

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5379-5388.doi: 10.11843/j.issn.0366-6964.2025.11.004
• Review • Previous Articles Next Articles
BAI Huitao1(
), SUN Jian2, XIE Weichun1, WANG Xueying1, WANG Xiaona1,3,*(
), TANG Lijie1,3,*(
)
Received:2024-09-10
Online:2025-11-23
Published:2025-11-27
Contact:
WANG Xiaona, TANG Lijie
E-mail:bht17077876222@163.com;xiaonawang0319@163.com;tanglijie@163.com
CLC Number:
BAI Huitao, SUN Jian, XIE Weichun, WANG Xueying, WANG Xiaona, TANG Lijie. Research Progress on the Mechanism of Fecal Bacteria Transplantation to Improve Intestinal Barrier Function in Early Weaning Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5379-5388.
Table 1
Donor bacteria transplantation test"
| 供体菌 Donor bacteria | 仔猪品种(日龄) Piglet specices (days of age) | 处理方式 Processing mode | 结果 Result | 参考文献 Reference |
| 粪肠球菌 Enterococcus faecalis | 杜×长×大(28日龄) | 每日一次(2.5×109 CFU·kg-1),连续饲喂28 d | 提高仔猪生长性能和肠道微生物菌群多样性,并增加乳酸菌丰度 | Hu等[ |
| 植物乳植杆菌 Lactiplantibacillus plantarum | 杜×长×大(4日龄) | 每日一次(5.0×1010 CFU·kg-1),连续饲喂15 d | 改善肠道形态;促进肠道紧密连接蛋白TJs表达 | Yang等[ |
| 德氏乳杆菌 Lactobacillus delbrueckii | 杜×长×大(21日龄) | 1、3、7和14日龄分别口服1、2、3和4 mL(5×109 CFU·mL-1) | 促进肠道ZO-1和闭锁蛋白的表达,并改善肠绒毛形态 | Li等[ |
| 丁酸梭菌 Clostridium butyricum | 杜×长×约(28日龄) | 每日一次(1.0×109 CFU·kg-1),连续饲喂14 d | 促进肠道TJs蛋白和黏蛋白的表达,并增加乳酸菌丰度 | Fu等[ |
| 罗伊氏黏液乳杆菌 Limosilactobacillus reuteri | 杜×长×大(21日龄) | 每日一次(5.0×1010 CFU·kg-1),连续饲喂15 d | 提高仔猪生长性能;改善肠道形态和屏障功能 | Yi等[ |
Fig. 1
Mechanism of fecal bacteria transplantation(drawed by Figdraw 2.0) A. Probiotics and immunoglobulin A (IgA) compete for resources with pathogenic bacteria and inhibit the growth of pathogenic bacteria, and phages affect the translocation of bacteria by destroying intestinal bacteria, changing its virulence, and inhibiting intestinal inflammation caused by pathogenic bacteria; B. Probiotics and short-chain fatty acids (SCFAs) regulate the expression of tight junction (TJ) in intestinal epithelial cells (IEC), strengthen the apical junction, reduce the permeability of intestinal epithelium and up-regulate TJ protein to promote the repair of intestinal barrier; C. Probiotics, SCFAs, and bile acids bind to the corresponding receptor pattern recognition receptor (PRR), G-protein-coupled bile acid receptor (GPBAR), and G-protein-coupled receptor (GPCR) in Goblet cells to mediate mucin secretion; D. SCFAs regulates the NLRP3 inflammasome through GPCRS on IEC, converts pro-interleukin-18 to interleukin-18 (IL-18), promotes T cell activation, and enhances immune response; E. Probiotics reduce inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways"
| 1 |
TURNERJ.Intestinal mucosal barrier function in health and disease[J].Nat Rev Immunol,2009,9(11):799-809.
doi: 10.1038/nri2653 |
| 2 |
AMARJ,CHABOC,WAGETA.Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment[J].EMBO Mol Med,2011,3(9):559-572.
doi: 10.1002/emmm.201100159 |
| 3 |
ZHERNAKOVAA,KURILSHIKOVA,BONDERM J.Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity[J].Science,2016,352(6285):565-569.
doi: 10.1126/science.aad3369 |
| 4 |
GUEVARRAR B,HONGS H,CHOJ H.The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition[J].J Anim Sci Biotechnol,2018,9,1-9.
doi: 10.1186/s40104-017-0217-x |
| 5 |
GRESSER,CHAUCHEYRAS-DURANDF,FLEURYM A.Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health[J].Trends Microbiol,2017,25(10):851-873.
