Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (5): 2182-2193.doi: 10.11843/j.issn.0366-6964.2025.05.018
• Animal Genetics and Breeding • Previous Articles Next Articles
HOU Zhongyi1(), WANG Baowei1,2,*(
), ZHANG Ming'ai1,2, KONG Min1,2, ZHANG Jing3, WANG Binghan4, YUE Bin2, LU Xiu1, FAN Wenlei1,2,*(
)
Received:
2024-09-24
Online:
2025-05-23
Published:
2025-05-27
Contact:
WANG Baowei, FAN Wenlei
E-mail:1429133886@qq.com;wangbw1959@qq.com;fanwenlei@qau.edu.cn
CLC Number:
HOU Zhongyi, WANG Baowei, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, YUE Bin, LU Xiu, FAN Wenlei. The Regulation Mechanism of Lipid Metabolism in Foie Gras Formation Based on Proteomics Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2182-2193.
Table 2
Top 10 differential proteins up-regulated and down-regulated between Early and Middle over-feeding stages"
组别 Group | 蛋白ID Protein ID | 基因名 Gene name | 蛋白功能描述 Protein function description | 倍数变化 Fold change | P |
下调 Down | A0A8B9DKQ2 | CLDN20 | Claudin | 0.50 | 0.00 |
A0A8B9DNV2 | CD207 | C-type lectin domain-containing protein | 0.51 | 0.00 | |
A0A8B9DCX9 | Romo1 | Reactive oxygen species modulator 1 | 0.66 | 0.00 | |
A0A8B9DBW8 | AMP1 | AMP1 protein | 0.15 | 0.00 | |
A0A8B9D2F8 | Rv1747 | ABC transporter domain-containing protein | 0.48 | 0.00 | |
A0A8B9DI93 | Cygb | Cytoglobin | 0.60 | 0.00 | |
A0A8B9DKF8 | PRUNE1 | Prune exopolyphosphatase 1 | 0.65 | 0.00 | |
A0A8B9DPQ1 | Siglec12 | Ig-like domain-containing protein | 0.60 | 0.00 | |
A0A8B9E544 | ESP1 | separase | 0.50 | 0.00 | |
A0A8B9E3Q7 | frvX | Aminopeptidase | 0.66 | 0.00 | |
上调 Up | A0A8B9E098 | MARCHF5 | S Mitochondrial fission regulator | 1.88 | 0.00 |
A0A8B9D9H9 | Txlng | Taxilin gamma | 1.57 | 0.00 | |
A0A8B9DSE6 | TMED10 | Transmembrane protein 263 | 2.27 | 0.00 | |
A0A8B9IND4 | PAFAH2 | Platelet-activating factor acetylhydrolase | 2.82 | 0.00 | |
A0A8B9D8G3 | LIAS | Lipoyl synthase | 1.73 | 0.00 | |
A0A8B9DZ79 | mid1ip1b | M1I1B protein | 2.30 | 0.00 | |
A0A8B9EDG7 | uppS | polycis-polyprenyl diphosphate synthase | 3.10 | 0.00 | |
A0A8B9D5N3 | UTP14A | U3 small nucleolar RNA-associated protein 14 homolog A | 1.70 | 0.00 | |
A0A8B9E2N7 | RB18B | RB18B protein | 2.09 | 0.00 | |
A0A8B9DEC2 | Cacybp | Calcyclin-binding protein | 1.80 | 0.00 |
Table 3
Top 10 differential proteins up-regulated and down-regulated between Middle and Final over-feeding stages"
组别 Group | 蛋白ID Protein ID | 基因名 Gene name | 蛋白功能描述 Protein function description | 倍数变化 Fold change | P |
下调Down | A0A8B9EM53 | NADH: ubiquinone oxidoreductase core subunit V1 | 0.63 | 0.00 | |
A0A8B9E7E8 | SC5D | Sterol-C5-desaturase | 0.52 | 0.00 | |
A0A8B9ET89 | Msed_0406 | propionate--CoA ligase | 0.54 | 0.00 | |
A0A8B9INS7 | MT1H | Metallothionein | 0.17 | 0.00 | |
A0A8B9DKF2 | SEC61B | Protein transport protein Sec61 subunit beta | 0.60 | 0.00 | |
A0A8B9D493 | TMX3 | thioredoxin-disulfide reductase | 0.66 | 0.00 | |
A0A8B9EDT5 | SYNE3 | Spectrin repeat containing nuclear envelope family member 3 | 0.45 | 0.00 | |
A0A8B9EK56 | PFKFB1 | 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 1 | 0.62 | 0.00 | |
A0A8B9E4B6 | PASK | Protein kinase domain-containing protein | 0.66 | 0.00 | |
A0A8B9INT0 | TMEM41B | Transmembrane protein 177 | 0.35 | 0.00 | |
上调 Up | A0A8B9D7K1 | Plxnb2 | Plexin B2 | 1.59 | 0.00 |
A0A8B9D8Z5 | Tacc1 | Transforming acidic coiled-coil containing protein 2 | 2.05 | 0.00 | |
A0A8B9DGJ0 | PDLIM4 | PDZ and LIM domain 1 | 2.45 | 0.00 | |
A0A8B9DDN0 | Urah | 5-hydroxyisourate hydrolase | 4.93 | 0.00 | |
