Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (5): 1875-1882.doi: 10.11843/j.issn.0366-6964.2024.05.006
• REVIEW • Previous Articles Next Articles
ZHANG Wei, PAN Zhihao, FANG Fugui*
Received:
2023-10-24
Online:
2024-05-23
Published:
2024-05-27
CLC Number:
ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882.
[1] 李孝君,隋志远,王晨光,等.多浪羊PRLR基因克隆测序及不同组织差异表达分析[J].四川农业大学学报,2023, 41(2):344-351. LI X J,SUI Z Y,WANG C G,et al.Cloning sequencing of PRLR gene and differential expression analysis of different tissues[J].Journal of Sichuan Agricultural University,2023,41(2):344-351.(in Chinese) [2] ESQUIVEL-ZUNIGA R,ROGOL A D.Functional hypogonadism in adolescence:an overlooked cause of secondary hypogonadism[J].Endocr Connect,2023,12(11):e230190. [3] WICKRAMASURIYA N,HAWKINS R,ATWOOD C,et al.The roles of GnRH in the human central nervous system[J]. Horm Behav,2022,145:105230. [4] VAZQUEZ M J,DAZA-DUEÑAS S,TENA-SEMPERE M.Emerging roles of epigenetics in the control of reproductive function:focus on central neuroendocrine mechanisms[J].J Endocr Soc,2021,5(11):bvab152. [5] ARGENTE J,DUNKEL L,KAISER U B,et al.Molecular basis of normal and pathological puberty:from basic mechanisms to clinical implications[J].Lancet Diabetes Endocrinol,2023,11(3):203-216. [6] HERBISON A E.Control of puberty onset and fertility by gonadotropin-releasing hormone neurons[J].Nat Rev Endocrinol,2016,12(8):452-466. [7] ABREU A P,MACEDO D B,BRITO V N,et al.A new pathway in the control of the initiation of puberty:the MKRN3 gene[J].J Mol Endocrinol,2015,54(3):R131-R139. [8] AVENDAÑO M S,VAZQUEZ M J,TENA-SEMPERE M.Disentangling puberty:novel neuroendocrine pathways and mechanisms for the control of mammalian puberty[J].Hum Reprod Update,2017,23(6):737-763. [9] LOMNICZI A,LOCHE A,CASTELLANO J M,et al.Epigenetic control of female puberty[J].Nat Neurosci,2013,16(3): 281-289. [10] HAMIDI T,SINGH A K,CHEN T P.Genetic alterations of DNA methylation machinery in human diseases[J].Epigenomics, 2015,7(2):247-265. [11] 薛 倩,李国辉,殷建玫,等.鸡繁殖性能近交衰退相关CpG岛差异甲基化基因的筛选[J].畜牧兽医学报,2021,52(4):943-953. XUE Q,LI G H,YIN J M,et al.Screening of genes with differential methylated CpG island related to inbreeding depression of chicken reproduction[J].Acta Veterinaria et Zootechnica Sinica,2021,52(4):943-953.(in Chinese) [12] 杨小耿,张慧珠,李 键,等.DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J].畜牧兽医学报,2023,54(2):443-450. YANG X G,ZHANG H Z,LI J,et al.Research progress of the DNA methylation in mammalian oocyte and early embryo development[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):443-450.(in Chinese) [13] 雒瑞瑞,王彩莲,郎 侠.DNA甲基化在家畜繁殖中的研究进展[J].农业生物技术学报,2023,31(10):2190-2199. LUO R R,WANG C L,LANG X.Research progress on DNA methylation in domestic animal reproduction[J].Journal of Agricultural Biotechnology,2023,31(10):2190-2199.(in Chinese) [14] TERASAWA E,KURIAN J R,GUERRIERO K A,et al.Recent discoveries on the control of gonadotrophin-releasing hormone neurones in nonhuman primates[J].J Neuroendocrinol,2010,22(7):630-638. [15] KURIAN J R,KEEN K L,TERASAWA E.Epigenetic changes coincide with in vitro primate GnRH neuronal maturation[J]. Endocrinology,2010,151(11):5359-5368. [16] KURIAN J R,LOUIS S,KEEN K L,et al.The methylcytosine dioxygenase ten-eleven translocase-2 (tet2) enables elevated GnRH gene expression and maintenance of male reproductive function[J].Endocrinology,2016,157(9):3588-3603. [17] SOBRINO V,AVENDAÑO M S,PERDICES-LÓPEZ C,et al.Kisspeptins and the neuroendocrine control of reproduction:recent progress and new frontiers in kisspeptin research[J].Front Neuroendocrinol,2022,65:100977. [18] SIVALINGAM M,PARHAR I S.Hypothalamic kisspeptin and kisspeptin receptors:species variation in reproduction and reproductive behaviours[J].Front Neuroendocrinol,2022,64:100951. [19] WYATT A K,ZAVODNA M,VILJOEN J L,et al.Changes in methylation patterns of kiss1 and kiss1r gene promoters across puberty[J].Genet Epigenet,2013,5:51-62. [20] 丁 赫,宫永胜,王 军,等.