doi: 10.1016/j.tim.2017.05.004 |
| 6 |
NGUYENQ N,HIMESJ E,MARTINEZD R,et al.The impact of the gut microbiota on humoral immunity to pathogens and vaccination in early infancy[J].PLoS Pathog,2016,12(12):e1005997.
doi: 10.1371/journal.ppat.1005997 |
| 7 | LIK,YANGJ,ZHOUX.The mechanism of important components in canine fecal microbiota transplantation[J].Vet Sci,2022,9(12):695. |
| 8 | 田玉,杨玲媛,黄兴国,等.粪菌移植改善猪肠道屏障功能的研究进展[J].动物营养学报,2023,35(4):2072-2080. |
| TIANY,YANGL Y,HUANGX G,et al.Research Progress of Fecal Microbiota Transplantation in Improving Intestinal Barrier Function in Pigs[J].Chinese Journal of Animal Nutrition,2023,35(4):2072-2080. | |
| 9 | 张卓,蒋谦,刘作华,等.粪菌移植及其在猪上的应用研究进展[J].动物营养学报,2022,34(8):4793-4801. |
| ZHANGZ,JIANGQ,LIUZ H,et al.Fecal microbiota transplantation and its application research progress in pigs[J].Chinese Journal of Animal Nutrition,2022,34(8):4793-4801. | |
| 10 |
HUY,DUNY,LIS.Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets[J].PLoS One,2015,10(1):e0116635.
doi: 10.1371/journal.pone.0116635 |
| 11 |
YANGK,JIANGZ,ZHENGC,et al.Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J].J Anim Sci,2014,92(4):1496-1503.
doi: 10.2527/jas.2013-6619 |
| 12 |
LIY,HOUS,CHENJ,et al.Oral administration of Lactobacillus delbrueckii during the suckling period improves intestinal integrity after weaning in piglets[J].J Funct Foods,2019,63,103591.
doi: 10.1016/j.jff.2019.103591 |
| 13 |
FUJ,WANGT,XIAOX,et al.Clostridium butyricum ZJU-F1 benefits the intestinal barrier function and immune response associated with its modulation of gut microbiota in weaned piglets[J].Cells,2021,10(3):527.
doi: 10.3390/cells10030527 |
| 14 |
YIH,WANGL,XIONGY,et al.Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs[J].J Anim Sci,2018,96(6):2342-2351.
doi: 10.1093/jas/sky129 |
| 15 |
KHORUTSA,SADOWSKYM J.Understanding the mechanisms of faecal microbiota transplantation[J].Nat Rev Gastroenterol Hepatol,2016,13(9):508-516.
doi: 10.1038/nrgastro.2016.98 |
| 16 | 左斌,李娜,王诗岚,等.仔猪肠道微生物早期定植特征及其调控的研究进展[J].中国畜牧杂志,2020,56(11):1-7. |
| ZUOB,LIN,WANGS L,et al.Research progress on early-life colonization and regulation of gut microbiota in neonatal piglets[J].Chinese Journal of Animal Science,2020,56(11):1-7. | |
| 17 | 石宝明,钊阳,孙国栋.民猪肠道微生物功能发掘与利用研究进展[J].饲料工业,2023,44(11):1-7. |
| SHIB M,ZHAOY,SUNG D.Research progress on gut microbial function discovery and utilization in Min pigs[J].Feed Industry,2023,44(11):1-7. | |
| 18 |
DIAOH,XIAOY,YANH,et al.Effects of early transplantation of the faecal microbiota from tibetan pigs on the gut development of DSS-challenged piglets[J].Biomed Res Int,2021,2021,9823969.
doi: 10.1155/2021/9823969 |
| 19 |
MAX,XUT,QIANM,et al.Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model[J].Microbiol Res,2022,255,126942.
doi: 10.1016/j.micres.2021.126942 |
| 20 | CHENGS,MAX,GENGS,et al.Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury[J].mSystems,2018,3(5):e00137-18. |
| 21 |
KCD,SUMNERR,LIPPMANNS.Gut microbiota and health[J].Postgrad Med,2020,132(3):274-274.
doi: 10.1080/00325481.2019.1662711 |
| 22 |
KRÖGERS,VAHJENW,ZENTEKJ.Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs[J].J Anim Sci,2017,95(4):1598-1605.
doi: 10.2527/jas.2016.0873 |
| 23 |
LOZUPONEC A,STOMBAUGHJ I,GORDONJ I,et al.Diversity, stability and resilience of the human gut microbiota[J].Nature,2012,489(7415):220-230.
doi: 10.1038/nature11550 |
| 24 |
YOUS,MAY,YANB,et al.The promotion mechanism of prebiotics for probiotics: A review[J].Front Nutr,2022,9,1000517.