A0A8B9DRG6 | ADIPOQ | Adiponectin, C1Q and collagen domain containing | 1.53 | 0.00 | |
A8B9DB57 | CBX2 | Chromobox 1 | 2.66 | 0.00 | |
A0A8B9DEL4 | DEFB114 | Beta-defensin 2 | 4.55 | 0.00 | |
B2ZR74 | SSA1 | Heat shock protein 70 | 1.61 | 0.00 | |
A0A8B9DD15 | Cobl | Cordon-bleu WH2 repeat protein | 1.98 | 0.00 | |
A0A8B9DMG4 | ITSN1 | Intersectin 1 | 1.52 | 0.00 |
Fig. 4
KEGG enrichment map and important enrichment pathways of differential proteins at different over-feeding stages A. Early and Middle over-feeding stage; B. Middle and Final over-feeding stage; C. Important pathways enriched by differentially expressed proteins. Red indicates differentially expressed up-regulated proteins; green indicates differentially expressed down-regulated proteins"
Fig. 5
Network interaction analysis of differential proteins and mRNA expression level of differentially expressed proteins at different over-feeding stages A. Network interaction analysis of differential proteins; B. ADIPOQ gene expression level at different over-feeding stages; C. PASK gene expression level at different over-feeding stages. Data columns marked with different lowercase letters indicate significant differences (P < 0.01)"
1 | 侯水生, 刘灵芝. 2022年水禽产业现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2023, 59 (3): 274- 280. |
HOU S S , LIU L Z . Current status, future development trends, and suggestions for the water bird industry in 2022[J]. Chinese Journal of Animal Science, 2023, 59 (3): 274- 280. | |
2 |
KOZÁK J . Goose production and goose products[J]. World 's Poult Sci J, 2021, 77 (2): 403- 414.
doi: 10.1080/00439339.2021.1885002 |
3 | FAZIA M A D , SERVILLO G . Foie gras and liver regeneration: a fat dilemma[J]. Other, 2018, 2 (7): 144. |
4 | CIAULA A D , CALAMITA G , SHANMUGAM H , et al. Mitochondria matter: Systemic aspects of nonalcoholic fatty liver disease (NAFLD) and diagnostic assessment of liver function by stable isotope dynamic breath tests[J]. MDPI AG, 2021 (14): 77- 86. |
5 | 夏丽丽. 内质网应激、胰岛素抵抗与鹅肥肝形成的关系研究[D]. 扬州: 扬州大学, 2016. |
XIA L L. Study on the relationship between endoplasmic reticulum stress, insulin resistance and foie gras formation[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
6 | 刘龙, 王倩, 许程, 等. 鹅肥肝形成中补体受体1基因的表达和调控研究[J]. 中国家禽, 2016, 38 (24): 6. |
LIU L , WANG Q , XU C , et al. Expression and regulation of complement receptor 1 gene in foie gras formation[J]. Chinese Poultry, 2016, 38 (24): 6. | |
7 | SUN X , ZHANG Y , XIE M . The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver diseases[J]. Acta Pharm, 2017 (1): 96. |
8 |
POLYZOS S A , PERAKAKIS N , MANTZOROS C S . Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement[J]. Metabolism, 2019, 96, 66- 82.
doi: 10.1016/j.metabol.2019.05.001 |
9 | 黄宣, 尹兆正, 徐春晖, 等. 基于TMT技术的不同产蛋性能母鸡卵巢蛋白组学研究[J]. 中国畜牧杂志, 2024, 60 (5): 139- 146. |
HUANG X , YIN Z Z , XU C H , et al. Ovarian proteomics of hens with different laying performance based on TMT technology[J]. Chinese Journal of Animal Science, 2024, 60 (5): 139- 146. | |
10 | WANG L , CHENG B , LI H , et al. Proteomics analysis of preadipocytes between fat and lean broilers[J]. Br Poult Sci, 2024, 3 (1): 41. |
11 | 刘忠华. 鹅正常肝脏与肥肝差异表达蛋白质检测与分析[D]. 扬州: 扬州大学, 2008. |
LIU Z H. Detection and analysis of differential expression of protein in normal liver and foie gras of geese[D]. Yangzhou: Yangzhou University, 2008. (in Chinese) | |
12 |
PETER J , THILO K , MANFRED B , et al. Dietary protein-related changes in hepatic transcription correspond to modifications in hepatic protein expression in growing pigs[J]. J Nutr, 2004, 134 (1): 43- 47.
