Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (5): 1995-2003.doi: 10.11843/j.issn.0366-6964.2025.05.001
• Review • Previous Articles Next Articles
ZHOU Rui1(), WU De1, CHE Lianqiang1, LIN Yan1, FENG Bin1, FANG Zhengfeng1,2,*(
)
Received:
2024-10-10
Online:
2025-05-23
Published:
2025-05-27
Contact:
FANG Zhengfeng
E-mail:rui1zhou@163.com;ZFang@sicau.edu.cn
CLC Number:
ZHOU Rui, WU De, CHE Lianqiang, LIN Yan, FENG Bin, FANG Zhengfeng. Advances of N6-Adenosine Methylation Regulating Adipogenesis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 1995-2003.
1 |
梁小娟, 李雨爽, 李莹莹, 等. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55 (07): 2877- 2889.
doi: 10.11843/j.issn.0366-6964.2024.07.009 |
LIANG X J , LI Y S , LI Y Y , et al. Isolation, culture and adipogenic differentiation of Beijing Black pig preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2877- 2889.
doi: 10.11843/j.issn.0366-6964.2024.07.009 |
|
2 | BOGIE J F J , GRAJCHEN E , WOUTERS E , et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain[J]. J Exp Med, 2020, 217 (5) |
3 | 汪以真. mRNA N6-甲基腺嘌呤修饰调控与动物脂肪沉积的研究进展[J]. 动物营养学报, 2022, 34 (11): 6801- 6816. |
WANG Y Z . Research Progress on mRNA N6-methyladenosine modification regulation and animal fat deposition[J]. Chinese Journal of Animal Nutrition, 2022, 34 (11): 6801- 6816. | |
4 |
FANG Z , MEI W , QU C , et al. Role of m6A writers, erasers and readers in cancer[J]. Exp Hematol Oncol, 2022, 11 (1): 45.
doi: 10.1186/s40164-022-00298-7 |
5 |
ALARCÓN C R , LEE H , GOODARZI H , et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519 (7544): 482- 485.
doi: 10.1038/nature14281 |
6 |
WEI C M , GERSHOWITZ A , MOSS B . Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA[J]. Cell, 1975, 4 (4): 379- 86.
doi: 10.1016/0092-8674(75)90158-0 |
7 |
SHI H , WEI J , HE C . Where, When, and How: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019, 74 (4): 640- 650.
doi: 10.1016/j.molcel.2019.04.025 |
8 |
SOMMER S , LAVI U , DARNELL J E Jr . The absolute frequency of labeled N-6-methyladenosine in HeLa cell messenger RNA decreases with label time[J]. J Mol Biol, 1978, 124 (3): 487- 499.
doi: 10.1016/0022-2836(78)90183-3 |
9 | BOKAR J A , SHAMBAUGH M E , POLAYES D , et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J]. RNA, 1997, 3 (11): 1233- 1247. |
10 |
JIA G , FU Y , ZHAO X , et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7 (12): 885- 887.
doi: 10.1038/nchembio.687 |
11 |
DOMINISSINI D , MOSHITCH-MOSHKOVITZ S , SCHWARTZ S , et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485 (7397): 201- 206.
doi: 10.1038/nature11112 |
12 |
庞立川, 单艳菊, 刘一帆, 等. METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J]. 畜牧兽医学报, 2023, 54 (02): 545- 553.
doi: 10.11843/j.issn.0366-6964.2023.02.012 |
PANG L C , SHAN Y J , LIU Y F , et al. Expression of METTL16 in different types of chicken muscle and its regulatory role in chicken skeletal muscle function[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 545- 553.