doi: 10.3389/fnut.2022.1000517 |
| 25 |
WIEËRSG,BELKHIRL,ENAUDR,et al.How probiotics affect the microbiota[J].Front Cell Infect Microbiol,2020,9,454.
doi: 10.3389/fcimb.2019.00454 |
| 26 |
BOJANOVAD P,BORDENSTEINS R.Fecal transplants: what is being transferred?[J].PLoS Biol,2016,14(7):e1002503.
doi: 10.1371/journal.pbio.1002503 |
| 27 |
SALAMM A.Probiotics: concept and applications[J].Bangladesh J Med Sci,2014,13(4):373.
doi: 10.3329/bjms.v13i4.20550 |
| 28 | ZHANGW,ZHUY H,ZHOUD,et al.Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative[J].Appl Environ Microbiol,2017,83(3):e02747-16. |
| 29 |
PRALL P,FACHIJ L,CORRÊAR O,et al.Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J].Trends Immunol,2021,42(7):604-621.
doi: 10.1016/j.it.2021.05.004 |
| 30 |
ZUPPIM,HENDRICKSONH L,O'SULLIVANJ M,et al.Phages in the gut ecosystem[J].Front Cell Infect Microbiol,2022,11,822562.
doi: 10.3389/fcimb.2021.822562 |
| 31 | LEÓNM,BASTÍASR.Virulence reduction in bacteriophage resistant bacteria[J].Front Microbiol,2015,6,343. |
| 32 |
MILLSS,SHANAHANF,STANTONC,et al.Movers and shakers: Influence of bacteriophages in shaping the mammalian gut microbiota[J].Gut Microbes,2013,4(1):4-16.
doi: 10.4161/gmic.22371 |
| 33 |
ZENGY,WANGZ,ZOUT,et al.Bacteriophage as an alternative to antibiotics promotes growth performance by regulating intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets[J].Front Vet Sci,2021,8,623899.
doi: 10.3389/fvets.2021.623899 |
| 34 |
ZHANGJ,LIZ,CAOZ,et al.Bacteriophages as antimicrobial agents against major pathogens in swine: a review[J].J Anim Sci Biotechnol,2015,6(1):39.
doi: 10.1186/s40104-015-0039-7 |
| 35 | CHEHOUDC,DRYGAA,HWANGY,et al.Transfer of viral communities between human individuals during fecal microbiota transplantation[J].MBio,2016,7(2):e00322. |
| 36 |
ŁUSIAK-SZELACHOWSKAM,WEBER-DBROWSKAB,JOŃCZYK-MATYSIAKE,et al.Bacteriophages in the gastrointestinal tract and their implications[J].Gut Pathog,2017,9(1):44.
doi: 10.1186/s13099-017-0196-7 |
| 37 |
KIMN,GUM J,KYEY-C,et al.Bacteriophage EK99P-1 alleviates enterotoxigenic Escherichia coli K99-induced barrier dysfunction and inflammation[J].Sci Rep,2022,12(1):941.
doi: 10.1038/s41598-022-04861-4 |
| 38 |
PARADA VENEGASD,DE LA FUENTEM K,LANDSKRONG,et al.Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J].Front Immunol,2019,10,277.
doi: 10.3389/fimmu.2019.00277 |
| 39 |
MARTIN-GALLAUSIAUXC,MARINELLIL,BLOTTIōREH M,et al.SCFA: Mechanisms and functional importance in the gut[J].Proc Nutr Soc,2021,80(1):37-49.
doi: 10.1017/S0029665120006916 |
| 40 |
FENGW,WUY,CHENG,et al.Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner[J].Cell Physiol Biochem,2018,47(4):1617-1629.
doi: 10.1159/000490981 |
| 41 |
CHIANGJ Y.Bile acid metabolism and signaling[J].Compr Physiol,2013,3(3):1191-1212.
doi: 10.1002/j.2040-4603.2013.tb00517.x |
| 42 |
ZHOUY,CHENY,HEH,et al.The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases[J].Neuropharmacology,2023,239,109690.
doi: 10.1016/j.neuropharm.2023.109690 |
| 43 |
RANDAL BOLLINGERR,EVERETTM L,PALESTRANTD,et al.Human secretory immunoglobulin A may contribute to biofilm formation in the gut[J].Immunology,2003,109(4):580-587.
doi: 10.1046/j.1365-2567.2003.01700.x |
| 44 |
DONALDSONG P,LADINSKYM,YUK,et al.Gut microbiota utilize immunoglobulin A for mucosal colonization[J].Science,2018,360(6390):795-800.
