Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1488-1498.doi: 10.11843/j.issn.0366-6964.2024.04.014
• REVIEW • Previous Articles Next Articles
LIU Weiye, HUANG Xuewei*
Received:
2023-07-27
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498.
[1] COSGROVE A S. An apparently new disease of chickens:avian nephrosis[J]. Avian Dis, 1962, 6(3):385-389. [2] VAN DEN BERG T P. Acute infectious bursal disease in poultry:a review[J]. Avian Pathol, 2000, 29(3):175-194. [3] FAN L J, WU T T, HUSSAIN A, et al. Novel variant strains of infectious bursal disease virus isolated in China[J]. Vet Microbiol, 2019, 230:212-220. [4] IWASAKI A, PILLAI P S. Innate immunity to influenza virus infection[J]. Nat Rev Immunol, 2014, 14(5):315-328. [5] ALKIE T N, RAUTENSCHLEIN S. Infectious bursal disease virus in poultry:current status and future prospects[J]. Vet Med (Auckl), 2016, 7:9-18. [6] QIN Y, ZHENG S J. Infectious bursal disease virus-host interactions:multifunctional viral proteins that perform multiple and differing jobs[J]. Int J Mol Sci, 2017, 18(1):161. [7] WEI L, HOU L, ZHU S S, et al. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85α subunit of PI3K[J]. Virology, 2011, 417(1):211-220. [8] LIN W C, ZHANG Z Q, XU Z C, et al. The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2(VDAC2) inhibits apoptosis and enhances viral replication[J]. J Biol Chem, 2015, 290(13):8500-8510. [9] QIN Y, XU Z C, WANG Y Q, et al. VP2 of infectious bursal disease virus induces apoptosis via triggering oral cancer overexpressed 1(ORAOV1) protein degradation[J]. Front Microbiol, 2017, 8:1351. [10] YE C J, YU Z L, XIONG Y W, et al. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction[J]. FASEB J, 2019, 33(1):286-300. [11] WANG B, DUAN X Y, FU M J, et al. The association of ribosomal protein L18(RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication[J]. Virus Res, 2018, 245:69-79. [12] LI Z H, WANG Y Q, LI X, et al. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4[J]. J Virol, 2013, 87(2):1221-1231. [13] ESTELLER M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12):861-874. [14] YAN H W, BU P C. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4):625-639. [15] REN H W, WANG Q Y. Non-coding RNA and diabetic kidney disease[J]. DNA Cell Biol, 2021, 40(4):553-567. [16] LI J X, ZHENG S J. Role of microRNAs in host defense against infectious bursal disease virus (IBDV) infection:a hidden front line[J]. Viruses, 2020, 12(5):543. [17] TROBAUGH D W, KLIMSTRA W B. MicroRNA regulation of RNA virus replication and pathogenesis[J]. Trends Mol Med, 2017, 23(1):80-93. [18] SCHOBER A, BLAY R M, SABOOR MALEKI S, et al. MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions[J]. Circulation, 2021, 144(13):1059-1073. [19] ALI SYEDA Z, LANGDEN S S S, MUNKHZUL C, et al. Regulatory mechanism of microRNA expression in cancer[J]. Int J Mol Sci, 2020, 21(5):1723. [20] LIN J, XIA J, ZHANG K Y, et al. Genome-wide profiling of chicken dendritic cell response to infectious bursal disease[J]. BMC Genomics, 2016, 17(1):878. [21] HUANG X W, LI Y, WANG X N, et al. Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus[J]. Arch Virol, 2022, 167(9):1855-1864. [22] DUAN X Y, ZHAO M L, WANG Y Q, et al. Epigenetic upregulation of chicken microRNA-16-5p expression in DF-1 cells following infection with infectious bursal disease virus (IBDV) enhances IBDV-induced apoptosis and viral replication[J]. J Virol, 2020, 94(2):e01724-19. [23] WANG B, FU M J, LIU Y N, et al. gga-miR-155 enhances type I interferon expression and suppresses infectious burse disease virus replication via targeting SOCS1 and TANK[J]. Front Cell Infect Microbiol, 2018, 8:55. [24] FU M J, WANG B, CHEN X, et al. MicroRNA gga-miR-130b suppresses infectious bursal disease virus replication via targeting of the viral genome and cellular suppressors of cytokine signaling 5[J]. J Virol, 2018, 92(1):e01646-17. [25] LARSEN L, RÖPKE C. Suppressors of cytokine signalling:SOCS[J]. Apmis, 2002, 110(12):833-844. [26] LIN R J, CHANG B L, YU H P, et al. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism[J]. J Virol, 2006, 80(12):5908-5918. [27] MORRIS R, KERSHAW N J, BABON J J. The molecular details of cytokine signaling via the JAK/STAT pathway[J]. Protein Sci, 2018, 27(12):1984-2009. [28] ZACHAR T, POPOWICH S, GOODHOPE B, et al. A 5-year study of the incidence and economic impact of variant infectious bursal disease viruses on broiler production in Saskatchewan, Canada[J]. Can J Vet Res, 2016, 80(4):255-261. [29] LI L W, GAO F, JIANG Y F, et al. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo[J]. Sci Rep, 2015, 5:17010. [30] FU M J, WANG B, CHEN X, et al. gga-miR-454 suppresses infectious bursal disease virus (IBDV) replication via directly targeting IBDV genomic segment B and cellular suppressors of cytokine signaling 6(SOCS6)[J]. Virus Res, 2018, 252:29-40. [31] LEI Z Q, TANG X W, SI A F, et al. microRNA-454 promotes liver tumor-initiating cell expansion by regulating SOCS6[J]. Exp Cell Res, 2020, 390(1):111955. [32] GULEI D, RADULY L, BROSEGHINI E, et al. The extensive role of miR-155 in malignant and non-malignant diseases[J]. Mol Aspects Med, 2019, 70:33-56. [33] YAO Y X, VASOYA D, KGOSANA L, et al. Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation[J]. J Gen Virol, 2017, 98(4):810-820. [34] YANG D K, WANG X W, GAO H L, et al. Downregulation of miR-155-5p facilitates enterovirus 71 replication through suppression of type I IFN response by targeting FOXO3/IRF7 pathway[J]. Cell Cycle, 2020, 19(2):179-192. [35] BAYRAKTAR R, VAN ROOSBROECK K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics[J]. Cancer Metastasis Rev, 2018, 37(1):33-44. [36] LI J X, HAIYILATI A, ZHOU L Y, et al. GATA3 Inhibits viral infection by promoting microRNA-155 expression[J]. J Virol, 2022, 96(7):e0188821. [37] STIK G, DAMBRINE G, PFEFFER S, et al. The oncogenic microRNA OncomiR-21 overexpressed during Marek's disease lymphomagenesis is transactivated by the viral oncoprotein Meq[J]. J Virol, 2013, 87(1):80-93. [38] ASANGANI I A, RASHEED S A K, NIKOLOVA D A, et al. MicroRNA-21(miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene, 2008, 27(15):2128-2136. [39] MENG F Y, HENSON R, WEHBE-JANEK H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology, 2007, 133(2):647-658. [40] WANG Y S, OUYANG W, PAN Q X, et al. Overexpression of microRNA gga-miR-21 in chicken fibroblasts suppresses replication of infectious bursal disease virus through inhibiting VP1 translation[J]. Antiviral Res, 2013, 100(1):196-201. [41] DUAN X Y, ZHAO M L, LI X Q, et al. gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6(SOCS3 and 6)[J]. Virus Res, 2020, 281:197910. [42] ZHAO X M, SONG X J, BAI X Y, et al. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1(RUNX1)[J]. PeerJ, 2016, 4:e1635. [43] WANG C L, XUE M, WU P, et al. Coronavirus transmissible gastroenteritis virus antagonizes the antiviral effect of the microRNA miR-27b via the IRE1 pathway[J]. Sci China Life Sci, 2022, 65(7):1413-1429. [44] OUYANG W, QIAN J, PAN Q X, et al. gga-miR-142-5p attenuates IRF7 signaling and promotes replication of IBDV by directly targeting the chMDA5's 3' untranslated region[J]. Vet Microbiol, 2018, 221:74-80. [45] OUYANG W, WANG Y S, DU X N, et al. gga-miR-9* inhibits IFN production in antiviral innate immunity by targeting interferon regulatory factor 2 to promote IBDV replication[J]. Vet Microbiol, 2015, 178(1/2):41-49. [46] OUYANG W, WANG Y S, MENG K, et al. gga-miR-2127 downregulates the translation of chicken p53 and attenuates chp53-mediated innate immune response against IBDV infection[J]. Vet Microbiol, 2017, 198:34-42. [47] ZHANG Y X, YUAN X Y, YANG J X, et al. Molecular mechanism of host miRNA-2127 targeting p53 promoting H9N2 subtype of avian influenza virus replication in vitro[J]. Shandong Agricultural Sciences, 2019, 51(12):91-95. (in Chinese) 张玉霞, 袁小远, 杨金兴, 等. 宿主miRNA-2127靶向p53促进禽流感病毒H9N2亚型体外复制的分子机制[J]. 山东农业科学, 2019, 51(12):91-95. [48] OUYANG W, QIAN J, WANG J Y, et al. gga-miR-6655-5p is a negative regulator of chTLR3 and attenuates chTLR3-mediated innate immune response against IBDV infection[J]. Chinese Journal of Veterinary Science, 2019, 39(2):215-222, 233. (in Chinese) 欧阳伟, 钱晶, 王晶宇, 等. chTLR3在传染性法氏囊病病毒感染中的作用及gga-miR-6655-5p对其调控的分子机制[J]. 中国兽医学报, 2019, 39(2):215-222, 233. [49] HOSEINBEYKI M, TAHA M F, JAVERI A. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells[J]. IUBMB Life, 2020, 72(5):1075-1086. [50] HUANG X W, XU Y G, LIN Q Y, et al. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production[J]. Virulence, 2020, 11(1):68-79. [51] SANTHAKUMAR D, RUBBENSTROTH D, MARTINEZ-SOBRIDO L, et al. Avian interferons and their antiviral effectors[J]. Front Immunol, 2017, 8:49. [52] LI Z H, WANG Y Q, XUE Y F, et al. Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5[J]. J Virol, 2012, 86(3):1328-1338. [53] BERRETTA J, MORILLON A. Pervasive transcription constitutes a new level of eukaryotic genome regulation[J]. EMBO Rep, 2009, 10(9):973-982. [54] BORSANI G, TONLORENZI R, SIMMLER M C, et al. Characterization of a murine gene expressed from the inactive X chromosome[J]. Nature, 1991, 351(6324):325-329. [55] GEISLER S, COLLER J. RNA in unexpected places:long non-coding RNA functions in diverse cellular contexts[J]. Nat Rev Mol Cell Biol, 2013, 14(11):699-712. [56] RINN J L, KERTESZ M, WANG J K, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7):1311-1323. [57] KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407. [58] FATICA A, BOZZONI I. Long non-coding RNAs:new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1):7-21. [59] XU H N, JIANG Y, XU X Q, et al. Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA[J]. Nat Immunol, 2019, 20(12):1621-1630. [60] LIU J, JI Q L, CHENG F, et al. The lncRNAs involved in regulating the RIG-I signaling pathway[J]. Front Cell Infect Microbiol, 2022, 12:1041682. [61] SUAREZ B, PRATS-MARI L, UNFRIED J P, et al. LncRNAs in the type I interferon antiviral response[J]. Int J Mol Sci, 2020, 21(17):6447. [62] OUYANG J, HU J Y, CHEN J L. LncRNAs regulate the innate immune response to viral infection[J]. WIREs RNA, 2016, 7(1):129-143. [63] HUANG X W, ZHANG J Y, LIU Z S, et al. Genome-wide analysis of differentially expressed mRNAs, lncRNAs, and circRNAs in chicken bursae of Fabricius during infection with very virulent infectious bursal disease virus[J]. BMC Genomics, 2020, 21(1):724. [64] DUAN T H, DU Y, XING C S, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13:812774. [65] HU X Y, LI J, FU M R, et al. The JAK/STAT signaling pathway:from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1):402. [66] HSU M T, COCA-PRADOS M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720):339-340. [67] LYU D, HUANG S L. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8):1000-1006. [68] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691. [69] LOU Z H, ZHOU R, SU Y H, et al. Minor and major circRNAs in virus and host genomes[J]. J Microbiol, 2021, 59(3):324-331. [70] GUO J U, AGARWAL V, GUO H L, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409. [71] SALZMAN J, CHEN R E, OLSEN M N, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9):e1003777. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | ZHANG Yanmin, ZHAO Dongxu, WANG Wenlong. Mechanism of Resistance to Ivermectin in the Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520. |
[3] | ZHANG De'an, YANG Ruozhu, LIU Jie, LIU Dewu, DENG Ming, LIU Guangbin, SUN Baoli, GUO Yongqing, LI Yaokun. Expression Analysis of Transcriptome in the Liver of Chuanzhong Black Goats Fed with Silage Neolamarckia Cadamba Substitute for Silage Corn [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 232-244. |
[4] | WANG Zhengrong, MA Xun, ZHANG Yanyan, SUN Yan, MENG Jimeng, BO Xinwen. Differential Expression Profile of CircRNA in Protoscolex, Hydatid Cyst Wall and Adult of Echinococcus granulosus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3474-3489. |
[5] | AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping. ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2215-2222. |
[6] | YANG Chuang, WU Longfei, LIU Guangbin, LI Yaokun, LIU Dewu, SUN Baoli. Expression Profile and Bioinformatics Analysis of lncRNA and Its Associated ceRNA Networks in Longissimus Dorsi from Lufeng Cattle and Leiqiong Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1951-1963. |
[7] | QIN Xue, SHA Yiwen, YANG Menghao, CAI Rui, PANG Weijun. Advances in Regulation of Non-coding RNA on Mammalian Endometrial Receptivity and Decidualization [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1347-1358. |
[8] | JIA Hongru, YANG Chaoqun, WANG Meng, WU Zhangqing, ZAN Linsen, YANG Wucai. LRTN4RL1-AS Mediates Milk Fat Synthesis in Bovine Mammary Epithelial Cells through miR-27a-3p Targeting PPARγ [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1465-1477. |
[9] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[10] | HAN Lulu, HAN Deping, ZHAO Qinan, DIAO Qiyu, CUI Kai. Research Progress of Intestinal Injury in Young Farm Animals under Stress Mediated by miRNA [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 877-888. |
[11] | YE Junning, DENG Ming, XUE Huiwen, LIU Guangbin, ZOU Xian, SUN Baoli, GUO Yongqing, LIU Dewu, LI Yaokun. Identification and Analysis of mRNA and lncRNA Affecting Goat Fetal Muscle Development [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 989-1002. |
[12] | YANG Guang, XU Jing, LI Xin, HU Debao, GUO Yiwen, DING Xiangbin, GUO Hong, ZHANG Linlin. Effect of Interfering lncbMD on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1015-1025. |
[13] | MENG Zhaoyi, WANG Yunlu, XU Yefen, NIU Jiaqiang, SUOLANG Sizhu, GUO Min, XI Guangyin. Construction of Yak lncRNA ENSBGRT00000000387.1 Lentivirus Vector and Its Effect on Apoptosis of Yak Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1058-1070. |
[14] | LUO Ju, MAO Jiani, XIA Yinzhao, YANG Zhenguo. Regulation of circRNAs on Mammalian Intestinal Barrier Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4439-4448. |
[15] | JIANG Shengqiang, HU Jing, CHEN Hongying. Expression Analysis of CircRNAs in A549 Cells Infected with H1N1 Influenza A Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4724-4734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||