doi: 10.11843/j.issn.0366-6964.2023.02.012 |
|
13 | 张娟丽, 杨姣姣, 杨巧丽, 等. m6A甲基化修饰对畜禽生产影响的研究进展[J]. 中国兽医学报, 2023, 43 (6): 1333- 1341. |
ZHANG J L , YANG J J , YANG Q L , et al. Research progress on the effects of m6A methylation modification on livestock and poultry production[J]. Chinese Journal of Veterinary Science, 2023, 43 (6): 1333- 1341. | |
14 |
肖叶懿, 郜重丞, 包文斌, 等. 猪m6A甲基化酶WTAP基因与F18大肠杆菌感染的关系[J]. 畜牧兽医学报, 2021, 52 (6): 1709- 1716.
doi: 10.11843/j.issn.0366-6964.2021.06.025 |
XIAO Y Y , GAO Z C , BAO W B , et al. Relationship between porcine m6A methylase WTAP Gene and F18 Escherichia coli infection[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (6): 1709- 1716.
doi: 10.11843/j.issn.0366-6964.2021.06.025 |
|
15 | 田婷婷, 伊旭东, 庞卫军. 脂肪含量和肥胖相关蛋白介导的mRNA m6A修饰对动物脂肪沉积的作用及其应用前景[J]. 生物工程学报, 2022, 38 (1): 119- 129. |
TIAN T T , YI X D , PANG W J . The effect of fat mass and obesity associated proteins mediated mRNA m6A modification on animal fat deposition and its application prospects[J]. Chinese Journal of Biotechnology, 2022, 38 (1): 119- 129. | |
16 |
韩皓哲, 帖子航, 庞卫军, 等. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54 (9): 3605- 3612.
doi: 10.11843/j.issn.0366-6964.2023.09.002 |
HAN H Z , TIE Z H , PANG W J , et al. Advances of IGF2BP2-mediated m6A modification on animal fat deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3605- 3612.
doi: 10.11843/j.issn.0366-6964.2023.09.002 |
|
17 |
SONG T , YANG Y , JIANG S , et al. Novel insights into adipogenesis from the perspective of transcriptional and RNA N6-methyladenosine-mediated post-transcriptional regulation[J]. Adv Sci, 2020, 7 (21): 2001563.
doi: 10.1002/advs.202001563 |
18 |
卢曾奎, 张利平, 李青, 等. mRNA中N6-甲基腺苷修饰及其在动物中的研究进展[J]. 畜牧兽医学报, 2019, 50 (1): 1- 13.
doi: 10.11843/j.issn.0366-6964.2019.01.001 |
LU Z K , ZHANG L P , LI Q , et al. N6-methyladenosine modification in mRNA and its research advance in animals[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (1): 1- 13.
doi: 10.11843/j.issn.0366-6964.2019.01.001 |
|
19 |
YOON H , SHAW J L , HAIGIS M C , et al. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity[J]. Mol Cell, 2021, 81 (18): 3708- 3730.
doi: 10.1016/j.molcel.2021.08.027 |
20 |
JEON Y G , KIM Y Y , LEE G , et al. Physiological and pathological roles of lipogenesis[J]. Nat Metab, 2023, 5 (5): 735- 759.
