | SY01 | Wildfowl | 2023/01 | Wildfowl |
Table 2
Cross hemagglutination inhibition test of H3N3 subtype AIV isolates"
血清 Sera | 病毒Virus | |||
A/chicken/Jiangsu/W23910/2017 (H3N2) | A/chicken/NanTong/NT02101/2023 (H3N3) | A/chicken/YangZhou/YZ01082/2023 (H3N3) | A/chicken/YangZhou/YZ032702/2023 (H3N3) | |
A/chicken/Jiangsu/W23910/2017(H3N2)a | 9.33±0.58b | 8.67±0.58 | 7.00±0.00 | 7.33±0.58 |
A/chicken/NanTong/NT02101/2023(H3N3)a | 6.33±0.58 | 9.00±0.00 | 7.75±0.50 | 8.00±0.00 |
1 |
周勇, 李知新, 鲁宏伟, 等. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53 (9): 3093- 3106.
doi: 10.11843/j.issn.0366-6964.2022.09.024 |
ZHOU Y , LI Z X , LU H W , et al. Surveillance and outbreak analysis of H5 and H7N9 subtypes of highly pathogenic avian influenza in China[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3093- 3106.
doi: 10.11843/j.issn.0366-6964.2022.09.024 |
|
2 | SPACKMAN E . A brief introduction to avian influenza virus[J]. Methods Mol Biol, 2020, 2123, 83- 92. |
3 | SPACKMAN E , KILLIAN M L . Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs[J]. Methods Mol Biol, 2020, 2123, 149- 164. |
4 |
OLSEN B , MUNSTER V J , WALLENSTEN A , et al. Global patterns of influenza a virus in wild birds[J]. Science, 2006, 312 (5772): 384- 388.
doi: 10.1126/science.1122438 |
5 | YANG J Y , ZHANG Y , YANG L , et al. Evolution of avian influenza virus (H3) with spillover into humans, China[J]. Emerg Infect Dis, 2023, 29 (6): 1191- 1201. |
6 |
YANG J Y , YANG L , ZHU W F , et al. Epidemiological and genetic characteristics of the H3 subtype avian influenza viruses in China[J]. China CDC Wkly, 2021, 3 (44): 929- 936.
doi: 10.46234/ccdcw2021.225 |
7 | 钱忠明. 华东地区家鸭中不同HA亚型禽流感病毒的分布以及从家养水禽和鸡中分离的H5亚型禽流感病毒HA基因的分子流行病学[D]. 扬州: 扬州大学, 2004. |
QIAN Z M. Distribution of avian influenza viruses of different HA subtypes among domestic ducks in eastern China and molecular epidemiology of HA genes of H5 subtype avian influenza viruses isolated from domestic waterfowls and chickens[D]. Yangzhou: Yangzhou University, 2004. (in Chinese) | |
8 |
QIU B F , LIU W J , PENG D X , et al. A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses[J]. J Virol Methods, 2009, 155 (2): 193- 198.
doi: 10.1016/j.jviromet.2008.10.001 |
9 |
蒋梅. 禽流感病毒血凝素基因研究进展[J]. 中国人兽共患病学报, 2013, 29 (8): 817- 820.
doi: 10.3969/cjz.j.issn.1002-2694.2013.08.017 |
JIANG M . Research advances on hemagglutinin (HA) gene of avian influenza virus (AIV)[J]. Chinese Journal of Zoonoses, 2013, 29 (8): 817- 820.
doi: 10.3969/cjz.j.issn.1002-2694.2013.08.017 |
|
10 |
BOSCH F X , GARTEN W , KLENK H D , et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses[J]. Virology, 1981, 113 (2): 725- 735.
doi: 10.1016/0042-6822(81)90201-4 |
11 |
WILEY D C , WILSON I A , SKEHEL J J . Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation[J]. Nature, 1981, 289 (5796): 373- 378.
doi: 10.1038/289373a0 |
12 |
COLMAN P M , HOYNE P A , LAWRENCE M C . Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase[J]. J Virol, 1993, 67 (6): 2972- 2980.
doi: 10.1128/jvi.67.6.2972-2980.1993 |
13 |
COLMAN P M , VARGHESE J N , LAVER W G . Structure of the catalytic and antigenic sites in influenza virus neuraminidase[J]. Nature, 1983, 303 (5912): 41- 44.