doi: 10.1126/science.aaq0926 |
| 45 |
NGS C,KAMMM A,YEOHY K,et al.Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE)[J].Gut,2020,69(1):83-91.
doi: 10.1136/gutjnl-2019-319407 |
| 46 |
LID,CUIL,GAOY,et al.Fecal microbiota transplantation improves intestinal inflammation in mice with ulcerative colitis by modulating intestinal flora composition and down-regulating NF-κB signaling pathway[J].Microb Pathog,2022,173,105803.
doi: 10.1016/j.micpath.2022.105803 |
| 47 |
MAX,XUT,QIANM,et al.Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model[J].Microbiol Res,2022,255,126942.
doi: 10.1016/j.micres.2021.126942 |
| 48 |
BALDAM S,MATTERK.Tight junctions as regulators of tissue remodelling[J].Curr Opin Cell Biol,2016,42,94-101.
doi: 10.1016/j.ceb.2016.05.006 |
| 49 |
LANDYJ,RONDEE,ENGLISHN,et al.Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer[J].World J Gastroenterol,2016,22(11):3117-3126.
doi: 10.3748/wjg.v22.i11.3117 |
| 50 |
PORITZL S,HARRISL R,KELLYA A,et al.Increase in the tight junction protein claudin-1 in intestinal inflammation[J].Dig Dis Sci,2011,56(10):2802-2809.
doi: 10.1007/s10620-011-1688-9 |
| 51 |
HUL,GENGS,LIY,et al.Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J].Front Microbiol,2018,8,2663.
doi: 10.3389/fmicb.2017.02663 |
| 52 |
SUNW,CHENW,MENGK,et al.Dietary supplementation with probiotic Bacillus licheniformis S6 improves intestinal integrity via modulating intestinal barrier function and microbial diversity in weaned piglets[J].Biology,2023,12(2):238.
doi: 10.3390/biology12020238 |
| 53 |
XUH M,HUANGH L,XUJ,et al.Cross-talk between butyric acid and gut microbiota in ulcerative colitis following fecal microbiota transplantation[J].Front Microbiol,2021,12,658292.
doi: 10.3389/fmicb.2021.658292 |
| 54 | TANJ,MCKENZIEC,POTAMITISM,et al.The role of short-chain fatty acids in health and disease[J].Adv Immunol,2014,121,91-119. |
| 55 | DUANX,XINGH,SANGF,et al.Research Progress on mechanism of traditional Chinese medicine on intestinal mucosal barrier[J].Chin J Modern Appl Pharmacy,2019,36(16):2106-2111. |
| 56 | 赵美华,龚陈,楼江明,等.黏蛋白与炎症性肠病关系的研究进展[J].世界华人消化杂志,2014,22(27):4100-4106. |
| ZHAOM H,GONGC,LOUJ M,et al.Relationship between mucins and inflammatory bowel disease[J].World Chinese Journal of Digestology,2014,22(27):4100-4106. | |
| 57 | MAX,LIM,XUT,et al.Akkermansia muciniphila identified as key strain to function in pathogen invasion and intestinal stem cell proliferation through Wnt signaling pathway[J].Elife,2023,12,RP92906. |
| 58 |
ZHAOY,CHENF,WUW,et al.GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J].Mucosal Immunol,2018,11(3):752-762.
doi: 10.1038/mi.2017.118 |
| 59 |
HUJ,MAL,NIEY,et al.A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J].Cell Host Microbe,2018,24(6):817-832.
doi: 10.1016/j.chom.2018.11.006 |
| 60 |
ZHENY,ZHANGH.NLRP3 inflammasome and inflammatory bowel disease[J].Front Immunol,2019,10,276.
doi: 10.3389/fimmu.2019.00276 |
| 61 |
MACIAL,TANJ,VIEIRAA T,et al.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nat Commun,2015,6(1):6734.
doi: 10.1038/ncomms7734 |
| 62 |
CONGJ,ZHOUP,ZHANGR.Intestinal microbiota-derived short chain fatty acids in host health and disease[J].Nutrients,2022,14(9):1977.
doi: 10.3390/nu14091977 |
| 63 |
ZHANGW,ZOUG,LIB,et al.Fecal microbiota transplantation (FMT) alleviates experimental colitis in mice by gut microbiota regulation[J].J Microbiol Biotechnol,2020,30(8):1132-1141.
doi: 10.4014/jmb.2002.02044 |
| 64 |
WUY,ZHUC,CHENZ,et al.Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells[J].Vet Immunol Immunopathol,2016,172,55-63.
