

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5414-5432.doi: 10.11843/j.issn.0366-6964.2025.11.007
• Animal Genetics and Breeding • Previous Articles Next Articles
LI Huali1(
), LIU Yingying1, CUI Qingming1, DENG Yuan1, ZHAO Xiaogang1, HU Xionggui1, REN Huibo1, ZHU Ji1, YU Jin'e2, ZHANG Siyang2, CAO Lihua1, YU Xiaodan2, CHEN Xinyi2, CHEN Yu1, PENG Yinglin1,*(
), CHEN Chen1,*(
)
Received:2025-04-07
Online:2025-11-23
Published:2025-11-27
Contact:
PENG Yinglin, CHEN Chen
E-mail:233751146@qq.com;13907487646@126.com;2004chch@163.com
CLC Number:
LI Huali, LIU Yingying, CUI Qingming, DENG Yuan, ZHAO Xiaogang, HU Xionggui, REN Huibo, ZHU Ji, YU Jin'e, ZHANG Siyang, CAO Lihua, YU Xiaodan, CHEN Xinyi, CHEN Yu, PENG Yinglin, CHEN Chen. Comparative Characteristics and Correlation Study of Lipid and VOCs in Muscle of Ningxiang Pigs at Different Ages[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5414-5432.
Table 1
Meat quality of Ningxiang pigs at different ages"
| 项目Item | 60 d | 120 d | 180 d | 240 d | 300 d | 360 d |
| pH1 | 6.54±0.20bc | 6.50±0.28c | 6.76±0.12ab | 6.68±0.18abc | 6.64±0.07abc | 6.78±0.11a |
| pH24 | 5.73±0.13bc | 5.72±0.12bc | 5.66±0.08c | 5.83±0.13ab | 5.91±0.16a | 5.93±0.04a |
| L* | 46.42±0.98a | 46.59±1.59a | 44.33±2.49ab | 45.06±2.53a | 42.23±1.88bc | 41.27±1.31c |
| a* | 7.22±0.92b | 7.11±1.23b | 8.81±1.12a | 8.96±1.33a | 9.51±0.87a | 8.78±1.02a |
| b* | 6.65±0.61a | 5.11±0.77bc | 5.58±0.46b | 5.22±0.86b | 5.13±0.51bc | 4.43±0.31c |
| 嫩度/N Tenderness | 25.72±5.20b | 37.76±8.10a | 37.10±5.44a | 44.30±25.36a | 45.06±8.25a | 47.71±4.79a |
| 滴水损失/% Drip loss | 1.68±0.16b | 2.60±0.26a | 3.01±0.47a | 1.19±0.09bc | 1.15±0.33bc | 0.75±0.03c |
| 失水率/% Water loss rate | 11.74±1.83ab | 11.17±1.27ab | 12.23±2.68a | 10.6±0.79ab | 10.17±1.01ab | 10.02±1.35b |
| IMF/% | 0.75±0.21c | 2.53±0.93b | 2.60±0.76b | 5.43±1.23a | 5.23±0.44a | 5.70±0.53a |
Fig. 3
Bubble diagram of KEGG Each bubble indicate a KEGG pathway. The horizontal axis represent the impact value of metabolites in the pathway. The vertical axis represent the enrichment significance-log10(P value) of metabolites in the pathways. The bubble size represent the impact value, and the larger the bubble, the greater impact of the pathway. Count represent the number of differential metabolites in the pathway, with darker colors indicating greater quantities"
Table 2
KEGG pathway enrichment of significantly different lipids in muscle of Ningxiang pigs at different ages"
| 通路编号 Pathway ID | 通路名称 Pathway name | 二级分类 Secondary classification | 差异代谢物数量 Counts of differential metabolites | 通路重要性 Impact value | P 值 P-value |
| ssc00561 | 甘油酯代谢 Glycerolipid metabolism | 脂质代谢 lipid metabolism | 1 | 0 | 0.597 25 |
| ssc00564 | 甘油磷脂代谢 Glycerophospholipid metabolism | 脂质代谢 lipid metabolism | 15 | 0.339 6 | 3.27×10-14 |