doi: 10.1038/303041a0 |
14 |
CHEN H L , BRIGHT R A , SUBBARAO K , et al. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice[J]. Virus Res, 2007, 128 (1-2): 159- 163.
doi: 10.1016/j.virusres.2007.04.017 |
15 |
PATERSON D , TE VELTHUIS A J W , VREEDE F T , et al. Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein-independent manner[J]. J Virol, 2014, 88 (1): 339- 344.
doi: 10.1128/JVI.02022-13 |
16 |
HSIA H P , YANG Y H , SZETO W C , et al. Amino acid substitutions affecting aspartic acid 605 and valine 606 decrease the interaction strength between the influenza virus RNA polymerase PB2 '627' domain and the viral nucleoprotein[J]. PLoS One, 2018, 13 (1): e0191226.
doi: 10.1371/journal.pone.0191226 |
17 | 程善菊, 李金平, 侯广宇, 等. 14株H3亚型禽流感病毒全基因组序列分析[J]. 中国兽医杂志, 2018, 54 (10): 30- 35. |
CHENG S J , LI J P , HOU G Y , et al. Whole genome sequence analysis of 14 strains of H3 subtype avian influenza virus[J]. Chinese Journal of Veterinary Medicine, 2018, 54 (10): 30- 35. | |
18 | 刘开拓, 高如一, 王晓泉, 等. 新型重组H10N3亚型禽流感病毒对公共卫生安全的威胁[J]. 病毒学报, 2022, 38 (4): 958- 964. |
LIU K T , GAO R Y , WANG X Q , et al. Threat posed by a novel reassortant avian influenza virus (H10N3) to public health[J]. Chinese Journal of Virology, 2022, 38 (4): 958- 964. | |
19 | 裴瑞青, 张如胜, 叶文, 等. 湖南省首例人感染H3N8亚型禽流感病例的病毒分离及分子进化分析[J]. 中国人兽共患病学报, 2023, 39 (4): 364- 375. |
PEI R Q , ZHANG R H , YE W , et al. Viral isolation and molecular evolution analysis of the first human case of H3N8 subtype avian influenza infection in Hunan Province[J]. Chinese Journal of Zoonoses, 2023, 39 (4): 364- 375. | |
20 | CHENG D L , DONG Y L , WEN S F , et al. A child with acute respiratory distress syndrome caused by avian influenza H3N8 virus[J]. J Infect, 2022, 85 (2): 174- 211. |
21 | 张醒海. 候鸟禽流感病毒遗传变异规律分析及在哺乳动物间传播机制研究[D]. 吉林: 吉林大学, 2021. |
ZHANG X H. Genetic analysis and transmission mechanisms among mammals of migratory bird-origin avian influenza virus[D]. Jilin: Jilin University, 2021. (in Chinese) | |
22 |
何世成, 彭志, 王卫国, 等. 2011—2015年环洞庭湖区H3亚型禽流感病毒的分离鉴定与遗传演化[J]. 畜牧兽医学报, 2019, 50 (2): 382- 389.
doi: 10.11843/j.issn.0366-6964.2019.02.016 |
HE S C , PENG Z , WANG W G , et al. Isolation, identification and genetic evolution of H3 subtype avian influenza virus in dongting lake region from 2011 to 2015[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 382- 389.
doi: 10.11843/j.issn.0366-6964.2019.02.016 |
|
23 | GAO R Y , ZHENG H F , LIU K T , et al. Genesis, evolution and host species distribution of influenza A (H10N3) virus in China[J]. J Infect, 2021, 83 (5): 607- 635. |
24 |
GU M , CHEN H Z , LI Q H , et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China[J]. Vet Microbiol, 2014, 174 (3-4): 309- 315.
doi: 10.1016/j.vetmic.2014.09.029 |
25 |
申松玮, 王泽源, 范威峰, 等. 2017—2018年华东地区H9亚型禽流感病毒分离毒株的抗原差异分析[J]. 畜牧兽医学报, 2019, 50 (6): 1230- 1238.