初情期启动过程中小尾寒羊下丘脑KiSS-1基因甲基化状态与表达量相互关系[J].中国兽医学报,2018,38(11):2201-2204. DING H,GONG Y S,WANG J,et al.Relationship between methylation status and expression of KiSS-1 gene in small tail han sheep during onset of puberty[J].Chinese Journal of Veterinary Science,2018,38(11):2201-2204.(in Chinese) [21] YANG C,YE J,LIU Y,et al.Methylation pattern variation between goats and rats during the onset of puberty[J].Reprod Domest Anim,2018,53(3):793-800. [22] 张宸艺博,余 彤,任斌斌,等.动物早期胚胎发育中表观重编程的机制[J].畜牧兽医学报,2023,54(12):4898-4909. ZHANG C Y B,YU T,REN B B,et al.Mechanism of epigenetic reprogramming of early animal embryos[J].Acta Veterinaria et Zootechnica Sinica,2023,54(12):4898-4909.(in Chinese) [23] TORO C A,AYLWIN C F,LOMNICZI A.Hypothalamic epigenetics driving female puberty[J].J Neuroendocrinol,2018, 30(7): e12589. [24] IYER A K,BRAYMAN M J,MELLON P L.Dynamic chromatin modifications control GnRH gene expression during neuronal differentiation and protein kinase C signal transduction[J].Mol Endocrinol,2011,25(3):460-473. [25] NOVAIRA H J,SONKO M L,RADOVICK S.Kisspeptin induces dynamic chromatin modifications to control GnRH gene expression[J].Mol Neurobiol,2016,53(5):3315-3325. [26] LOMNICZI A,WRIGHT H,CASTELLANO J M,et al.Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression[J].Nat Commun,2015,6:10195. [27] TORO C A,WRIGHT H,AYLWIN C F,et al.Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty[J].Nat Commun,2018,9(1):57. [28] WRIGHT H,AYLWIN C F,TORO C A,et al.Polycomb represses a gene network controlling puberty via modulation of histone demethylase Kdm6b expression[J].Sci Rep,2021,11(1):1996. [29] VAZQUEZ M J,TORO C A,CASTELLANO J M,et al.SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression[J].Nat Commun,2018,9(1):4194. [30] 蔡含芳,李明勋,陈 宏.长链非编码RNA及其在家畜中的应用与展望[J].中国牛业科学,2015,41(6):65-68. CAI H F,LI M X,CHEN H.The biological function of long non-coding RNA and its application and prospect in domestic animals[J].China Cattle Science,2015,41(6):65-68.(in Chinese) [31] HOMBACH S,KRETZ M.Non-coding RNAs:classification,biology and functioning[M]//SLABY O,CALIN G A.Non-Coding RNAs in Colorectal Cancer.Cham:Springer,2016:3-17. [32] PERRY J R B,STOLK L,FRANCESCHINI N,et al.Meta-analysis of genome-wide association data identifies two loci influencing age at menarche[J].Nat Genet,2009,41(6):648-650. [33] HE C Y,KRAFT P,CHEN C,et al.Genome-wide association studies identify loci associated with age at menarche and age at natural menopause[J].Nat Genet,2009,41(6):724-728. [34] 邢 凤,高庆华,祁 鑫,等.多浪羊Lin28A基因克隆及其在初情期启动过程中的表达研究[J].畜牧兽医学报,2019, 50(1):78-85. XING F,GAO Q H,QI X,et al.Cloning and expression of Lin28A gene in the onset of puberty in Duolang sheep[J].Acta Veterinaria et Zootechnica Sinica,2019,50(1):78-85.(in Chinese) [35] ZHU H,SHAH S,SHYH-CHANG N,et al.Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies[J].Nat Genet,2010,42(7):626-630. [36] SANGIAO-ALVARELLOS S,MANFREDI-LOZANO M,RUIZ-PINO F,et al.Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty[J].Endocrinology,2013,154(2):942-955. [37] 于兰兰.参与初情期启动的山羊卵巢miRNA筛选与鉴定[D].合肥:安徽农业大学,2016. YU L L.Screening and identification of ovarian miRNA involved in puberty initiation in goat[D].Hefei:Anhui Agricultural University,2016.