

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5367-5378.doi: 10.11843/j.issn.0366-6964.2025.11.003
• Review • Previous Articles Next Articles
SONG Haoran1,2(
), FENG Xiaoyi1, ZHANG Xiaomeng1, YANG Baigao1, LI Chongyang1, DONG Jianhua1, LIU Yang1,2, WANG Zizhuo1,2, WANG Kun3, CUI Kai2, ZHAO Xueming1,*(
)
Received:2025-03-31
Online:2025-11-23
Published:2025-11-27
Contact:
ZHAO Xueming
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
CLC Number:
SONG Haoran, FENG Xiaoyi, ZHANG Xiaomeng, YANG Baigao, LI Chongyang, DONG Jianhua, LIU Yang, WANG Zizhuo, WANG Kun, CUI Kai, ZHAO Xueming. Research Progress of Noninvasive Preimplantation Genetic Examination[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5367-5378.
Table 2
Applications and advantages of PGT related technologies"
| 名称 Name | 技术应用 Technology application | 优点 Advantage | 参考文献 Reference |
| WGA | 对样本中全部基因组序列进行非选择性的、均匀性扩增的技术 | 提高了可用于后续检测的遗传数据的数量和质量 | [ |
| SNP | 检查基因组DNA序列中由于某个核苷酸突变引起的多态性 | SNP分析能提供完整的数据信息和具有极高的分辨率,可用于优良畜种的筛选 | [ |
| NGS | 单次生化反应中同时检测几十万至数百万DNA模板上碱基序列的DNA测序技术 | 高通量测序技术,边合成边测序,检测效率高,应用范围广 | [ |
| aCGH | 一种基于微阵列的技术,将待测DNA与正常对照DNA样本进行杂交比较,以检测出待测样本重复或缺失的区域 | 能够在整个基因组范围内检测出染色体异常, 包括染色体非整倍体、缺失和重复 | [ |
| RT-qPCR | 在PCR体系中加入特定荧光染料或探针,扩增过程中通过荧光信号累积对PCR进程进行实时检测的技术 | 可以实时监控反应产物,提供准确的定量,消除了反应后凝胶分析的需要 | [ |
Table 3
Studies on the examination of blastocyst fluid"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 116新鲜人类胚胎 116 fresh human embryos | D5 | 0.01 μL 囊胚液 | SurePlex (82%,95/116) | PGT-A BF vs. TE(97.1%,67/69) | [ |
| PGT-A BF vs. BM(94.4%,34/36) | |||||
| PGT-A BF vs. PB(94.1%,32/34) | |||||
| 16冷冻人类胚胎 16 frozen human embryos | D5 | 0.01 μL 囊胚液 | PicoPlex (62.5%,10/16) | PGT-A BF vs. TE(40%,4/10) | [ |
| 96冷冻人类胚胎 96 frozen human embryos | D5 | 1 μL 囊胚液 | SurePlex (63%,60/96) | PGT-A BF vs. TE(40%,29/60) | [ |
| 23新鲜人类胚胎 23 fresh human embryos | D5 | 约0.01 μL 囊胚液 | SurePlex (34.8%,8/23) | PGT-A BF vs. TE(37.5%,3/8) | [ |
Table 4
Studies on the examination of blastocyst fluid and spent culture medium"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 53冷冻人类胚胎 53 frozen human embryos | D5/D6 | SCM+BF | MALBAC (88%,46/52) | D5,PGT-A SCM+BF vs. WEs(45%,5/11) | [ |
| D6,PGT-A SCM+BF vs. WE(66%,23/35) | |||||
| 62冷冻人类胚胎 62 frozen human embryos | D5/D6 | SCM+BF 10 μL | MALBAC (100%,62/62) | PGT-A SCM+BF vs. TE(90.48%,19/21) SCM+BF vs. WE(85.71%,18/21) | [ |
| PGT-SR SCM+BF vs. TE(90.24%,37/41) SCM+BF vs. WE(100%,41/41) | |||||
| 145新鲜人类胚胎 145 fresh human embryos | D5/D6 | SCM+BF 5 μL | SurePlex (93%,40/43) | PGT-A SCM+BF vs. TE(97.4%,37/38) | [ |
| 19新鲜人类胚胎 19 fresh human embryos | D5/D6 | SCM+BF | SurePlex (100%,19/19) | PGT-A SCM+BF vs. TE(100%,19/19) | [ |
Table 5
Studies on the examination of spent culture medium"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 28新鲜人类胚胎 28 fresh human embryos | D5/D6 | SCM 2.5 μL | SurePlex (92.86%,26/28) | PGT-A SCM vs. TE(50%,13/26) | [ |