| ssc00565 | 醚脂代谢 Ether lipid metabolism | 脂质代谢 lipid metabolism | 3 | 0.190 4 | 0.059 30 |
| ssc00590 | 花生四烯酸代谢 Arachidonic acid metabolism | 脂质代谢 lipid metabolism | 1 | 0.021 8 | 0.992 09 |
| ssc00591 | 亚油酸代谢 Linoleic acid metabolism | 脂质代谢 lipid metabolism | 1 | 0.200 0 | 0.783 66 |
| ssc00592 | α-亚麻酸代谢 α-Linolenic acid metabolism | 脂质代谢 lipid metabolism | 1 | 0.124 9 | 0.754 78 |
| ssc00600 | 鞘脂代谢 Sphingolipid metabolism | 脂质代谢 lipid metabolism | 4 | 0.250 1 | 0.027 77 |
Fig. 4
VOCs in muscle of Ningxiang pigs at different ages a.Percentage of VOCs categories; b.Fingerprint plot of VOCs; c. PCA score plot.Each column in Figure 4b represent the signal peak of a VOC in all samples, and each row represent all signal peaks of a sample. The darker the color and larger the area of the bright spots in the spectrum, the larger the peak volume of VOCs. No bright spots indicate no signal peaks. The numbers represent unknown organic compounds"
Table 3
Relative content of VOCs and their ROAV in muscle of Ningxiang pigs at different ages"
| 序号 Number | VOCs | RI | 气味阈值 /ppb Odor threshold | 相对含量/% Relative content | ROAV | |||||||||||
| 60 d | 120 d | 180 d | 240 d | 300 d | 360 d | 60 d | 120 d | 180 d | 240 d | 300 d | 360 d | |||||
| 醛类Aldehyde | ||||||||||||||||
| 1 | 癸醛Decanal | 1 262.7 | 0.1 | — | — | — | 0.94±0.12 | — | — | — | — | — | 100.00 | — | — | |
| 2 | 壬醛Nonanal | 1 107.8 | 1.0 | 5.00± 0.72a | 3.73±0.24 bc | 1.88± 0.69d | 3.44±0.53 bc | 4.25± 0.91ab | 2.95±0.33 c | 100.00 | 100.00 | 48.45 | 36.60 | 100.00 | 100.00 | |
| 3 | 庚醛Heptanal | 898.1 | 3.0 | 1.53± 0.56a | 0.87±0.12 b | 0.47± 0.12c | 0.71±0.17 bc | 0.85± 0.09bc | 0.71±0.30 bc | 10.20 | 7.77 | 4.04 | 2.52 | 6.67 | 8.02 | |
| 4 | 辛醛Octanal | 1 003.7 | 0.7 | 2.15± 0.41a | 1.38±0.08 b | 0.68± 0.25d | 0.79±0.10 cd | 1.39± 0.11b | 1.06±0.22 c | 61.43 | 52.85 | 25.04 | 12.01 | 46.72 | 51.33 | |
| 5 | 5-甲基糠醛5-methylfurfural | 962.6 | 20.0 | — | — | — | 2.83±0.32 | — | — | — | — | — | 1.51 | — | — | |
| 6 | 己醛-M Hexanal-M | 788.3 | 5.0 | 8.93±1.39 a | 9.96± 3.20a | 2.02±1.04 c | 4.13± 0.95bc | 9.86±1.48 a | 5.64± 2.72b | 35.72 | 53.40 | 10.41 | 8.79 | 46.40 | 38.24 | |
| 7 | 己醛-D Hexanal-D | 787.3 | 5.0 | 2.63±0.97 bc | 4.70± 3.03ab | 0.50±0.34 c | 2.71± 1.13bc | 5.53±2.22 a | 2.08± 1.63c | 10.52 | 25.20 | 2.58 | 5.77 | 26.02 | 14.10 | |
| 8 | 3-甲基-2-丁烯醛 3-methyl-2-butenal | 767.1 | / | 0.66±0.08 bc | 0.54± 0.05c | 0.32±0.07 d | 0.84± 0.13ab | 0.97±0.20 a | 0.70± 0.21bc | / | / | / | / | / | / | |
| 9 | (E)-2-戊烯醛 (E)-2-pentenal | 739.0 | 1 500.0 | — | — | — | 1.34±0.23 a | 1.19± 0.39ab | 0.80±0.28 b | — | — | — | 0.01 | 0.02 | 0.02 | |
| 10 | 丁醛Butanal | 587.5 | 9.0 | 0.53± 0.04 | 0.68±0.63 | 0.89± 0.39 | 0.59±0.18 | 0.97± 0.73 | — | 1.18 | 2.03 | 2.55 | 0.70 | 2.54 | — | |