doi: 10.1038/s42255-023-00786-y |
21 | ZHAO X , YANG Y , SUN B F , et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24 (12): 1403- 1419. |
22 | FRAYLING T M , TIMPSON N J , WEEDON M N , et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316 (5826): 889- 894. |
23 | MERKESTEIN M , SELLAYAH D . Role of FTO in adipocyte development and function: Recent insights[J]. Int J Endocrinol, 2015, 2015, 521381. |
24 | MERKESTEIN M , LABER S , MCMURRAY F , et al. FTO influences adipogenesis by regulating mitotic clonal expansion[J]. Nat Commun, 2015, 6, 6792. |
25 | WANG X , SUN B , JIANG Q , et al. mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes[J]. Int J Obes, 2018, 42 (11): 1912- 1924. |
26 | WANG X , WU R , LIU Y , et al. m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7[J]. Autophagy, 2020, 16 (7): 1221- 1235. |
27 | CHEN A , CHEN X , CHENG S , et al. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863 (5): 538- 548. |
28 | WANG L , SONG C , WANG N , et al. NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity[J]. Nat Chem Biol, 2020, 16 (12): 1394- 1402. |
29 | YOUNOSSI Z M . Non-alcoholic fatty liver disease-A global public health perspective[J]. J Hepatol, 2019, 70 (3): 531- 544. |
30 | PENG Z , GONG Y , WANG X , et al. METTL3-m6A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease[J]. Mol Ther, 2022, 30 (2): 932- 946. |
31 | ZHOU B , LUO Y , BI H , et al. Amelioration of nonalcoholic fatty liver disease by inhibiting the deubiquitylating enzyme RPN11[J]. Cell Metab, 2024, 36 (10): 2228- 2244.e7. |
32 | WANG Y , GAO M , ZHU F , et al. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice[J]. Nat Commun, 2020, 11 (1): 1648. |
33 | CHEN H , GAO S , LIU W , et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target[J]. Gastroenterology, 2021, 160 (4): 1284- 1300.e16. |
34 | LU X Y , SHI X J , HU A , et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis[J]. Nature, 2020, 588 (7838): 479- 484. |
35 | FU R , CHEN D , TIAN G , et al. Betaine affects abdominal flare fat metabolism via regulating m6A RNA methylation in finishing pigs fed a low-energy diet[J]. J Functional Foods, 2023, 107, 105620. |
36 | CHO S , CHUN Y , HE L , et al. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1[J]. Mol Cell, 2023, 83 (16): 3010- 3026.e8. |
37 | ZHONG X , YU J , FRAZIER K , et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation[J]. Cell Rep, 2018, 25 (7): 1816- 1828.e4. |
38 | WANG Y , LI X , LIU C , et al. WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice[J]. Life Metab, 2022, 1 (3): 270- 284. |
39 | XIAO L , DE JESUS D F , JU C W , et al. m6A mRNA methylation in brown fat regulates systemic insulin sensitivity via an inter-organ prostaglandin signaling axis independent of UCP1[J]. Cell Metab, 2024, 36 (10): 2207- 2227.e9. |
40 | SONG T , YANG Y , WEI H , et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation[J]. Nucleic Acids Res, 2019, 47 (12): 6130- 6144. |
41 | LIU Q , ZHAO Y , WU R , et al. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m6 A dependent manner[J]. RNA Biol, 2019, 16 (12): 1785- 1793. |
42 | JIANG Q , SUN B , LIU Q , et al. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism[J]. FASEB J, 2019, 33 (2): 2971- 2981. |
43 | ZHOU B , LIU C , XU L , et al. N6-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes[J]. Hepatology, 2021, 73 (1): 91- 103. |
44 | YAN Z , ZHANG Y , NAN N , et al. YTHDC2 mediated RNA m6A modification contributes to PM2.5-induced hepatic steatosis[J]. J Hazard Mater, 2024, 476, 135004. |
45 | DAI N , ZHAO L , WRIGHTING D , et al. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins[J]. Cell Metab, 2015, 21 (4): 609- 621. |
46 | REGUé L , MINICHIELLO L , AVRUCH J , et al. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation[J]. J Biol Chem, 2019, 294 (31): 11944- 11951. |