| 28冷冻人类胚胎 28 frozen human embryos | D5/D6 | SCM | SurePlex (100%,28/28) | PGT-A SCM vs. WE(96.4%,27/28) | [ |
| PGT-A SCM vs. TE(87.5%,21/24) | |||||
| 60新鲜人类胚胎 60 fresh human embryos | D6 | SCM | SurePlex (91.67%,55/60) | PGT-A SCM vs. TE(94.5%,52/55) | [ |
| 56冷冻人类胚胎 56 frozen human embryos | D5 | SCM | MALBAC (100%,56/56) | PGT-A SCM vs. WE(94.64%,53/56) | [ |
| 52冷冻人类胚胎 52 frozen human embryos | D5/D6 | SCM 10 μL | MALBAC (92.3%,48/52) | PGT-A SCM vs. WE(93.8%,45/48) | [ |
| 26新鲜、9冷冻人类胚胎 26 fresh, 9 frozen human embryos | D5/D6 | SCM 15 μL | PicoPlex (74.3%,26/35) | PGT-A SCM vs. ICM(58.33%,14/24) | [ |
| 1 301新鲜人类胚胎 1 301 fresh human embryos | D5/D6 | SCM 10 μL | ReproSeq PGS Kit (92%,1 197/1 301) | PGT-A SCM vs. TE(78.2%,886/1108) | [ |
| 20冷冻人类胚胎 20 frozen human embryos | D6 | SCM | SurePlex (95%,19/20) | PGT-A SCM vs. TE(55.6%,10/18) | [ |
| 27新鲜人类胚胎 27 fresh human embryos | D5/D6 | SCM 25 μL | NICs inst (96.3%,26/27) | PGT-A SCM vs. TE(69.2%,18/26) | [ |
| 1 |
DELARCO DE LA PAZ A,GIMÉNEZ-RODRÍGUEZC,SELNTIGIAA,et al.Advancements and challenges in preimplantation genetic testing for aneuploidies: in the pathway to non-invasive techniques[J].Genes,2024,15(12):1613.
doi: 10.3390/genes15121613 |
| 2 |
RULEK,CHOSEDR J,ARTHURCHANG T,et al.Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology[J]. J Assist Reprod Genet,2018,35(8):1497-1501.
doi: 10.1007/s10815-018-1223-4 |
| 3 |
BAYRAMA,ELKHATIBI,KALAFATE,et al.Steady morphokinetic progression is an independent predictor of live birth: A descriptive reference for euploid embryos[J].Hum Reprod Open,2024,2024(4):hoae059.
doi: 10.1093/hropen/hoae059 |
| 4 |
OMESC,CONTIA,BENEDETTIL,et al.Expression of miRNA from spent pre-implantation embryos culture media[J].Reprod Biol,2024,24(2):100847.
doi: 10.1016/j.repbio.2023.100847 |
| 5 |
LEIC,FUJ,LIX,et al.Re-denudation of residual cumulus cells on day 3 increases the accuracy of cell-free DNA detection in spent embryo culture medium[J].J Assist Reprod Genet,2022,39(7):1653-1660.
doi: 10.1007/s10815-022-02511-2 |
| 6 | HOCHBERGA,AMOURAL,ZHANGX Y,et al.The correlation between blastocyst morphological parameters and chromosomal euploidy, aneuploidy and other chromosomal abnormalities following pre-implantation genetic testing—a single center retrospective study[J].Arch Gynecol Obstet,2025,311(3):1-13. |
| 7 |
ZHANGY,LIN,WANGL,et al.Molecular analysis of DNA in blastocoele fluid using next-generation sequencing[J].J Assist Reprod Genet,2016,33(5):637-645.
doi: 10.1007/s10815-016-0667-7 |
| 8 |
MONTAGM,VENK V D,RÖSINGB,et al.Polar body biopsy: A viable alternative to preimplantation genetic diagnosis and screening[J].Reprod Biomed Online,2009,18,6-11.
doi: 10.1016/S1472-6483(10)60109-5 |
| 9 |
AOYAMAN,KATOK.Trophectoderm biopsy for preimplantation genetic test and technical tips: A review[J].Reprod Med Biol,2020,19(3):222-231.
doi: 10.1002/rmb2.12318 |
| 10 |
PALINIS,GALLUZZIL,DE STEFANIS,et al.Genomic DNA in human blastocoele fluid[J].Reprod Biomed Online,2013,26(6):603-610.