| 11 | 2-甲基丁醛 2-methylbutanal | 653.4 | 1.0 | 0.82±0.12 b | 1.10± 0.38b | 2.16±0.82 a | 0.16± 0.03c | 1.23±0.56 b | 0.76± 0.27b | 16.40 | 29.49 | 55.67 | 1.70 | 28.94 | 25.76 | |
| 12 | 3-甲基丁醛 3-methylbutanal | 644.2 | 1.1 | — | 0.54±0.14 b | 4.27± 2.29a | 0.17±0.02 b | — | — | — | 13.16 | 100.00 | 1.64 | — | — | |
| 13 | 戊醛-M Pentanal-M | 689.2 | 12.0 | 1.83±0.10 a | 1.76± 0.27a | 0.73±0.21 c | 0.81± 0.29c | 1.70±0.15 a | 1.29± 0.33b | 3.05 | 3.93 | 1.57 | 0.72 | 3.33 | 3.64 | |
| 14 | (E)-2-己烯醛 (E)-2-hexenal | 833.4 | 17.0 | — | — | — | 0.08±0.01 | — | — | — | — | — | 0.05 | — | — | |
| 15 | 苯甲醛Benzaldehyde | 955.7 | 750.9 | 0.51±0.09 a | 0.45± 0.09a | 0.21±0.07 b | 0.20± 0.03b | 0.26±0.02 b | 0.25± 0.03b | 0.01 | 0.02 | 0.01 | 0.00 | 0.01 | 0.01 | |
| 酮类Ketone | ||||||||||||||||
| 16 | 6-甲基-5-庚烯-2-酮 6-methyl-5-hepten-2-one | 988.6 | 50.0 | — | — | — | 0.24 ±0.05 | — | — | — | — | 0.00 | 0.05 | — | — | |
| 17 | 2-丁酮-M 2-butanone-M | 567.6 | 50 000.0 | 7.45±1.22 a | 6.67± 1.75a | 3.22±1.49 b | 2.88± 1.12b | 4.34±0.34 b | 3.93± 0.78b | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 18 | 4-酮异佛尔酮 4-ketoisophorone | 1 156.6 | 1 250.0 | — | — | — | 3.27±0.33 | — | — | — | — | — | 0.03 | — | — | |
| 19 | 2-庚酮2-heptanone | 889.6 | 140.0 | 0.95±0.12 c | 1.23± 0.28ab | 0.65±0.10 c | 0.84± 0.26c | 1.22±0.11 ab | 1.50± 0.44a | 0.14 | 0.24 | 0.12 | 0.06 | 0.21 | 0.36 | |
| 20 | 2-戊酮-M 2-pentanone-M | 675.4 | 70 000.0 | 3.63±0.87 bc | 4.40± 1.07ab | 2.62±0.77 cd | 1.74± 0.35d | 4.14±1.33 b | 5.50± 0.54a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 21 | 2-戊酮-D 2-pentanone-D | 679.6 | 70 000.0 | — | 1.32±0.46 b | 1.04± 0.64b | 0.83±0.44 b | 1.54± 0.82b | 2.51±0.37 a | — | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 22 | 2-丙酮2-propanone | 492.2 | 500 000.0 | 8.33±2.77 ab | 9.67± 5.94a | 6.37±3.07 ab | 3.96± 0.71b | 5.97±1.08 ab | 7.14± 1.57ab | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 23 | 3-羟基-2-丁酮-M 3-hydroxy-2-butanone-M | 706.5 | 800.0 | 6.36±2.58 a | 6.36± 3.33a | 6.95±3.01 a | 3.08± 0.76b | 2.47±0.95 b | 6.50± 1.46a | 0.16 | 0.21 | 0.22 | 0.04 | 0.07 | 0.28 | |
| 24 | 3-羟基-2-丁酮-D 3-hydroxy-2-butanone-D | 707.2 | 800.0 | 0.99±0.59 b | 3.32± 3.73b | 11.73±3.6 a | 0.94± 1.05b | — | 2.41±1.54 b | 0.02 | 0.11 | 0.38 | 0.01 | — | 0.10 | |
| 25 | 4-甲基-3-戊烯-2-酮4-methyl-3-penten-2-one | 789.9 | / | — | 0.77±0.13 bc | 0.55± 0.50c | 0.88±0.20 abc | 1.52± 0.40a | 1.37±0.93 ab | — | / | / | / | / | / | |
| 26 | 1-戊烯-3-酮 1-penten-3-one | 692.3 | 1.0 | — | — | — | 0.35±0.10 | — | — | — | — | — | 3.72 | — | — | |
| 27 | 4-甲基-2-戊酮4-methyl-2-pentanone | 729.1 | 170.0 | — | 0.89±0.22 b | 0.24± 0.12b | 0.92±0.13 b | 2.16± 0.37a | 2.29±1.16 a | — | 0.14 | 0.04 | 0.06 | 0.30 | 0.46 | |
| 醇类Alcohol | ||||||||||||||||
| 28 | 乙醇Ethanol | 449.3 | 100 000.0 | — | — | 20.94± 7.40a | 15.39±10.33 ab | 2.59± 0.45c | 6.36±6.93 bc | — | — | 0.01 | 0.00 | 0.00 | 0.00 | |