doi: 10.11843/j.issn.0366-6964.2019.06.013 |
SHEN S W , WANG Z Y , FAN W F , et al. Antigen difference analysis of H9 subtype avian influenza viruses isolated in east China during 2017-2018[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (6): 1230- 1238.
doi: 10.11843/j.issn.0366-6964.2019.06.013 |
|
26 |
ZHAO G , GU X B , LU X L , et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China[J]. PLoS One, 2012, 7 (9): e46183.
doi: 10.1371/journal.pone.0046183 |
27 |
ZHANG Q Y , SHI J Z , DENG G H , et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet[J]. Science, 2013, 341 (6144): 410- 414.
doi: 10.1126/science.1240532 |
28 | 许冠龙, 张谞霄, 孙洪磊, 等. H10N7亚型禽流感病毒鼠适应毒的致病机制研究[C]//第四届全国禽病分子生物技术青年工作者会议. 天津: 中国畜牧兽医学会禽病学分会, 2015. |
XU G L, ZHANG X X, SUN H L, et al. Substitutions in PB2 and NA contributes to the pathogenicity and neurovirulence of H10N7 influenza virus[C]//Proceedings of the 4th National Conference of Young Scientists in Avian Disease Molecular Biotechnology. Tianjin, 2015. (in Chinese) | |
29 |
LI J W , ISHAQ M , PRUDENCE M , et al. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2[J]. Virus Res, 2009, 144 (1-2): 123- 129.
doi: 10.1016/j.virusres.2009.04.008 |
30 | 崔鹏飞. 2009—2013年中国H3N8亚型禽流感病毒生物学特性研究[D]. 兰州: 甘肃农业大学, 2016. |
CUI P F. Biological characterization of H3N8 avian influenza viruses isolated from 2009 to 2013 in China[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese) | |
31 | CONENELLO G M , ZAMARIN D , PERRONE L A , et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence[J]. PLoS Pathog, 2007, 3 (10): 1414- 1421. |
32 |
HU M , CHU H , ZHANG K , et al. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus[J]. Sci Rep, 2016, 6 (1): 37800.
doi: 10.1038/srep37800 |
33 | LIANG L B , JIANG L , LI J P , et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals[J]. mBio, 2019, 10 (3): e01162- 19. |
34 |
SONG W J , WANG P , MOK B W Y , et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication[J]. Nat Commun, 2014, 5 (1): 5509.
doi: 10.1038/ncomms6509 |
35 |
LUK G S M , LEUNG C Y H , SIA S F , et al. Transmission of H7N9 influenza viruses with a polymorphism at PB2 residue 627 in chickens and ferrets[J]. J Virol, 2015, 89 (19): 9939- 9951.
doi: 10.1128/JVI.01444-15 |
36 |
LI O T W , CHAN M C W , LEUNG C S W , et al. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation[J]. PLoS One, 2009, 4 (5): e5658.
doi: 10.1371/journal.pone.0005658 |
37 |
PENA L , VINCENT A L , LOVING C L , et al. Restored PB1-F2 in the 2009 pandemic H1N1 influenza virus has minimal effects in swine[J]. J Virol, 2012, 86 (10): 5523- 5532.
doi: 10.1128/JVI.00134-12 |
38 |
DURAIRAJ K , TRINH T T T , YUN S Y , et al. Molecular characterization and pathogenesis of h6n6 low pathogenic avian influenza viruses isolated from mallard ducks (Anas platyrhynchos) in South Korea[J]. Viruses, 2022, 14 (5): 1001.
doi: 10.3390/v14051001 |
39 |
CHEN H Y , YUAN H , GAO R B , et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study[J]. Lancet, 2014, 383 (9918): 714- 721.
doi: 10.1016/S0140-6736(14)60111-2 |
40 |
HULSE-POST D J , FRANKS J , BOYD K , et al. Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks[J]. J Virol, 2007, 81 (16): 8515- 8524.
doi: 10.1128/JVI.00435-07 |
41 |
YAMAYOSHI S , YAMADA S , FUKUYAMA S , et al. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses[J]. J Virol, 2014, 88 (6): 3127- 3134.
doi: 10.1128/JVI.03155-13 |
42 |
DE WIT E , MUNSTER V J , VAN RIEL D , et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host[J]. J Virol, 2010, 84 (3): 1597- 1606.