doi: 10.1016/j.rbmo.2013.02.012 |
| 11 |
LAYEKS S,KANANIS,DOULTANIS,et al.Analyzing cell-free genomic DNA in spent culture media: noninvasive insight into the blastocysts[J].Glob Med Genet,2024,11(3):227-232.
doi: 10.1055/s-0044-1788260 |
| 12 |
CHENS,WANGL,HUY,et al.Noninvasive preimplantation genetic testing for aneuploidy using blastocyst spent culture medium may serve as a backup of trophectoderm biopsy in conventional preimplantation genetic testing[J].BMC Med Genomics,2025,18(1):34.
doi: 10.1186/s12920-025-02106-7 |
| 13 |
FANGH,XINY Y,JINGW,et al.Non-invasive chromosome screening for embryo preimplantation using cell-free DNA[J].Reprod Dev Med,2022,6(2):113-120.
doi: 10.1097/RD9.0000000000000023 |
| 14 |
JANINEA,HENRIETTEV D Z,ZARCOG,et al.Diagnostic applications and limitations for the use of cell-free fetal DNA (cffDNA) in animal husbandry and wildlife management[J].Res Vet Sci,2023,158,106-116.
doi: 10.1016/j.rvsc.2023.03.013 |
| 15 | ORIGINAL,AU,AU-AFF.Application of assisted reproductive technologies in cattle production[Primjena asistirane reprodukcije u govedarstvu][J].Veterinarska Stanica,2018,49(2):91-104. |
| 16 | CENARIUM,PALLE,CERNEAC,et al.Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability[J].J Biomed Biotechnol,2012,2012(VⅢ):541384. |
| 17 |
ALIZADEGANA,DIANAT-MOGHADAMH,SHADMANN,et al.Application of cell free DNA in ART[J].Placenta,2022,120,18-24.
doi: 10.1016/j.placenta.2022.02.003 |
| 18 |
BARANOVS V,KOGANY I,KNZNETZOVAV T,et al.Advances in developmental genetics and achievements in assisted reproductive technology[J].Russ J Genet,2019,55(10):1171-1182.
doi: 10.1134/S1022795419100028 |
| 19 | KARAMIN,IRAVANIF,BAKHSHANDEH BAVARSADS,et al.Comparing the advantages, disadvantages and diagnostic power of different non-invasive pre-implantation genetic testing: A literature review[J].Int J Reprod Biomed,2023,22(3):177-190. |
| 20 |
ORTEGA-JAéND,MORA-MARTINEZC,CAPALBOA,et al.A pilot study of transcriptomic preimplantation genetic testing (PGT-T): towards a new step in embryo selection?[J].Hum Reprod,2025,40(2):244-260.
doi: 10.1093/humrep/deae265 |
| 21 |
MIZOBEY,KUWATSURUY,KUROKIY,et al.A novel trophectoderm biopsy technique for all blastocyst stages[J].Reprod Med Biol,2022,21(1):e12418.
doi: 10.1002/rmb2.12418 |
| 22 |
FESAHATF,MONTAZERIF,HOSEINIS M.Preimplantation genetic testing in assisted reproduction technology[J].J Gynecol Obstet Hum Reprod,2020,49(5):101723.
doi: 10.1016/j.jogoh.2020.101723 |
| 23 |
SIK,MAB,BAIJ,et al.Preimplantation development analysis of aneuploid embryos with different chromosomal abnormalities[J].Heliyon,2024,10(23):e40686.
doi: 10.1016/j.heliyon.2024.e40686 |
| 24 |
ORVIETOR,AIZERA,GLEICHERN.Is there still a rationale for non-invasive PGT-A by analysis of cell-free DNA released by human embryos into culture medium?[J].Hum Reprod,2021,36(5):1186-1190.
doi: 10.1093/humrep/deab042 |
| 25 |
XIEP,ZHANGS,GUY,et al.Non-invasive preimplantation genetic testing for conventional IVF blastocysts[J].J Transl Med,2022,20(1):396.
doi: 10.1186/s12967-022-03596-0 |
| 26 |
CAMPOSG,NEL-THEMAATL.Blastocoel fluid as an alternative source of DNA for minimally invasive PGT and biomarker of embryo competence[J].Reprod Biomed Online,2024,49(4):104322.
doi: 10.1016/j.rbmo.2024.104322 |
| 27 |
GRATIF R,CAPALBOA,GABBIATOI,et al.Prenatal diagnosis following preimplantation genetic testing (PGT): recommendations of the Italian Society of Human Genetics (SIGU)[J].J Assist Reprod Genet,2025,42(3):1015-1024.