| 29 | 丙醇Propanol | 535.0 | 9 000.0 | — | — | 0.95± 0.43 | 0.57±0.09 | — | — | — | — | 0.00 | 0.00 | — | — | |
| 30 | 异丙醇2-propanol | 495.3 | 9 787.9 | 0.75± 0.27bc | 1.18±0.33 b | 0.50± 0.20c | 0.66±0.13 c | 2.78± 0.44a | 2.61±0.62 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | |
| 31 | 1-丁醇1-butanol | 647.1 | 500.0 | 2.75± 0.41b | 3.31±0.93 b | 4.78± 1.80a | 0.74±0.08 c | 2.25± 0.53b | 3.17±0.85 b | 0.11 | 0.18 | 0.25 | 0.02 | 0.11 | 0.21 | |
| 32 | 异丁醇Isobutanol | 607.4 | 7 000.0 | 0.36± 0.09c | 0.47±0.17 bc | 0.30± 0.10c | 0.55±0.21 bc | 0.87± 0.35a | 0.73±0.15 ab | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 33 | 1-戊醇1-pentanol | 756.8 | 4 000.0 | 0.54± 0.05abc | 0.57±0.06 ab | 0.38± 0.04c | 0.67±0.26 a | 0.67± 0.12a | 0.43±0.05 bc | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 34 | 异戊醇Isopentanol | 726.2 | 250.0 | — | — | — | 0.43± 0.07 | 0.68±0.12 | 0.84± 0.52 | — | — | — | 0.02 | 0.06 | 0.11 | |
| 35 | 1-己醇1-hexanol | 867.1 | 2 500.0 | 0.76±0.04 | 0.63± 0.07 | 0.51±0.10 | 0.68± 0.38 | 0.88±0.32 | 1.11± 1.06 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | |
| 36 | 异己醇Isohexanol | 827.3 | / | — | — | — | 0.12 ±0.03 | — | — | — | — | — | / | — | — | |
| 37 | 2-丁氧基乙醇2-butoxyethanol | 914.3 | / | — | — | — | 0.80±0.09 | 0.70± 0.09 | 0.68±0.21 | — | — | — | / | / | / | |
| 38 | 1-辛烯-3-醇1-octen-3-ol | 981.8 | 1.0 | — | 0.26±0.03 ab | 0.14± 0.04b | 0.22±0.03 ab | 0.30± 0.15ab | 0.34±0.27 a | — | 6.97 | 3.61 | 2.34 | 7.06 | 11.53 | |
| 酸类Acid | ||||||||||||||||
| 39 | 醋酸Acetic acid | 579.1 | 22 000.0 | 0.97±0.09 ab | 0.95± 0.17ab | 0.60±0.20 b | 0.83± 0.43ab | 0.87±0.17 ab | 1.63± 1.44a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 40 | 2-甲基丙酸-M 2-methylpropanoic acid-M | 769.0 | 8 100.0 | 1.07±0.13 b | 1.05± 0.10b | 0.66±0.17 b | 4.94± 2.35a | 0.77±0.07 b | 0.75± 0.14b | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
| 41 | 2-甲基丙酸-D 2-methylpropanoic acid-D | 770.3 | 8 100.0 | — | — | — | 1.18±1.23 | — | — | — | — | — | 0.00 | — | — | |
| 42 | 己酸-M Hexanoic acid-M | 987.3 | 3 000.0 | — | — | — | 5.12±1.83 | — | — | — | — | — | 0.02 | — | — | |
| 43 | 己酸-D Hexanoic acid-D | 987.3 | 3 000.0 | — | — | — | 0.33±0.10 | — | — | — | — | — | 0.00 | — | — | |
| 酯类Ester | ||||||||||||||||
| 44 | 乙酸2-甲基丙酯-M 2-methylpropyl acetate-M | 744.6 | 66.0 | — | — | — | 0.88±1.00 | 0.46± 0.09 | — | — | — | — | 0.14 | 0.16 | — | |
| 45 | 乙酸2-甲基丙酯-D 2-methylpropyl acetate-D | 743.2 | 66.0 | — | — | — | 0.37±0.55 | — | — | — | — | — | 0.06 | — | — | |
| 46 | 丁酸异戊酯Isopentyl butanoate | 1 085.4 | / | — | — | — | 11.6±1.18 | — | — | — | — | — | / | — | — | |
| 47 | 乙酸乙酯-M Ethyl acetate-M | 595.8 | 5.0 | — | 1.35±1.85 | 2.01± 0.85 | 1.27±0.68 | 2.75± 2.46 | 0.73±0.27 | — | 7.24 | 10.36 | 2.70 | 12.94 | 4.95 | |