doi: 10.1128/JVI.01783-09 |
43 |
DUCATEZ M F , ILYUSHINA N A , FABRIZIO T P , et al. Both influenza hemagglutinin and polymerase acidic genes are important for delayed pandemic 2009 H1N1 virus clearance in the ferret model[J]. Virology, 2012, 432 (2): 389- 393.
doi: 10.1016/j.virol.2012.06.018 |
44 |
SONG J S , FENG H P , XU J , et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks[J]. J Virol, 2011, 85 (5): 2180- 2188.
doi: 10.1128/JVI.01975-10 |
45 |
ZHENG M , LUO J , CHEN Z . Development of universal influenza vaccines based on influenza virus M and NP genes[J]. Infection, 2014, 42 (2): 251- 262.
doi: 10.1007/s15010-013-0546-4 |
46 |
WASILENKO J L , LEE C W , SARMENTO L , et al. NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens[J]. J Virol, 2008, 82 (9): 4544- 4553.
doi: 10.1128/JVI.02642-07 |
47 |
TADA T , SUZUKI K , SAKURAI Y , et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens[J]. J Virol, 2011, 85 (4): 1834- 1846.
doi: 10.1128/JVI.01648-10 |
48 |
ILYUSHINA N A , KHALENKOV A M , SEILER J P , et al. Adaptation of pandemic H1N1 influenza viruses in mice[J]. J Virol, 2010, 84 (17): 8607- 8616.
doi: 10.1128/JVI.00159-10 |
49 |
SHI J Z , DENG G H , KONG H H , et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans[J]. Cell Res, 2017, 27 (12): 1409- 1421.
doi: 10.1038/cr.2017.129 |
50 | KAPLAN B S , KIMBLE J B , CHANG J , et al. Aerosol transmission from infected swine to ferrets of an H3N2 virus collected from an agricultural fair and associated with human variant infections[J]. J Virol, 2020, 94 (16): e01009- 20. |
51 |
FAN S F , DENG G H , SONG J S , et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice[J]. Virology, 2009, 384 (1): 28- 32.
doi: 10.1016/j.virol.2008.11.044 |
52 |
SEO S H , HOFFMANN E , WEBSTER R G . RETRACTED: the NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses[J]. Virus Res, 2004, 103 (1-2): 107- 113.
doi: 10.1016/j.virusres.2004.02.022 |
53 |
CHEN S J , MIAO X Y , HUANGFU D D , et al. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity[J]. Transbound Emerg Dis, 2021, 68 (4): 2401- 2413.
doi: 10.1111/tbed.13904 |
54 |
MIN J Y , LI S D , SEN G C , et al. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis[J]. Virology, 2007, 363 (1): 236- 243.
doi: 10.1016/j.virol.2007.01.038 |
55 |
DRAKOPOULOS A , TZITZOGLAKI C , MCGUIRE K , et al. Unraveling the binding, proton blockage, and inhibition of influenza M2 WT and S31N by rimantadine variants[J]. ACS Med Chem Lett, 2018, 9 (3): 198- 203.
doi: 10.1021/acsmedchemlett.7b00458 |
56 |
RAMSAY L C , BUCHAN S A , STIRLING R G , et al. Retraction note: the impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis[J]. BMC Medicine, 2018, 16 (1): 133.
doi: 10.1186/s12916-018-1137-0 |
57 |
SHIH A C C , HSIAO T C , HO M S , et al. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution[J]. Proc Natl Acad Sci U S A, 2007, 104 (15): 6283- 6288.