doi: 10.1007/s10815-024-03358-5 |
| 28 |
WANGL,HEX,HUANGX,et al.Preimplantation genetic testing in a family with neurofibromatosis Type 1[J].Genet Test Mol Biomarkers,2025,29(3):54-62.
doi: 10.1089/gtmb.2025.0031 |
| 29 |
LIUX,ZHANGQ,CAOK,et al.Preimplantation genetic testing for monogenic disorders (PGT-M) for monogenic nephropathy: a single-center retrospective cohort analysis[J].Clin Kidney J,2025,18(1):sfae356.
doi: 10.1093/ckj/sfae356 |
| 30 |
ZHANGZ,CHENJ,ZHANGL,et al.Influence of the sex of translocation carrier on clinical outcomes of couples undergoing preimplantation genetic testing[J].Mol Genet Genomic Med,2025,13(1):e70050.
doi: 10.1002/mgg3.70050 |
| 31 |
PETCHS,CROSBYD.Updates in preimplantation genetic testing (PGT)[J].Best Pract Res Clin Obstet Gynaecol,2024,96,102526.
doi: 10.1016/j.bpobgyn.2024.102526 |
| 32 |
LIUD,CHENC,ZHANGX,et al.Successful birth after preimplantation genetic testing for a couple with two different reciprocal translocations and review of the literature[J].Reprod Biol Endocrinol,2021,19(1):58.
doi: 10.1186/s12958-021-00731-2 |
| 33 | GLOTOV OLEGS,SAFIFITDINOVAALSU,PAVLOVA OLGAA,et al.Comparative analysis of the reliability of data on the molecular karyotype of the embryo obtained by whole-genome amplification methods based on NGS technology of trophectoderm of individual cells[J].Am J Obstet Gynecol,2024(6):66-74. |
| 34 |
HUANGP,LANY,ZHOUH,et al.Comprehensive application of multiple molecular diagnostic techniques in pre-implantation genetic testing for monogenic[J].Mol Genet Genomic Med,2024,12(1):e2293.
doi: 10.1002/mgg3.2293 |
| 35 |
MASLUBM G,DAUDN A A,RADWANM A,et al.CYP3A4*1B and CYP3A5*3 SNPs significantly impact the response of Egyptian candidates to high-intensity statin therapy to atorvastatin[J].Eur J Med Res,2024,29(1):539.
doi: 10.1186/s40001-024-02109-7 |
| 36 |
MOAWADM A,ABOSHADYH M,ABD-ALLAM S,et al.Genetic polymorphisms of the growth hormone (GH) gene in Damascus and Black Bengal male goats[J].Trop Anim Health Prod,2025,57(1):18.
doi: 10.1007/s11250-024-04253-y |
| 37 |
KIMS Y,CHUNGB,CHANGJ H,et al.Simultaneous identification of 13 foodborne pathogens by using capillary electrophoresis-single strand conformation polymorphism coupled with multiplex ligation-dependent probe amplification and its application in foods[J]. Foodborne Pathog Dis,2016,13(10):566-574.
doi: 10.1089/fpd.2016.2143 |
| 38 | YUANS,TIANS,MENGC,et al.The identification of functional genes affecting fat-related meat traits in meat-type pigeons using double-digest restriction-associated dna sequencing and molecular docking analysis[J].Animals (Basel),2023,13(20):3256. |
| 39 | MEKONNENK T,LEED H,CHOY G,et al.Genomic and conventional inbreeding coefficient estimation using different estimator models in korean duroc, landrace, and yorkshire breeds using 70K Porcine SNP BeadChip[J].Animals (Basel),2024,14(17):2621. |
| 40 |
GKIOKAV,BALAOURAO,GOULIELMAKIM,et al.The organization of contemporary biobanks for translational cancer research[J].Onco,2023,3(4):205-216.
doi: 10.3390/onco3040015 |
| 41 |
MACEDAI,LAOO.Analysis of the batch effect due to sequencing center in population statistics quantifying rare events in the 1000 genomes project[J].Genes,2021,13(1):44.
doi: 10.3390/genes13010044 |
| 42 |
LAHOUCINES I,CASELLASJ,LUD,et al.Distortion of mendelian segregation across angus cattle genome reveal novel lethal haplotype affecting reproduction[J].Sci Rep,2023,13(1):13393.
doi: 10.1038/s41598-023-37710-z |
| 43 |
GUSAKOVAM S,PATRUSHEVM V.Towards the implementation of high-throughput next-generation sequencing technology in clinical oncology. Where Are We Now?[J].Nanobiotechnology Reports,2024,19(3):329-341.