47 | CHENG Y , GAO Z , ZHANG T , et al. Decoding m6A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance[J]. Cell Stem Cell, 2023, 30 (1): 69- 85.e7. |
48 | JIANG Y , PENG J , SONG J , et al. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2[J]. Nat Metab, 2021, 3 (11): 1569- 1584. |
49 | LEVINE B , KROEMER G . Biological functions of autophagy genes: A disease perspective[J]. Cell, 2019, 176 (1-2): 11- 42. |
50 | SONG H , FENG X , ZHANG H , et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15 (8): 1419- 1437. |
51 | VILLA E , SAHU U , O 'HARA B P , et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis[J]. Mol Cell, 2021, 81 (10): 2076- 2093.e9. |
52 | CHO S , LEE G , PICKERING B F , et al. mTORC1 promotes cell growth via m6A-dependent mRNA degradation[J]. Mol Cell, 2021, 81 (10): 2064- 2075.e8. |
53 | ZUO F , WEI H , PENG J , et al. Effects on the cell barrier function of L-Met and DL-HMTBA is related to metabolic characteristics and m6A modification[J]. Front Nutr, 2022, 9, 836069. |
54 | 左方瑞. 不同形式的蛋氨酸源在猪不同细胞系中的代谢特征和对细胞功能的影响[D]. 武汉: 华中农业大学, 2020. |
ZUO F R. Metabolic characteristics and effects on cell functions of different forms of methionine sources in different pig cell lines[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
55 | GEBEYEW K , YANG C , MI H , et al. Lipid metabolism and m6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet[J]. J Anim Sci Biotechnol, 2022, 13 (1): 85. |
56 | SONG Y P , LV J W , ZHANG Z C , et al. Effects of gestational arsenic exposures on placental and fetal development in mice: The role of Cyr61 m6A[J]. Environ Health Perspect, 2023, 131 (9): 97004. |
57 | LIU Y , SHEN J , YANG X , et al. Folic acid reduced triglycerides deposition in primary chicken hepatocytes[J]. J Agric Food Chem, 2018, 66 (50): 13162- 13172. |
58 | LIU Y , YANG J , LIU X , et al. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers[J]. Anim Nutr, 2023, 12, 54- 62. |
59 | LI N , ZHANG D , CAO S , et al. The effects of folic acid on RNA m6A methylation in hippocampus as well as learning and memory ability of rats with acute lead exposure[J]. J Functional Foods, 2021, 76, 104276. |
60 | ZHONG Y , YAN Z , SONG B , et al. Dietary supplementation with betaine or glycine improves the carcass trait, meat quality and lipid metabolism of finishing mini-pigs[J]. Anim Nutr, 2021, 7 (2): 376- 383. |
61 | ZHAO N , YANG S , SUN B , et al. Maternal betaine protects rat offspring from glucocorticoid-induced activation of lipolytic genes in adipose tissue through modification of DNA methylation[J]. Eur J Nutr, 2020, 59 (4): 1707- 1716. |
62 | FU R , WANG Q , KONG C , et al. Mechanism of action and the uses betaine in pig production[J]. J Anim Physiol Anim Nutr, 2022, 106 (3): 528- 536. |
63 | WU W , WANG S , XU Z , et al. Betaine promotes lipid accumulation in adipogenic-differentiated skeletal muscle cells through ERK/PPARγ signalling pathway[J]. Mol Cell Biochem, 2018, 447 (1-2): 137- 149. |
64 | LU N , LI X , YU J , et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6 A RNA methylation in piglets[J]. Lipids, 2018, 53 (1): 53- 63. |
65 | 窦晓宁, 蒋苏苏, 魏芳, 等. α-亚麻酸和亚油酸通过抑制脂肪细胞分化和诱导凋亡减弱猪脂肪形成[J]. 基因组学与应用生物学, 2021, 40 (Z3): 2995- 3005. |
DOU X N , JIANG S S , WEI F , et al. α-linolenic acid and linoleic acid decreased porcine fat formation by inhibiting adipocyte differentiation and inducing apoptosis[J]. Genomics and Applied Biology, 2021, 40 (Z3): 2995- 3005. | |
66 | CHEN W , CHEN Y , WU R , et al. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling[J]. BMC Biol, 2022, 20 (1): 39. |
67 | CHEN W , LIU Y , LIU J , et al. Acute exercise promotes WAT browning by remodeling mRNA m6A methylation[J]. Life Sci, 2025, 361, 123269. |
