[1] |
BISWAS P K, CHRISTENSEN J P, AHMED S S U, et al. Avian influenza outbreaks in chickens, Bangladesh[J]. Emerg Infect Dis, 2008, 14(12):1909-1912.
|
[2] |
DUCATEZ M F, WEBSTER R G, WEBBY R J. Animal influenza epidemiology[J]. Vaccine, 2008, 26(S4):D67-D69.
|
[3] |
NAGARAJAN S, RAJUKUMAR K, TOSH C, et al. Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry[J]. Vet Microbiol, 2009, 133(1-2):154-163.
|
[4] |
PEACOCK T, REDDY K, JAMES J, et al. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape[J]. Sci Rep, 2016, 6(1):18745.
|
[5] |
ZHANG S X, YU J L, HE L, et al. Molecular characteristics of the H9N2 avian influenza viruses in live poultry markets in Anhui Province, China, 2013 to 2018[J]. Health Sci Rep, 2021, 4(1):e230.
|
[6] |
LU J H, LIU X F, SHAO W X, et al. Phylogenetic analysis of eight genes of H9N2 subtype influenza virus:a Mainland China strain possessing early isolates' genes that have been circulating[J]. Virus Genes, 2005, 31(2):163-169.
|
[7] |
XU K M, SMITH G J D, BAHL J, et al. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005[J]. J Virol, 2007, 81(19):10389-10401.
|
[8] |
FUSARO A, MONNE I, SALVIATO A, et al. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications[J]. J Virol, 2011, 85(16):8413-8421.
|
[9] |
LIU H Q, LIU X F, CHENG J, et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001[J]. Avian Dis, 2003, 47(1):116-127.
|
[10] |
SUN Y P, LIU J H. H9N2 influenza virus in China:a cause of concern[J]. Protein Cell, 2015, 6(1):18-25.
|
[11] |
丛彦龙, 钟颖, 孙艺学, 等. H9N2亚型禽流感病毒流行病学及其疫苗的研究进展[J]. 中国兽医学报, 2017, 37(2):386-392.CONG Y L. ZHONG Y. SUN Y X, et al. Advance on epidemiology and vaccine of H9N2 avian influenza virus[J]. Chinese Journal of Veterinary Science, 2017, 37(2):386-392. (in Chinese)
|
[12] |
ZHANG P H, TANG Y H, LIU X W, et al. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002)[J]. J Gen Virol, 2008, 89(12):3102-3112.
|
[13] |
PARK K J, KWON H I, SONG M S, et al. Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes[J]. J Gen Virol, 2011, 92(1):36-50.
|
[14] |
SUN Y P, PU J, FAN L H, et al. Evaluation of the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens[J]. Vet Microbiol, 2012, 156(1-2):193-199.
|
[15] |
SUN Y P, BI Y H, PU J, et al. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses[J]. PLoS One, 2010, 5(11):e15537.
|
[16] |
KINGSTAD-BAKKE B A, CHANDRASEKAR S S, PHANSE Y, et al. Effective mosaic-based nanovaccines against avian influenza in poultry[J]. Vaccine, 2019, 37(35):5051-5058.
|
[17] |
BAROUCH D H, O'BRIEN K L, SIMMONS N L, et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys[J]. Nat Med, 2010, 16(3):319-323.
|
[18] |
FISCHER W, PERKINS S, THEILER J, et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants[J]. Nat Med, 2007, 13(1):100-106.
|
[19] |
GOGOLÁK P, SIMON Á, HORVÁTH A, et al. Mapping of a protective helper T cell epitope of human influenza A virus hemagglutinin[J]. Biochem Biophys Res Commun, 2000, 270(1):190-198.
|
[20] |
LI Y, LIU M D, SUN Q Q, et al. Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province, China[J]. Poult Sci, 2019, 98(9):3488-3495.
|
[21] |
SUAREZ D L, SENNE D A, BANKS J, et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile[J]. Emerg Infect Dis, 2004, 10(4):693-699.
|
[22] |
MONNE I, FUSARO A, NELSON M I, et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor[J]. J Virol, 2014, 88(8):4375-4388.
|
[23] |
READ A F, BAIGENT S J, POWERS C, et al. Imperfect vaccination can enhance the transmission of highly virulent pathogens[J]. PLoS Biol, 2015, 13(7):e1002198.
|
[24] |
LEE D H, FUSARO A, SONG C S, et al. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea[J]. Virology, 2016, 488:225-231.
|
[25] |
孙华鹏, 崔新鑫, 潘亮奇, 等. 中国H9N2亚型禽流感病毒的流行现状[J]. 畜牧兽医学报, 2021, 52(5):1218-1229.SUN H P, CUI X X, PAN L Q, et al. The Epidemiology of H9N2 Avian Influenza Virus in China[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5):1218-1229.(in Chinese)
|
[26] |
ZOU C C, MURAKOSHI H, KUSE N, et al. Effective suppression of HIV-1 replication by cytotoxic T lymphocytes specific for Pol epitopes in conserved mosaic vaccine immunogens[J]. J Virol, 2019, 93(7):e02142-18.
|
[27] |
LIU M K P, HAWKINS N, RITCHIE A J, et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape[J]. J Clin Invest, 2012, 123(1):380-393.
|
[28] |
KAMLANGDEE A, KINGSTAD-BAKKE B, ANDERSON T K, et al. Broad protection against avian influenza virus by using a modified Vaccinia ankara virus expressing a mosaic Hemagglutinin gene[J]. J Virol, 2014, 88(22):13300-13309.
|
[29] |
KAMLANGDEE A, KINGSTAD-BAKKE B, OSORIO J E, et al. Mosaic H5 Hemagglutinin provides broad Humoral and cellular immune responses against influenza viruses[J]. J Virol, 2016, 90(15):6771-6783.
|
[30] |
FLOREK N W, KAMLANGDEE A, MUTSCHLER J P, et al. A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques[J]. PLoS One, 2017, 12(8):e0181738.
|