doi: 10.1134/S2635167624601062 |
| 44 |
RODRIGUEZR,KRISHNANY.The chemistry of next-generation sequencing[J].Nat Biotechnol,2023,41(12):1709-1715.
doi: 10.1038/s41587-023-01986-3 |
| 45 | JOHND,ZHENYAT,MEHMETA,et al.Detection of clinically actionable gene fusions by next-generation sequencing-based RNA sequencing of non-small cell lung cancer cytology specimens: A single-center experience with comparison to fluorescence in situ hybridization[J].Cancer Cytopathol,2023,132(1):41-49. |
| 46 |
BISWASS,AFROSES,MITAM A,et al.Next-generation sequencing: an advanced diagnostic tool for detection of pancreatic disease/disorder[J].JGH Open,2024,8(11):e70061.
doi: 10.1002/jgh3.70061 |
| 47 | VICTORIAT,PAULOC.32. Whole transcriptome sequencing as a diagnostic tool for AML[J].Cancer Genet,2023,278-279(S1) |
| 48 | EWAP,ADRIANAA-M,SHEIDAN,et al.Ultradense array CGH and discovery of micro-copy number alterations and gene fusions in the cancer genome[J].Methods Mol Biol,2013,973,15-38. |
| 49 |
JEANG,MAUDV,LYSANNEC,et al.Clinical validity of karyotyping for the diagnosis of chromosomal imbalance following array comparative genomic hybridisation[J].J Med Genet,2011,48(12):851-855.
doi: 10.1136/jmedgenet-2011-100304 |
| 50 | CHARANJEETS,SINCHITAR-C.Quantitative Real-Time PCR: Recent Advances[J].Methods Mol Biol,2016,1392,161-176. |
| 51 |
FUMINGS,ZHIZHOUZ,ZHONGX,et al.CdTe quantum dots enhance feasibility of EvaGreen-based real-time PCR with decent amplification fidelity[J].Mol Biotechnol,2013,54(3):969-976.
doi: 10.1007/s12033-013-9650-z |
| 52 | CZERWIŃSKAA B,STRYCHALSKAA,SIERKAW,et al.A comparative analysis of non-invasive preimplantation genetic testing for aneuploidies using next-generation sequencing on spent culture media versus trophectoderm[J].EUR J OBSTET GYN R B,2024,293,51. |
| 53 |
SAKKASD,NAVARRO-SÁNCHEZL,ARDESTANIG,et al.The impact of implementing a non-invasive preimplantation genetic testing for aneuploidies (niPGT-A) embryo culture protocol on embryo viability and clinical outcomes[J].Hum Reprod,2024,39(9):1952-1959.
doi: 10.1093/humrep/deae156 |
| 54 |
LEAVERM,WELLSD.Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics?[J].Hum Reprod Update,2020,26(1):16-42.
doi: 10.1093/humupd/dmz033 |
| 55 |
CINNIOGLUC,GLESSNERH,JORDANA,et al.A systematic review of noninvasive preimplantation genetic testing for aneuploidy[J].Fertil Steril,2023,120(2):235-239.
doi: 10.1016/j.fertnstert.2023.06.013 |
| 56 |
MAGLIM C,POMANTEA,CAFUERIG,et al.Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid?[J].Fertil Steril,2016,105(3):676-683.
doi: 10.1016/j.fertnstert.2015.11.018 |
| 57 |
TŠUIKOO,ZHIGALINAD I,JATSENKOT,et al.Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass[J].Fertil Steril,2018,109(6):1127-1134.
doi: 10.1016/j.fertnstert.2018.02.008 |
| 58 |
TOBLERK J,ZHAOY,ROSSR,et al.Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J].Fertil Steril,2015,104(2):418-425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 59 |
CAPALBOA,ROMANELLIV,PATASSINIC,et al.Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions[J].Fertil Steril,2018,110(5):870-879.
doi: 10.1016/j.fertnstert.2018.05.031 |
| 60 | KHAJEHOSEINIF,NOORMOHAMMADIZ,YAZDIP E,et al.Evaluation of utilization of amplified blastocoel fluid DNA gel electrophoresis band intensity as an additional minimally invasive approach in embryo selection: A cross-sectional study[J].Int J Reprod Biomed,2024,22(11):907-918. |
| 61 | KHAJEHOSEINIF,NOORMOHAMMADIZ,EFTEKHARI-YAZDIP,et al.Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy[J].Reprod Fertil,2025,6(1):e240097. |
| 62 |
PHILLIPSK R B,HUNTA G K,NEALM S,et al.Temporal evaluation of a minimally invasive method of preimplantation genetic testing for aneuploidy (mi-PGT-A) in human embryos[J].J Reprod Med,2024,5(3):97-112.