doi: 10.1093/jn/134.1.43 |
13 | 冯亚敏. 高胆固醇血症小鼠肝脏的差异表达蛋白[J]. 中国动脉硬化杂志, 2004, 12 (3): 279- 283. |
FENG Y M . Differential expression of proteins in the liver of hypercholesterolemic mice[J]. Chinese Journal of Arteriosclerosis, 2004, 12 (3): 279- 283. | |
14 | 马秋霞, 王宝维, 张名爱, 等. 基于广泛靶向代谢组学揭示鹅肥肝形成过程中代谢物动态变化规律[J]. 食品科学, 2024, 45 (1): 118- 124. |
MA Q X , WANG B W , ZHANG M A , et al. Study on dynamic changes of metabolites during foie gras formation based on broadly targeted metabolomics[J]. Food Science, 2024, 45 (1): 118- 124. | |
15 | 柳序, 郭松长, 刘耀文, 等. 鹅肝脏脂肪变性和鹅肥肝形成的分子保护机制研究进展[J]. 动物营养学报, 2018, 30 (7): 6. |
LIU X , GUO S C , LIU Y W , et al. Advances in molecular protective mechanisms of liver steatosis and foie gras formation in geese[J]. Chinese Journal of Animal Nutrition, 2018, 30 (7): 6. | |
16 | 徐衍, 饶慧瑛. 从非酒精性脂肪性肝病到代谢相关脂肪性肝病的变迁[J]. 肝脏, 2024, 29 (3): 255- 257. |
XU Y , RAO H Y . Transition from nonalcoholic fatty liver disease to metabolically related fatty liver disease[J]. Liver, 2024, 29 (3): 255- 257. | |
17 |
FU Y , LUO N , KLEIN R L , GARVEY W T . Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation[J]. J Lipid Res, 2005, 46, 1369- 1379.
doi: 10.1194/jlr.M400373-JLR200 |
18 |
KADOWAKI T , YAMAUCHI T . Adiponectin and adiponectin receptors[J]. Endocr Rev, 2005, 26, 439- 451.
doi: 10.1210/er.2005-0005 |
19 |
QI Y , TAKAHASHI N , HILEMAN S M , et al. Adiponectin acts in the brain to decrease body weight[J]. Nat Med, 2004, 10, 524- 529.
doi: 10.1038/nm1029 |
20 |
FRUEBIS J , TSAO T S , JAVORSCHI S , et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proc Natl Acad Sci USA, 2001, 98, 2005- 2010.
doi: 10.1073/pnas.98.4.2005 |
21 | CHEN L , LI W , FU Y , et al. Shugan jiangzhi decoction alleviates nonalcoholic fatty liver disease (NAFLD) via regulating AMPK/PPAR signaling pathway[J]. Letters Drug Design Discovery, 2024 (13): 21. |
22 | LIU S , LI C , HU X , et al. Molecular mechanisms of circRNA-miRNA-mRNA interactions in the regulation of goose liver development[J]. Animals, 2024, 14 (6): 89- 99. |
23 |
HERMIER D , ROUSSELOF PAILLEY D , PERESSON R , et al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis[J]. Biochim Biophys Acta, 1994, 1211 (1): 97- 106.
doi: 10.1016/0005-2760(94)90143-0 |
24 |
PAWLAK M , LEFEBVRE P , STAELS B . Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62 (3): 720- 733.
doi: 10.1016/j.jhep.2014.10.039 |
25 | 陈剑明, 张声生, 李琳, 等. 虎杖苷治疗非酒精性脂肪肝的肝脏病理评价及对脂质代谢酶SERSP-1c和PPAR-a的调节作用[J]. 中华中医药学刊, 2015, 33 (7): 6. |
CHEN J M , ZHANG S S , LI L , et al. Liver pathological evaluation of polydatin in the treatment of non-alcoholic fatty liver and its regulatory effect on lipid metabolism enzymes SERSP-1c and PPAR-a[J]. Chinese Journal of Traditional Chinese Medicine, 2015, 33 (7): 6. | |
26 |
陈兴勇, 赵宁, 张燕, 等. 皖西白鹅育肥期肌肉脂肪酸组成及肝PPARα、FADS2和ME1基因表达规律的研究[J]. 畜牧兽医学报, 2017, 48 (10): 1912- 1919.