| 48 | 乙酸乙酯-D Ethyl acetate-D | 598.0 | 5.0 | — | 0.98±0.49 | 4.56± 7.02 | 0.89±0.32 | 1.69± 1.17 | — | — | 5.25 | 23.51 | 1.89 | 7.95 | — | |
| 49 | 2-甲基丁酸乙酯-M Ethyl 2-methylbutanoate-M | 838.2 | 0.1 | — | — | 0.17±0.05 | 0.09± 0.04 | — | — | — | — | 43.81 | 9.57 | — | — | |
| 50 | 乙酸异戊酯-M Isoamyl acetate-M | 870.5 | 2.0 | — | — | — | 0.07±0.01 | — | — | — | — | — | 0.37 | — | — | |
| 51 | 乙酸丁酯Butyl acetate | 801.8 | 66.0 | — | — | — | 0.10±0.04 | — | — | — | — | — | 0.02 | — | — | |
| 呋喃类Furan | ||||||||||||||||
| 52 | 2, 5-二甲基呋喃2, 5-dimethylfuran | 701.9 | / | — | — | — | 0.43±0.17 | 0.57± 0.26 | 0.91±1.11 | — | — | — | / | / | / | |
| 53 | 四氢呋喃-M Tetrahydrofurane-M | 620.3 | / | — | — | — | — | 7.01±1.19 | 6.21± 0.93 | — | — | — | — | / | / | |
| 54 | 四氢呋喃-D Tetrahydrofurane-D | 619.6 | / | — | — | — | — | 2.67±0.68 | 1.91± 0.50 | — | — | — | — | / | / | |
| 含硫化合物Sulfur compound | ||||||||||||||||
| 55 | 二烯丙基二硫-M Diallyl disulfide-M | 1 060.8 | 30.0 | — | — | — | 6.10±0.62 | — | — | — | — | — | 2.16 | — | — | |
| 56 | 二烯丙基二硫-D Diallyl disulfide-D | 1 061.2 | 30.0 | — | — | — | 0.55±0.05 | — | — | — | — | — | 0.20 | — | — | |
| 57 | 甲硫基丙醛Methional | 905.0 | 0.2 | — | — | — | 0.20±0.05 | — | — | — | — | — | 10.64 | — | — | |
| 其他化合物Other compound | ||||||||||||||||
| 58 | 柠檬烯Limonene | 1 028.5 | 10.0 | — | — | — | 0.13 ±0.02 | — | — | — | — | — | 0.14 | — | — | |
| 59 | 二甲胺Dimethylamine | 586.4 | 33.0 | 1.23±0.12 ab | 1.38± 0.13a | 0.78±0.35 c | 0.32± 0.11d | 0.98±0.25 bc | 1.08± 0.15b | 0.75 | 1.12 | 0.61 | 0.10 | 0.70 | 1.11 | |
| 1 |
NI Q , AMALFITANO N , BIASIOLI F , et al. Bibliometric review on the volatile organic compounds in meat[J]. Foods, 2022, 11 (22): 3574.
doi: 10.3390/foods11223574 |
| 2 |
RESCONI V C , BUENO M , ESCUDERO A , et al. Ageing and retail display time in raw beef odour according to the degree of lipid oxidation[J]. Food Chem, 2018, 242, 288- 300.
doi: 10.1016/j.foodchem.2017.09.036 |
| 3 | CHEN J , CHEN F , LIN X , et al. Effect of excessive or restrictive energy on growth performance, meat quality, and intramuscular fat deposition in finishing Ningxiang pigs[J]. Animals, 2021, 11, 27. |
| 4 | 段平男, 杨婷, 陈佳亿, 等. 白藜芦醇对生长肥育期宁乡猪肉品质的影响[J]. 动物营养学报, 2021, 33 (8): 4364- 4372. |
| DUAN P N , YANG T , CHEN J Y , et al. Effects of resveratrol on meat quality of growing and fattening ningxiang pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33 (8): 4364- 4372. | |
| 5 | 朱吉, 罗璇, 陈晨, 等. 宁乡猪不同杂交组合的胴体性能和肉质性状分析[J]. 养猪, 2020 (5): 49- 51. |
| ZHU J , LUO X , CHEN C , et al. Analysis of carcass performance and meat quality traits of different hybrids of Ningxiang pigs[J]. Swine Production, 2020 (5): 49- 51. | |
| 6 |
XING Y , WU X , XIE C , et al. Meat quality and fatty acid profiles of Chinese Ningxiang pigs following supplementation with N-Carbamylglutamate[J]. Animals, 2020, 10 (1): 88.