doi: 10.3390/reprodmed5030011 |
| 63 |
JIAOJ,SHIB,SAGNELLIM,et al.Minimally invasive preimplantation genetic testing using blastocyst culture medium[J].Hum Reprod,2019,34(7):1369-1379.
doi: 10.1093/humrep/dez075 |
| 64 |
VALERIYK,SVETLANAM,RINAA,et al.Minimally invasive cell-free human embryo aneuploidy testing (miPGT-A) utilizing combined spent embryo culture medium and blastocoel fluid-towards development of a clinical assay[J].Sci Rep,2020,10(1):7244.
doi: 10.1038/s41598-020-64335-3 |
| 65 |
KUZNYETSOVV,MADJUNKOVAS,ANTESR,et al.Evaluation of a novel non-invasive preimplantation genetic screening approach[J].PLoS One,2018,13(5):e0197262.
doi: 10.1371/journal.pone.0197262 |
| 66 |
SHEERSHIKAS,RAMM.Advances in DNA extraction techniques: a comprehensive review of methods and applications[J].PCBMB,2024,25(5-6):30-42.
doi: 10.56557/pcbmb/2024/v25i5-68683 |
| 67 |
LIUY,ZHANGL,LEIW,et al.Development of a rapid and sensitive RPA-CRISPR/Cas12a assay for non-invasive pre-implantation genetic testing[J]. Anal Chim Acta,2025,1343,343687.
doi: 10.1016/j.aca.2025.343687 |
| 68 |
STIGLIANIS,ANSERINIP,VENTURINIP L,et al.Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation[J].Hum Reprod,2013,28(10):2652-2660.
doi: 10.1093/humrep/det314 |
| 69 | FRANCOJ G,PETERSENC G,VAGNINIL D,et al.Noninvasive preimplantation genetic testing for aneuploidies (NIPGT-A) X analysis of the whole embryo: high degree of concordance between the genetic results[J].Fertil Steril,2023,120(4):e215-e216. |
| 70 |
HUANGL,BOGALEB,TANGY,et al.Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy[J].Proc Natl Acad Sci U S A,2019,116(28):14105-14112.
doi: 10.1073/pnas.1907472116 |
| 71 | RUBIOC,NAVARRO-SÁNCHEZL,GARCÍA-PASCUALC M,et al.Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts[J].Am J Obstet Gynecol,2020,223(5):751. |
| 72 |
HANDAYANIN,AUBRYD,BOEDIONOA,et al.Non-invasive pre-implantation genetic testing's reliability for aneuploidy using cell-free dna in embryo culture media[J].J Gynecol Obstet Hum Reprod,2024,53(8):102808.
doi: 10.1016/j.jogoh.2024.102808 |
| 73 | LONGX C,QUANW Y,YINGT Q,et al.Concordance of PGT for aneuploidies between blastocyst biopsies and spent blastocyst culture medium[J].Reprod Biomed Online,2022,46(3):483-490. |
| 74 |
SHITARAA,TAKAHASHIK,GOTOM,et al.Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy[J].PLoS One,2021,16(2):e0246438.
doi: 10.1371/journal.pone.0246438 |
| 75 |
RUBIOC,RIENZIL,NAVARRO-SÁNCHEZL,et al.Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications[J].Fertil Steril,2019,112(3):510-519.
doi: 10.1016/j.fertnstert.2019.04.038 |
| 76 |
KHUDARIL,HALABIM,FAHOUMS A.Preimplantation aneuploidy screening using embryonic cell-free DNA isolated from spent culture medium: a case report[J].Egypt J Med Hum Genet,2025,26(1):24.
doi: 10.1186/s43042-025-00654-2 |
| 77 | LANEM,ZANDER-FOXD L,HAMILTONH,et al.Ability to detect aneuploidy from cell free DNA collected from media is dependent on the stage of development of the embryo[J].Fertil Steril,2017,108(3S):e61. |
| 78 |
HOJ R,ARRACHN,RHODES-LONGK,et al.Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos[J].Fertil Steril,2018,110(3):467-475.
doi: 10.1016/j.fertnstert.2018.03.036 |
| 79 |
CHOWJ C F,LAMK K W,CHENGH H Y,et al.Optimizing non-invasive preimplantation genetic testing: investigating culture conditions, sample collection, and IVF treatment for improved non-invasive PGT-A results[J].J Assist Reprod Genet,2024,41(2):465-472.