doi: 10.11843/j.issn.0366-6964.2017.10.014 |
CHEN X Y , ZHAO N , ZHANG Y , et al. Study on fatty acid composition of muscle and expression of PPARα, FADS2 and ME1 genes in liver of Wanxi White Geese during fattening period[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1912- 1919.
doi: 10.11843/j.issn.0366-6964.2017.10.014 |
|
27 |
MANDARD S , MULLER M , KERSTEN S . Peroxisome proliferator receptor α target genes[J]. Cell Mol Life Sci, 2004, 61 (4): 393- 416.
doi: 10.1007/s00018-003-3216-3 |
28 |
GEORRGIADI A , KERSTEN S . Mechanisms of gene regulation by fatty acids[J]. Adv Nutr, 2012, 3 (2): 127- 134.
doi: 10.3945/an.111.001602 |
29 | HONDA K , ANEYASUS T , SUGIMOTO H , et al. Role of peroxisome proliferator-activated receptor alpha in the expression of hepatic fatty acid oxidation-related genes in chickens[J]. Anim Sci, 2015, 87 (1): 61- 66. |
30 |
RAMIAH S K , MENG G Y . Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species[J]. World Poult Sci J, 2016, 72 (3): 551- 562.
doi: 10.1017/S0043933916000490 |
31 |
TSUTSUMI T . Proline- and alanine-rich ste20-related kinase associates with F-actin and translocates from the cytosol to cytoskeleton upon cellular stresses[J]. J Biol Chem, 2000, 275 (13): 9157- 9162.
doi: 10.1074/jbc.275.13.9157 |
32 | XIAO M . Signal-regulated unmasking of nuclear localization motif in the PAS domain regulates the nuclear translocation of PASK[J]. J Mol Biol, 2024, 436 (3): 56- 63. |
33 |
HENRY J T . Ligand-binding PAS domains in a genomic, cellular, and structural context[J]. Annu Rev Microbiol, 2011, 65, 261- 286.
doi: 10.1146/annurev-micro-121809-151631 |
34 | PAPE J A . Per-Arnt-Sim kinase (PASK) deficiency increases cellular respiration on a standard diet and decreases liver triglyceride accumulation on a western high-fat high-sugar diet[J]. Nutrients, 2018, 10 (12): 102- 115. |
35 | 李佶桐. LncRNA--p3134通过调控PASK--PPARγ通路影响3T3--L1前体脂肪细胞分化及胰岛素敏感性[D]. 广州: 南方医科大学, 2024. |
LI J T. Lncrna-p3134 affects 3T3-L1 precursor adipocyte differentiation and insulin sensitivity by regulating Pask-PPARγ pathway[D]. Guangzhou: Southern Medical University, 2024. (in Chinese) | |
36 | 李聆嫦. 基于PI3K/AKT/mTOR信号通路探讨加味理中汤治疗非酒精性脂肪性肝炎的临床疗效及机制研究[D]. 南宁: 广西中医药大学, 2023. |
LI L C. To investigate the clinical efficacy and mechanism of Jiawei-Lizhong decoction in the treatment of non-alcoholic steatohepatitis based on PI3K/AKT/mTOR signaling pathway[D]. Nanning: Guangxi University of Traditional Chinese Medicine, 2023. (in Chinese) | |
37 | 李凤, 李茂微, 王雨杉. 非酒精性脂肪肝病的治疗模式和潜在疗法[J]. 临床肝胆病杂志, 2024, 40 (10): 2082- 2086. |
LI F , LI M W , WANG Y S . Treatment model and potential therapy of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatobiliary Diseases, 2024, 40 (10): 2082- 2086. | |
38 | 陈陶然, 杨文静, 董溶溶, 等. 脂联素检测方法的研究进展[J]. 标记免疫分析与临床, 2023, 30 (10): 1795- 1800. |
CHEN T R , YANG W J , DONG R R , et al. Research progress of adiponectin detection methods[J]. Journal of Labeled Immuno Analysis and Clinic, 2023, 30 (10): 1795- 1800. | |
39 |
ZHAO J N , PIKE B , HUANG J , et al. Effects of medium chain triglycerides on hepatic fatty acid oxidation in clofibrate-fed new born piglets[J]. Anim Nutrit, 2023, 12, 334- 344.