doi: 10.3390/ani10010088 |
| 7 |
CLIFF M , STANICH K , TRUJILLO J M , et al. Determination and prediction of odor thresholds for odor active volatiles in a neutral apple juice matrix[J]. J Food Quality, 2011, 34 (3): 177- 186.
doi: 10.1111/j.1745-4557.2011.00383.x |
| 8 |
YANG P , SONG H , WANG L , et al. Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis[J]. J Agric Food Chem, 2019, 67 (28): 7926- 7934.
doi: 10.1021/acs.jafc.9b03269 |
| 9 |
XIAO Y , HUANG Y , CHEN Y , et al. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS[J]. Curr Res Food Sci, 2022, 5, 1788- 1807.
doi: 10.1016/j.crfs.2022.09.024 |
| 10 |
YAO L , HUANG C , DING J , et al. Application of yeast in plant-derived aroma formation from cigar filler leaves[J]. Front Bioeng Biotech, 2022, 10, 1093755.
doi: 10.3389/fbioe.2022.1093755 |
| 11 |
ZHU Y , CHEN J , CHEN X , et al. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: application to fresh and dried eel (Muraenesoxcinereus)[J]. Int J Food Prop, 2020, 23 (1): 2257- 2270.
doi: 10.1080/10942912.2020.1856133 |
| 12 |
胡颖, 周晓容, 黄金秀, 等. 荣昌猪和三元杂交猪胴体性状、肉品质及风味物质差异研究[J]. 畜牧兽医学报, 2023, 54 (5): 1877- 1892.
doi: 10.11843/j.issn.0366-6964.2023.05.011 |
|
HU Y , ZHOU X R , HUANG J X , et al. Research on the differences of carcass traits, meat quality and flavor substances between rongchang and duroc×landrace×yorkshire pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1877- 1892.
doi: 10.11843/j.issn.0366-6964.2023.05.011 |
|
| 13 | 郭建凤. 冷藏条件下猪肉pH变化及采样时间对滴水损失影响[J]. 畜牧兽医杂志, 2024, 43 (3): 18- 21. |
| GUO J F . Effect of pH change and sampling time on drip loss of pork under refrigeration condition[J]. Journal of Animal Science and Veterinary Medicine, 2024, 43 (3): 18- 21. | |
| 14 |
HWANG Y H , LEE S J , LEE E Y , et al. Effects of carcass weight increase on meat quality and sensory properties of pork loin[J]. J Anim Sci Technol, 2020, 62 (5): 753- 760.
doi: 10.5187/jast.2020.62.5.753 |
| 15 |
ZHAN H , XIONG Y , WANG Z , et al. Integrative analysis of transcriptomic and metabolomic profiles reveal the complex molecular regulatory network of meat quality in Enshi black pigs[J]. Meat Sci, 2022, 183, 108642.
doi: 10.1016/j.meatsci.2021.108642 |
| 16 |
HE J , WU X L , ZENG Q , et al. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs[J]. PLoS One, 2020, 15 (8): e0236629.
doi: 10.1371/journal.pone.0236629 |
| 17 | JANKOWIAK H , BOCIAN M , BARCZAK J . The effect of intramuscular fat content on the meat quality of plw x pl pigs[J]. Ital J Food Sci, 2019, 31 (1): 87- 97. |
| 18 | 宋粤湘, 高虎, 张跃博, 等. 宁乡猪及杜宁二元杂种猪的胴体与肉质性状测定[J]. 中国畜牧杂志, 2021, 57 (4): 68- 72. |
| SONG Y X , GAO H , ZHNAG Y B , et al. Carrcass and meat quality traits determination and correlation analysis of ningxiang pig and its binary cross[J]. Chinese Journal of Animal Science, 2021, 57 (4): 68- 72. | |
| 19 | 刁小琴, 王莹, 贾瑞鑫, 等. 动物性脂肪对肉品风味影响机制研究进展[J]. 肉类研究, 2022, 36 (3): 45- 51. |
| DIAO X Q , WANG Y , JIA R X , et al. Progress in understanding the mechanism of the influence of animal fat on meat flavor[J]. Meat Research, 2022, 36 (3): 45- 51. | |
| 20 |
POLIDORI P , SANTINI G , KLIMANOVA Y , et al. Effects of ageing on donkey meat chemical composition, fatty acid profile and volatile compounds[J]. Foods, 2022, 11 (6): 821.
doi: 10.3390/foods11060821 |
| 21 |
WANG Y , MA C , SUN Y , et al. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs[J]. BMC Genomics, 2017, 18 (1): 780.