(in Chinese) [38] MESSINA A,LANGLET F,CHACHLAKI K,et al.A microRNA switch regulates the rise in hypothalamic GnRH production before puberty[J].Nat Neurosci,2016,19(6):835-844. [39] ROA J,RUIZ-CRUZ M,RUIZ-PINO F,et al.Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice[J].Nat Commun,2022,13(1):4663. [40] HERAS V,SANGIAO-ALVARELLOS S,MANFREDI-LOZANO M,et al.Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor,Mkrn3[J].PLoS Biol,2019,17(11):e3000532. [41] 项门们,史颖超,赖振雨,等.雄性动物生殖相关lncRNA的研究进展[J].家畜生态学报,2019,40(8):1-7. XIANG M M,SHI Y C,LAI Z Y,et al.Advances on lncRNA related to male animal reproduction[J].Acta Ecologae Animalis Domastici,2019,40(8):1-7.(in Chinese) [42] GAO X X,YE J,YANG C,et al.Screening and evaluating of long noncoding RNAs in the puberty of goats[J].BMC Genomics,2017,18(1):164. [43] HUANG P P,BRUSMAN L E,IYER A K,et al.A novel gonadotropin-releasing hormone 1 (Gnrh1) enhancer-derived noncoding RNA regulates Gnrh1 gene expression in GnRH neuronal cell models[J].PLoS One,2016,11(7):e0158597. [44] STAMOU M,NG S Y,BRAND H,et al.A balanced translocation in Kallmann syndrome implicates a long noncoding RNA,RMST,as a GnRH neuronal regulator[J].J Clin Endocrinol Metab,2020,105(3):e231-e244. [45] BLOSSEY R,SCHIESSEL H.The latest twists in chromatin remodeling[J].Biophys J,2018,114(10):2255-2261. [46] XU W W,ZHOU W B,LIN H Y,et al.A novel heterozygous mutation of CHD7 gene in a Chinese patient with Kallmann syndrome:a case report[J].BMC Endocr Disord,2021,21(1):193. [47] KIM H G,KURTH I,LAN F,et al.Mutations in CHD7,encoding a chromatin-remodeling protein,cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome[J].Am J Hum Genet,2008,83(4):511-519. [48] LEBRETON L,ALLAIN E P,PARSCAN R C,et al.A novel CHD3 variant in a patient with central precocious puberty:expanded phenotype of Snijders Blok-Campeau syndrome?[J].Am J Med Genet A,2023,191(4):1065-1069. [49] MOHAMED A R,NAVAL-SANCHEZ M,MENZIES M,et al.Leveraging transcriptome and epigenome landscapes to infer regulatory networks during the onset of sexual maturation[J].BMC Genomics,2022,23(1):413. [50] SCAGLIOTTI V,ESSE R,WILLIS T L,et al.Dynamic expression of imprinted genes in the developing and postnatal pituitary gland[J].Genes (Basel),2021,12(4):509. [51] ROBERTS S A,KAISER U B.GENETICS IN ENDOCRINOLOGY:genetic etiologies of central precocious puberty and the role of imprinted genes[J].Eur J Endocrinol,2020,183(4):R107-R117. [52] PERRY J R B,DAY F,ELKS C E,et al.Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche[J].Nature,2014,514(7520):92-97. [53] ROBERTS S A,NAULÉ L,CHOUMAN S,et al.Hypothalamic overexpression of makorin ring finger protein 3 results in delayed puberty in female mice[J].Endocrinology,2022,163(11):bqac132. [54] NAULÉ L,MANCINI A,PEREIRA S A,et al.MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity[J].JCI Insight,2023,8(8):e164178. [55] SHIM Y S,LEE H S,HWANG J S.Genetic factors in precocious puberty[J].Clin Exp Pediatr,2022,65(4):172-181. [56] 刘 坤,李国婧,杨 杞.参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J].生物技术通报,2022,38(5): 201-214. LIU K,LI G J,YANG Q.Research progress in DREB/CBF transcription factor involved in responses in plant to abiotic stress[J].Biotechnology Bulletin,2022,38(5):201-214.