doi: 10.1016/j.aninu.2022.12.001 |
40 |
GENG T Y , ZHAO X , XA L L , et al. Supplementing dietary sugar promotes endoplasmic reticulum stress-independent insulin resistance and fatty liver in goose[J]. Biochem Biophys Res Commun, 2016, 476 (4): 665- 669.
doi: 10.1016/j.bbrc.2016.05.149 |
41 | OSMAN R H , LIU L , XIA L L , et al. Fads1 and 2 are promoted to meet instant need for long chain polyunsaturated fatty acids in goose fatty liver[J]. Mol Cellr Biochem, 2016, 418 (1): 103- 107. |
[1] | ZHOU Rui, WU De, CHE Lianqiang, LIN Yan, FENG Bin, FANG Zhengfeng. Advances of N6-Adenosine Methylation Regulating Adipogenesis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 1995-2003. |
[2] | ZHANG Yanyan, GE Hongfan, ZHOU Zhenlei. The Effect of Salidroside on Methylprednisolone Induced Femoral Head Necrosis in Broiler Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2496-2506. |
[3] | WANG Shengqi, JI Xinyu, HUANG Fuqing, HU Manli, WANG Rouqi, GENG Yuxin, SUN Yingxue, QI Zhili, ZHANG Xin. Effects of Salidroside-added Complete Nutrition Food on Blood Biochemical Indexes and Liver Transcriptomics in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 455-465. |
[4] | Yao LI, Rui JIA, Jie LI, Shuangbao GUN, Qiaoli YANG, Longlong WANG, Pengxia ZHANG, Xiaoli GAO, Xiaoyu HUANG. Effects of Low Temperature on Adipose Tissue Morphology, Lipid Metabolism-Related Gene Expression and Enzyme Activities, and AMPK/PGC-1α Pathway in Hezuo Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3418-3426. |
[5] | Qiaoli YANG, Fugang LI, Guojun YAN, Qiang LIU, Gang GUO, Cong WANG. Effects of Folic Acid and Cobalamin on Lactation Performance, Nutrient Digestion and Hepatic Lipid Content in Dairy Cows during Perinatal Period [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5114-5123. |
[6] | ZHU Qian, CHENG Yating, LI Ruixuan, LI Chenjian, LIU Yating, KONG Xiangfeng. Effects of Probiotics and Synbiotics Addition to Sows’ Diet on Fatty Acid Composition and Related Gene Expression in Muscle of Offspring Bama Mini-Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2458-2467. |
[7] | OU Zhengmiao, ZHOU Jiawen, LIU Lili, WU Yun, CHEN Fenfen. Screening and Expression Analysis of Genes Related to Lipid Metabolism in Liver Tissue of Wuliangshan Sooty Chicken Based on RNA-Seq [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 976-988. |
[8] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[9] | ZHAO Huiying, YU Shiqiang, ZHAO Yuchao, JIANG Linshu. Mechanism of Liver-Adipose Tissue Crosstalk in the Development of Fatty Liver in Periparturient Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4105-4116. |
[10] | LI Hong, LI Yanping, LIU Tingli, CHEN Guoliang, WANG Liqun, GUO Xiaola, LUO Xuenong. The Effect of Echinococcus multilocularis Infection on Lipid Metabolism in the Liver of Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 263-271. |
[11] | ZHOU Min, WANG Kaige, ZHANG Lian, MA Xi. Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2845-2857. |
[12] | GUO Yulong, ZHI Yihao, LI Xinyan, DONG Jiajia, LI Zhuanjian, TIAN Yadong, LI Hong, LIU Xiaojun. Study on Genome-wide Methylation Difference and Its Effect on Liver Transcriptome in Chickens During Pre-laying and Peak-laying Periods [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2888-2899. |
[13] | XU Chunlin, CAO Yuzhu, XIA Tian, JIA Qihui, WANG Dandan, ZHENG Hang, TIAN Yadong, KANG Xiangtao, JIANG Ruirui, LIU Xiaojun, LI Hong. Biological Characteristics and Expression Regulation of Chicken Microsomal Triglyceride Transfer Protein Like Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2900-2911. |
[14] | LI Lin, CAO Meng, GONG Binbin, ZHAO Mei, WANG Jie, ZHANG Xiaohui. The Mechanism of Sodium Butyrate through AMPK Pathway to Regulate Lipid Metabolism Disorder Caused by LPS in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3221-3230. |
[15] | ZHANG Junzhen, ZHANG Meng, LI Yali, CHANG Qiangqiang, SUN Tianyuan. Screening of Differentially Expressed Genes Related to Lipid Metabolism in Breast Muscle of Bian Chickens by Adding Conjugated Linoleic Acids in Diet [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1486-1499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||