doi: 10.1186/s12864-017-4201-9 |
| 22 |
GAO S Z , ZHAO S M . Physiology, affecting factors and strategies for control of pig meat intramuscular fat[J]. Recent Pat Food Nutr Agric, 2009, 1 (1): 59- 74.
doi: 10.2174/2212798410901010059 |
| 23 |
ZHOU J , ZHANG Y , WU J , et al. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition[J]. J Proteomics, 2021, 241, 104235.
doi: 10.1016/j.jprot.2021.104235 |
| 24 | 张润, 刘海, 杨曼, 等. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53 (9): 3262- 3271. |
| ZHANG R , LIU H , YANG M , et al. Analysis of lipid group difference between high and low intramuscular fat content groups in beijing black pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3262- 3271. | |
| 25 |
WU Z S , WANG Z G , WANG P , et al. Integrative analysis of proteomics and lipidomic profiles reveal the fat deposition and meat quality in Duroc×Guangdong small spotted pig[J]. Front Vet Sci, 2024, 11, 1361441.
doi: 10.3389/fvets.2024.1361441 |
| 26 |
DENG X X , ZHANG Y B , SONG G , et al. Integrative analysis of transcriptomic and lipidomic profiles reveals a differential subcutaneous adipose tissue mechanism among Ningxiang pig and Berkshires, and their offspring[J]. Animals, 2023, 13, 3321.
doi: 10.3390/ani13213321 |
| 27 |
BA H V , SEO H W , SEONG P N , et al. Live weights at slaughter significantly affect the meat quality and flavor components of pork meat[J]. Anim Sci J, 2019, 90 (5): 667- 679.
doi: 10.1111/asj.13187 |
| 28 | WANG Y , HE Y , LIU Y , et al. Analyzing volatile compounds of young and mature docynia delavayi fruit by HS-SPME-GC-MS and rOAV[J]. Foods, 2023, 12 (1): 59. |
| 29 |
HOA V B , SEONG P N , CHO S H , et al. Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade[J]. Asian Austral J Anim, 2019, 32 (9): 1448- 1457.
doi: 10.5713/ajas.18.0965 |
| 30 |
ZHANG K , LI D , ZANG M , et al. Comparative characterization of fatty acids, reheating volatile compounds, and warmed-over flavor (WOF) of Chinese indigenous pork and hybrid pork[J]. LWT, 2022, 155, 112981.
doi: 10.1016/j.lwt.2021.112981 |
| 31 |
BAK K H , RICHARDS M P . Hexanal as a predictor of development of oxidation flavor in cured and uncured deli meat products as affected by natural antioxidants[J]. Foods, 2021, 10 (1): 152.
doi: 10.3390/foods10010152 |
| 32 |
CHENG L , LI X , TIAN Y , et al. Mechanisms of cooking methods on flavor formation of Tibetan pork[J]. Food Chem: X, 2023, 19, 100873.
doi: 10.1016/j.fochx.2023.100873 |
| 33 | HAN D , ZHANG C H , FAUCONNIER M L , et al. Characterization and differentiation of boiled pork from Tibetan, Sanmenxia and Duroc×(Landrac×Yorkshire) pigs by volatiles profiling and chemometrics analysis[J]. Food Res Int, 2020, 130 (4): 108910. |
| 34 |
LI P , ZHOU H , WANG Z , et al. Analysis of flavor formation during the production of Jinhua dry-cured ham using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS)[J]. Meat Sci, 2022, 194, 108992.
doi: 10.1016/j.meatsci.2022.108992 |
| 35 |
WU W D , ZHAN J L , TANG X Y , et al. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis[J]. Food Chem, 2022, 385, 132543.
doi: 10.1016/j.foodchem.2022.132543 |
| 36 | 张杏艳, 蓝海恩, 谢炳坤, 等. 性别对杜陆猪肉品质及风味影响的代谢组学分析[J]. 中国畜牧兽医, 2021, 48 (10): 3585- 3594. |
| ZHANG X Y , LAN H E , XIE B K , et al. Metabonomics analysis of sex effects on meat quality and flavor in dulu pig[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (10): 3585- 3594. | |
| 37 |
SHAHIDI F , HOSSAIN A . Role of lipids in food flavor generation[J]. Molecules, 2022, 27 (15): 5014.
doi: 10.3390/molecules27155014 |
| 38 |
LIU H , HUI T , ZHENG X , et al. Characterization of key lipids for binding and generating aroma compounds in roasted mutton by UPLC-ESI-MS/MS and Orbitrap Exploris GC[J]. Food Chem, 2022, 374, 131723.