[1] | HOU Zhongyi, WANG Baowei, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, YUE Bin, LU Xiu, FAN Wenlei. The Regulation Mechanism of Lipid Metabolism in Foie Gras Formation Based on Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2182-2193. |
[2] | ZHANG Yanyan, GE Hongfan, ZHOU Zhenlei. The Effect of Salidroside on Methylprednisolone Induced Femoral Head Necrosis in Broiler Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2496-2506. |
[3] | WANG Shengqi, JI Xinyu, HUANG Fuqing, HU Manli, WANG Rouqi, GENG Yuxin, SUN Yingxue, QI Zhili, ZHANG Xin. Effects of Salidroside-added Complete Nutrition Food on Blood Biochemical Indexes and Liver Transcriptomics in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 455-465. |
[4] | Yao LI, Rui JIA, Jie LI, Shuangbao GUN, Qiaoli YANG, Longlong WANG, Pengxia ZHANG, Xiaoli GAO, Xiaoyu HUANG. Effects of Low Temperature on Adipose Tissue Morphology, Lipid Metabolism-Related Gene Expression and Enzyme Activities, and AMPK/PGC-1α Pathway in Hezuo Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3418-3426. |
[5] | Qiaoli YANG, Fugang LI, Guojun YAN, Qiang LIU, Gang GUO, Cong WANG. Effects of Folic Acid and Cobalamin on Lactation Performance, Nutrient Digestion and Hepatic Lipid Content in Dairy Cows during Perinatal Period [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5114-5123. |
[6] | ZHU Qian, CHENG Yating, LI Ruixuan, LI Chenjian, LIU Yating, KONG Xiangfeng. Effects of Probiotics and Synbiotics Addition to Sows’ Diet on Fatty Acid Composition and Related Gene Expression in Muscle of Offspring Bama Mini-Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2458-2467. |
[7] | OU Zhengmiao, ZHOU Jiawen, LIU Lili, WU Yun, CHEN Fenfen. Screening and Expression Analysis of Genes Related to Lipid Metabolism in Liver Tissue of Wuliangshan Sooty Chicken Based on RNA-Seq [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 976-988. |
[8] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[9] | ZHAO Huiying, YU Shiqiang, ZHAO Yuchao, JIANG Linshu. Mechanism of Liver-Adipose Tissue Crosstalk in the Development of Fatty Liver in Periparturient Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4105-4116. |
[10] | LI Hong, LI Yanping, LIU Tingli, CHEN Guoliang, WANG Liqun, GUO Xiaola, LUO Xuenong. The Effect of Echinococcus multilocularis Infection on Lipid Metabolism in the Liver of Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 263-271. |
[11] | ZHOU Min, WANG Kaige, ZHANG Lian, MA Xi. Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2845-2857. |
[12] | GUO Yulong, ZHI Yihao, LI Xinyan, DONG Jiajia, LI Zhuanjian, TIAN Yadong, LI Hong, LIU Xiaojun. Study on Genome-wide Methylation Difference and Its Effect on Liver Transcriptome in Chickens During Pre-laying and Peak-laying Periods [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2888-2899. |
[13] | XU Chunlin, CAO Yuzhu, XIA Tian, JIA Qihui, WANG Dandan, ZHENG Hang, TIAN Yadong, KANG Xiangtao, JIANG Ruirui, LIU Xiaojun, LI Hong. Biological Characteristics and Expression Regulation of Chicken Microsomal Triglyceride Transfer Protein Like Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2900-2911. |
[14] | LI Lin, CAO Meng, GONG Binbin, ZHAO Mei, WANG Jie, ZHANG Xiaohui. The Mechanism of Sodium Butyrate through AMPK Pathway to Regulate Lipid Metabolism Disorder Caused by LPS in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3221-3230. |
[15] | ZHANG Junzhen, ZHANG Meng, LI Yali, CHANG Qiangqiang, SUN Tianyuan. Screening of Differentially Expressed Genes Related to Lipid Metabolism in Breast Muscle of Bian Chickens by Adding Conjugated Linoleic Acids in Diet [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1486-1499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||