doi: 10.1073/pnas.0701396104 |
[1] | DENG Gunan, ZHANG Jiaqi, BAO Zhipeng, CHEN Taoyun, YU Qisheng, DING Lu, ZHU Chenxi, WANG Yi, REN Yupeng, HE Chao, ZHANG Bin. Detection of Feline Herpesvirus Type 1 and Pathogenicity of an Isolated Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2253-2258. |
[2] | MAO Qiuyan, ZHOU Shuning, LIU Shuo, PENG Cheng, YIN Xin, ZHANG Yaxin, ZHOU Wanting, LI Jinping, HOU Guangyu, JIANG Wenming, SONG Houhui, LIU Hualei. Establishment and Application of Fluorescent Quantitative RT-PCR for Detection of H3 Subtype Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1137-1146. |
[3] | YANG Zhiyi, WANG Xinkai, SHI Yuting, FU Siyuan, ZHANG Yuxin, CAO Chenfu, JIA Weixin. Establishment of Nucleic Acid Detection Methods for Avian Influenza H5 Subtype Based on CRISPR-Cas13a and RT-RAA [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3803-3811. |
[4] | WANG Jinglin, LIU Yangguang, XU Qilong, CHEN Shuo, DENG Zaishuang, CHENG Shiyu, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. Genome Structures Variant Analysis and Feature SNPs Screening of Wanyue Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2783-2793. |
[5] | FAN Wensheng, LIU Sijia, QIU Shenben, HUANG Aifang, WANG Yan, LIU Minfang, MEI Minmin, CHEN Xinliang, WEI Ping, MO Meilan. Genetic Evolution and Spatio-temporal Transmission Analysis of the Chinese Infectious Bronchitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2543-2554. |
[6] | ZHAI Gang, GU Wenyuan, LIU Tao, LIU Ying, ZHANG Shuai, FAN Jinghui, ZUO Yuzhu. Establishment of TaqMan Detection Method of Porcine Epidemic Diarrhea Virus and Analysis of Genetic Variation based on S Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 847-854. |
[7] | ZHOU Yong, LI Zhixin, LU Hongwei, SUN Yan, LI Tian, DU Fanshu, PU Juan. Surveillance and Outbreak Analysis of H5 and H7N9 Subtypes of Highly Pathogenic Avian Influenza in China [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3093-3106. |
[8] | ZHANG Zhengkai, LI Yefang, YE Shaohui, JIANG Lin, MA Yuehui. Research Progress of Environmental Adaptability in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2035-2046. |
[9] | CHEN Zixuan, ZHANG Nan, HU Qun, QUAN Keji, QIN Tao, CHEN Sujuan, PENG Daxin, LIU Xiufan. Mutation Analysis of Antigen Sites 145 and 153 on Hemagglutinin of H9N2 Avian Influenza Virus in China [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1165-1172. |
[10] | CUI Mingxian, WANG Xingbo, HUANG Yanming, BIAN Xiyi, FENG Mengke, YAN Yan, DONG Weiren, ZHOU Jiyong. Genetic Characterization and Evolution of Three Strains of H3N2 Avian Influenza Viruses [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4116-4122. |
[11] | LI Jingyun, LIAN Pengjing, BAI Yu, XI Liuqing, ZHANG Zihui, NIU Xiaofei, YANG Junqi, QIAO Jian. The Impact of H9N2 Subtype Avian Influenza Viral Infection on the Gut Flora in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1359-1368. |
[12] | FANG Chen, GUO Fei, HU Ruiju, YANG Minghua, ZHANG Bin, LIU Shaona, HUANG Ying, ZHAO Yanguang, ZHAO Sumei. Analysis of Correlation between Diarrhea and Genetic Variation of FUT1 Gene in Weaned Piglets of Hybrid Combination [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 610-619. |
[13] | LI Li, TANG Guoyi, FENG Helong, XUE Yuhan, REN Zhu, WANG Guokang, JIA Miaomiao, SHANG Yu, LUO Qingping, SHAO Huabin, WEN Guoyuan. Evaluation of Immune Efficacy of H9 Subtype Avian Influenza Virus Inactivated Vaccine Based on Mosaic HA Sequence [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3569-3577. |
[14] | GUO Zhenhua, RUAN Haiyu, GENG Rui, CHEN Xinxin, QIAO Songlin, DENG Ruiguang, ZHANG Gaiping. Genetic Characteristics of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus between NADC30-like and JXA1-like [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1677-1687. |
[15] | WANG Suchun, ZHONG Huanxiang, JIANG Nan, JIANG Lijian, PAN Zihao, SUN Fuliang, LIU Hualei, HUANG Baoxu, WANG Kaicheng. Establishment of the Quadruple Real-time Fluorescence RT-PCR for Detection of H5, H7 and H9 Subtypes Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1429-1437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||