doi: 10.1007/s10815-023-03015-3 |
| 80 |
KEMALH A,FITRIAYUA A,ATIKAHS,et al.Embryo response to aneuploidy through self-correction mechanism: A literature review[J].Middle East Fertil Soc J,2024,29(1):16.
doi: 10.1186/s43043-024-00176-8 |
| 81 |
CAMPOSG,SCIORIOR,FLEMINGS.Healthy live births after the transfer of mosaic embryos: Self-correction or PGT-A overestimation?[J].Genes,2023,15(1):18.
doi: 10.3390/genes15010018 |
| 82 |
CZERWIŃSKAA B,DZIRBAJ S,STRYCHALSKAA,et al.Comparison of non-invasive and minimally invasive preimplantation genetic testing for aneuploidy using samples derived from the same embryo culture[J].J Clin Med,2024,14(1):33.
doi: 10.3390/jcm14010033 |
| 83 |
BOLTONH,GRAHAMS J L,VAN DERAA N,et al.Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential[J].Nat Commun,2016,7,11165.
doi: 10.1038/ncomms11165 |
| 84 | ATHAVALED M,BARREA,KRANYAKA C,et al.Pro-apoptotic gene expression in blastocoel fluid from euploid day-5 embryos is associated with negative pregnancy outcomes[J].Fertil Steril,2019,112(3S):e261. |
| 85 | GARDHERD K,SAKKASD.Making and selecting the best embryo in the laboratory[J].Fertil Steril,2022,120(3P1):457-466. |
| 86 |
HANSONB M,TAOX,HONGK H,et al.Noninvasive preimplantation genetic testing for aneuploidy exhibits high rates of deoxyribonucleic acid amplification failure and poor correlation with results obtained using trophectoderm biopsy[J].Fertil Steril,2021,115(6):1461-1470.
doi: 10.1016/j.fertnstert.2021.01.028 |
| 87 |
TOBLERK J,ZHAOY,ROSSR,et al.Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J].Fertil Steril,2015,104(2):418-425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 88 | WUX,PANJ,ZHUY,et al.Research progress and challenges of preimplantation genetic testing for polygenic diseases[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2023,53(3):280-287. |
| 89 | ALVESF J G,ELISAP,IANAS P,et al.Current applications and perspectives of genomic selection in Bos indicus (Nellore) cattle[J].Livestock Science,2022,263,54-69. |
| 90 |
LUYUY,WENHAOS,YAYUL,et al.SCM is potential resource for non-invasive preimplantation genetic testing based on human embryos single-cell sequencing[J].Gene,2023,882,147647.
doi: 10.1016/j.gene.2023.147647 |
| 91 |
WENX,LIZ,CHENGL,et al.Feasibility of preimplantation genetic testing for aneuploidy on frozen-thawed embryos following conventional IVF insemination[J].Front Endocrinol (Lausanne),2024,15,1441014.
doi: 10.3389/fendo.2024.1441014 |
| 92 |
HAMMONDE R,MCGILLIVRAYB C,WICKERS M,et al.Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified[J].Fertil Steril,2017,107(1):220-228.
doi: 10.1016/j.fertnstert.2016.10.015 |
| 93 |
BOL,DONGF,WUZ,et al.A method for determining potential parental contamination: linkage disequilibrium-based log-likelihood ratio analysis for IVF-PGT[J].Reprod Biol Endocrinol,2024,22(1):129.
doi: 10.1186/s12958-024-01300-z |
| 94 |
FERRICKL,LEEY S L,GARDNERD K.Reducing time to pregnancy and facilitating the birth of healthy children through functional analysis of embryo physiology†[J].Biol Reprod,2019,101(6):1124-1139.
doi: 10.1093/biolre/ioz005 |
| 95 |
ZMUIDINAITER,SHARARAF I,ILESR K.Current advancements in noninvasive profiling of the embryo culture media secretome[J].Int J Mol Sci,2021,22(5):2513.
doi: 10.3390/ijms22052513 |
| 96 | XINX,WUS,XUH,et al.Non-invasive prediction of human embryonic ploidy using artificial intelligence: a systematic review and meta-analysis[J].E Clinical Medicine,2024,77,102897. |
| 97 |
HORTAF,SAKKASD,LEDGERW,et al.Could metabolic imaging and artificial intelligence provide a novel path to non-invasive aneuploidy assessments? A certain clinical need[J].Reprod Fertil Dev,2025,37,RD24122.