(in Chinese) [57] RZECZKOWSKA P A,HOU H Y,WILSON M D,et al.Epigenetics:a new player in the regulation of mammalian puberty[J].Neuroendocrinology,2014,99(3-4):139-155. [58] OJEDA S R,LOMNICZI A,LOCHE A,et al.The transcriptional control of female puberty[J].Brain Res,2010,1364:164-174. [59] ZANG S L,YIN X Q,LI P.Downregulation of TTF1 in the rat hypothalamic ARC or AVPV nucleus inhibits Kiss1 and GnRH expression,leading to puberty delay[J].Reprod Biol Endocrinol,2021,19(1):30. [60] LEON S,TALBI R,MCCARTHY E A,et al.Sex-specific pubertal and metabolic regulation of Kiss1 neurons via Nhlh2[J].Elife,2021,10:e69765. [61] LODA A,COLLOMBET S,HEARD E.Gene regulation in time and space during X-chromosome inactivation[J].Nat Rev Mol Cell Biol,2022,23(4):231-249. [62] GRAVHOLT C H,VIUFF M H,BRUN S,et al.Turner syndrome:mechanisms and management[J].Nat Rev Endocrinol,2019, 15(10):601-614. [63] BONOMI M,ROCHIRA V,PASQUALI D,et al.Klinefelter syndrome (KS):genetics,clinical phenotype and hypogonadism[J]. J Endocrinol Invest,2017,40(2):123-134. [64] MANOTAS M C,GONZÁLEZ D M,CÉSPEDES C,et al.Genetic and epigenetic control of puberty[J].Sex Dev,2022,16(1): 1-10. |
[1] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[2] | ZHANG Yanmin, ZHAO Dongxu, WANG Wenlong. Mechanism of Resistance to Ivermectin in the Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520. |
[3] | SHEN Qi, WANG Kai, ZHAO Zhenjian, CHEN Dong, YU Yang, CUI Shengdi, WANG Junge, CHEN Ziyang, WU Pingxian, TANG Guoqing. Regulation of NO Concentration by NOS2 Gene DNA Methylation Editing Affects the Expression of Muscle Development Pathway Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 984-994. |
[4] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
[5] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[6] | YANG Xiaogeng, ZHANG Huizhu, LI Jian, XIANG Hua, HE Honghong. Research Progress of the DNA Methylation in Mammalian Oocyte and Early Embryo Development [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 443-450. |
[7] | ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin. Mechanism of Epigenetic Reprogramming of Early Animal Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4898-4909. |
[8] | DAI Lingli, LIU Zaixia, GUO Lili, YANG Yanda, CHANG Chencheng, WANG Yu, SHI Caixia, WANG Yuzhen, ZHANG Wenguang. β-Hydroxybutyrate Mediated Epigenetic Modification and Its Molecular Mechanism of Regulating Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4095-4104. |
[9] | MA Ziming, GUO Xingru, DAI Tianshu, WEI Shihao, SHI Yuangang, DAN Xingang. Research Progress on Regulatory Mechanism of Cattle Uterine Involution and Methods of Promoting Uterine Involution [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 58-68. |
[10] | CHI Chang'an, PENG Siqi, SHEN Changqing, WANG Shicheng, TU Jingyi, XIAO Xiong, QIU Xiaoyan. Research Progress on Livestock Cognitive Function and Regulation Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2403-2416. |
[11] | SUN Hao, ZHE Xiaoshu, ZHANG Wenqi, HAO Fei, LI Wennan, LIU Jie, LIU Dongjun. Effects of Chaetocin on Histone Methylation Modification of Cashmere Goats ADSCs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2380-2389. |
[12] | LIU Yue, XUE Xianglan, LI Xiaobo, JIANG Lin, PU Yabin, HE Xiaohong, MA Yuehui, ZHAO Qianjun. Research Progress of the Relationship between Chromatin Accessibility and Animal Embryo Development [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 680-687. |
[13] | WANG Di, YU Ying. Research Progress on Transcriptomics and Epigenetics of Bovine S. aureus Mastitis Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 329-338. |
[14] | GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun, HUANG Sixiu. Research Progress of DNA Methylation during Porcine Embryonic Development [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3287-3295. |
[15] | LI Xiong, TIAN Niannian, SONG Linjin, CHEN Chen, XU Houqiang. Effects of 5-Aza-dC on MyoD1 Promoter Methylation and mRNA Expression in Bovine Myoblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2439-2451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||