doi: 10.1016/j.foodchem.2021.131723 |
| 39 |
WANG N , WANG J , ZHANG Y , et al. Comprehensive lipidomics and volatile compounds profiling reveals correlation of lipids and flavors in DHA-enriched egg yolk[J]. Oil Crop Sci, 2023, 8 (1): 27- 34.
doi: 10.1016/j.ocsci.2023.03.001 |
| 40 |
CAO J , ZOU X G , DEN L , et al. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids[J]. Food Res Int, 2014, 64, 901- 907.
doi: 10.1016/j.foodres.2014.08.042 |
| [1] | WEN Xue, XU Wanxue, FU Yitong, YANG Jie, FU Hongyu, FAN Ruifeng. Research Progress on the Relationship between Ferroptosis and Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3666-3677. |
| [2] | ZHOU Rui, WU De, CHE Lianqiang, LIN Yan, FENG Bin, FANG Zhengfeng. Advances of N6-Adenosine Methylation Regulating Adipogenesis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 1995-2003. |
| [3] | WU Qianhui, ZHANG Yu, ZHANG Taoni, MO Meilan. Research Progress on Mechanism of Lipid Raft Involved in Coronavirus Infection and Its Application [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2112-2122. |
| [4] | HOU Zhongyi, WANG Baowei, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, YUE Bin, LU Xiu, FAN Wenlei. The Regulation Mechanism of Lipid Metabolism in Foie Gras Formation Based on Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2182-2193. |
| [5] | ZHANG Yanyan, GE Hongfan, ZHOU Zhenlei. The Effect of Salidroside on Methylprednisolone Induced Femoral Head Necrosis in Broiler Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2496-2506. |
| [6] | MAO Yanan, GAO Ming, ZHOU Xinni, YOU Dongxue, PENG Benqun, WANG Song. Research Progress on the Function of Lipid Droplets in Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 513-522. |
| [7] | ZHANG Dingxin, LENG Bingwen, LUO Wengyun, WANG Zhiyuan, ZHANG Qin, JIANG Li. Estimation of Genetic Parameters for General Resilience Traits in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5402-5413. |
| [8] | ZHANG Wenjuan, SHENG Qing, PENG Yongjia, ZHANG Jin. Lipid Composition Analysis of Subcutaneous Backfat in “Jinwu Pig” [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5449-5463. |
| [9] | ZHOU Jin, ZHUANG Yujie, ZHANG Yalin, XIE Xiaoyu, SUN Mingzhu, ZHANG Xuemei, WANG Xiaolong, ZHANG Zhiping, ZHANG Juntao. Antibacterial Test of Placental Tissue-derived Liposome Drug Complex in Endometritis Model [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5239-5250. |
| [10] | WANG Shengqi, JI Xinyu, HUANG Fuqing, HU Manli, WANG Rouqi, GENG Yuxin, SUN Yingxue, QI Zhili, ZHANG Xin. Effects of Salidroside-added Complete Nutrition Food on Blood Biochemical Indexes and Liver Transcriptomics in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 455-465. |
| [11] | Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801. |
| [12] | Yi ZHANG, Jie XU, Xiaoyuan SONG, Shiwei ZHOU, Yumeng TENG, Xiaoli LIU, Guofu CHENG, Changqin GU, Wanpo ZHANG, Xueying HU. Clinico-histopathological Traits of Canine Mammary Tumors in Wuhan Area and Their Correlation with Benign and Malignant Tumors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4121-4130. |
| [13] | Yao LI, Rui JIA, Jie LI, Shuangbao GUN, Qiaoli YANG, Longlong WANG, Pengxia ZHANG, Xiaoli GAO, Xiaoyu HUANG. Effects of Low Temperature on Adipose Tissue Morphology, Lipid Metabolism-Related Gene Expression and Enzyme Activities, and AMPK/PGC-1α Pathway in Hezuo Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3418-3426. |
| [14] | Yue LI, Changchun ZHANG, Guangyu LIU, Mengyuan GAO, Chaojun FU, Jiabao XING, Sijia XU, Qiyuan KUANG, Jing LIU, Xiaopeng GAO, Heng WANG, Lang GONG, Guihong ZHANG, Yankuo SUN. Application and Analysis of Meta-transcriptomics Sequencing Technology in the Diagnosis of Viral Diarrhea Diseases in Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3579-3589. |
| [15] | Hengjie CUI, Jinlong QIN, Zhihao ZHU, Xue BAO, Shaowen LI, Xianrong MENG. Correlation Analysis of Benzalkonium Bromide Sensitivity and Biofilm Formation Ability in Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3669-3677. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||