doi: 10.1071/RD24122 |
| [1] | WANG Chaohui, LIU Xiaoying, YANG Xiaojun, LIU Yanli. The Mechanism of Betaine in Alleviating Abnormal Lipid Metabolism and Oxidative Stress Induced by Oleic Acid in Chicken Embryo Liver Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4741-4749. |
| [2] | LI Kang, CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong, CUI Kai, PANG Yunwei. Effects of Betaine on Preimplantation Development of Porcine Parthenogenetic Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3826-3836. |
| [3] | LI Qingyun, CAO Fengfeng, XING Zhou, LI Zhuoying, TAO Jinzhong. Progress in the Study of the Formation and Lysis of Corpus Luteum in Dairy Cows and Its Role in the Maintenance of Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3088-3095. |
| [4] | XIONG Keng, FAN Haojie, WANG Jie, ZHAO Shanjiang, ZHU Qingli, HU Zhihui, LUO Haoshu, ZHU Huabin. Recent Advances and Applications of Recombinant Follicle-Stimulating Hormone in Bovine Superovulation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2047-2055. |
| [5] | WANG Jiamei, HUANG Yongzhen, GAO Chen, LI Junliang, CHEN Yan, ZHU Bo, ZHANG Lupei, WANG Zezhao, GAO Huijiang, LI Junya, GAO Xue. Research Progress and Overview on Pluripotent Stem Cells in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1473-1483. |
| [6] | YAN Rui, JIA Chaoyang, MA Jing, YANG Juan, LIU Xinfeng, CHEN Qiang. The Research Status and Application Prospect of 3D Culture in Livestock Oocytes and Embryos Culture [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1494-1507. |
| [7] | MA Xiuling, ZHANG Xinru, CHEN Ying, LIANG Hongyan, ABDUREYIMU Gulimire, WANG Liqin, LIN Jiapeng, LI Weijian, WANG Xuguang, WU Yangsheng. PDGFD Gene Editing in Altay Sheep Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1700-1711. |
| [8] | LI Yuanfang, ZHANG Hongyuan, LI Hongtai, LI Zhi, WEI Qianran, WANG Yadong, LI Guoxi, WANG Dandan, LIU Qiaoming. The Effect of Riboflavin Supplementation in Embryonic Eggs on the Development of Skeletal Muscle of Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1159-1169. |
| [9] | ZHANG Yuan, LI Mingyang, LIANG Yue, YU Xiangqian, WANG Yan, CHEN Jiyi, LIU Haixia, LIAN Xue, QIAN Yingjuan. Analysis of the Effect of Artemisia argyi Essential Oil on the Inhibition of the Proliferation of Chicken Marek’s Disease Virus in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5901-5911. |
| [10] | DONG Jianhua, YANG Baigao, ZHANG Xiaomeng, FENG Xiaoyi, SONG Haoran, LIU Yang, WANG Zizhuo, WANG Yanbo, LI Chongyang, LÜ Lihua, ZHAO Xueming. Research Progress on Cryopreservation Technology of Animal Embryos after Sampling [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4796-4806. |
| [11] | WANG Zizhuo, ZHANG Xiaomeng, FENG Xiaoyi, SONG Haoran, DONG Jianhua, CUI Kai, ZHAO Xueming. Research Advances in Early Abortion of Cattle Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4807-4820. |
| [12] | FANG Huanxin, LI Qi, SONG Ziang, WEN Jiaming, GU Jiayun, WANG Zhanxin, QIN Jianping, YU Yanfei, ZHANG Wei. Whole-Genome Analysis of Mycoplasma gallisepticum LC Strain and Multilocus Sequence Typing of Prevalent Strains in China [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5095-5103. |
| [13] | NIU Yifan, LI Chongyang, ZHANG Peipei, ZHANG Hang, FENG Xiaoyi, YU Zhou, CAO Jianhua, DU Weihua, WAN Pengcheng, MA Youji, ZHAO Xueming. Microamplification System Evaluation of Bovine Biopsied Embryo Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 246-258. |
| [14] | Shuying DAI, Qing LIU, Aiguo LI, Bo YU, Hongbo CHEN. Research Progress on Culture Medium Additives in Bovine In Vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3309-3320. |
| [15] | Zijiao GUO, Weijie ZHENG, Wei SUN, Baojiang WU, Xiangnan BAO, Qi ZHANG, Jinfeng HE, Siqin BAO, Gaoping ZHAO, Zixin WANG, Bo HAN, Xihe LI, Dongxiao SUN. Study on Genomic Selection of Embryos in Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2940-2950. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||