doi: 10.1016/j.vetimm.2016.03.005 |
| 65 |
WANGK,CHENG,CAOG,et al.Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets[J].J Anim Sci,2019,97(10):4140-4151.
doi: 10.1093/jas/skz235 |
| 66 |
GURRAMB,SUEP K.Fecal microbiota transplantation in children: current concepts[J].Curr Opin Pediatr,2019,31(5):623-629.
doi: 10.1097/MOP.0000000000000787 |
| 67 |
SCHEPPERJ D,COLLINSF,RIOS-ARCEN D,et al.Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis[J].J Bone Miner Res,2020,35(4):801-820.
doi: 10.1002/jbmr.3947 |
| [1] | YANG Yuxiang, WANG Pengpeng, LI Bin, XIE Liuwei, XIU Fuxiao, LIU Chengwu. Research Progress on the Application and Mechanism of Probiotics in Canine Intestinal Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3610-3620. |
| [2] | ZHANG Xuan, YANG Xue, LI Xinke, ZHENG Nan, MENG Lu. The Regulatory Effects of Sodium Butyrate on Ileal Development, Inflammatory Factors and Physical Barrier Function in Young Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1278-1289. |
| [3] | Hongxu DU, Lijuan SU, Zhengke HE, Xiaoyan TAN, Xu ZHANG, Qi MA, Liting CAO, Hongwei CHEN, Ling GAN. Study on the in vitro Antioxidant and Intestinal Flora Modulating Effects of Schisandra Chinensis Polysaccharides-selenium Nanoparticles [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3234-3245. |
| [4] | Zuobin YANG, Jincheng SHI, Ziwei MA, Rulong CHEN, Zhan SHU, Xin LI, Jinquan WANG, Qi ZHONG, Xuelian MA, Gang YAO. The Therapeutic Effect of the Fecal Microbiota Transplantation on Calf Non-specific Pathogenic Diarrhea and Bacterial Diarrhea in Association with Their Gut Microbiota Changes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4720-4734. |
| [5] | ZHENG Xianrui, ZHUO Mingxue, JI Jinli, JIANG Weihu, DENG Zaishuang, ZHANG Jicheng, TIAN Yali, DING Yueyun, ZHANG Xiaodong, YIN Zongjun. Characteristics of Serum Immune Indices and Intestinal Microbiota of Wannan Black Pigs at Different Growth Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3770-3783. |
| [6] | XIE Yi, ZOU Lirui, TAO Ran, LIU Sha, WANG Jiangping, WEN Lixin, WU Jing, WANG Ji. Protective Effect of Tannic Acid on Colonic Mucosal Damage and Microflora Disturbance Induced by Low-Dose T-2 Toxin in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3582-3594. |
| [7] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
| [8] | WANG Qian, WANG Jianmei, AN Keying, XIA Zhaofei. Effect of Polyactin A on Immune Function, Intestinal Barrier and Intestinal Flora in Dogs with Ulcerative Colitis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1261-1272. |
| [9] | ZHANG Wenchang, WANG Zhihua, LIAN Jiale, QU Qian, LÜ Weijie, CHEN Shu'ai, GUO Shining. Supplement of Shenling Baizhu Powder to Offspring Rats during Sucking Improved Intestinal Dyshomeostasis Induced by Antibiotics [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 825-836. |
| [10] | LIU Huijuan, WANG Chao, ZHOU Binbin, ZHANG Jiaqi, WANG Tian, ZHUANG Su. Effects of Dietary Rutin Supplementation on Ileal Morphology, Immunity, Antioxidant and Barrier Function of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 630-641. |
| [11] | LUO Ju, MAO Jiani, XIA Yinzhao, YANG Zhenguo. Regulation of circRNAs on Mammalian Intestinal Barrier Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4439-4448. |
| [12] | QIN Shizhen, YANG Minmin, REN Zhixiong, LI Jinlu, TANG Defu, SHI Zhaoguo. Effects of Bacillus subtilis on Intestinal Immunity, Intestinal Tissue Morphology and Intestinal Barrier of Broilers Challenged with Lipopolysaccharide [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4676-4690. |
| [13] | YANG Mengran, YANG Chenglin, WU You, WANG Siqi, KONG Xiangyi, NING Can, XIAO Wenguang, FAN Hui, WU Jing, YUAN Zhihang. Study on the Mechanism of Citrinin Induced Intestinal Barrier Dysfunction in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4805-4816. |
| [14] | CHANG Weichen, LI Shuaiqi, LI Yan, YAN Wei, ZHANG Hongying, WANG Yanbin, YANG Mingfan, ZHANG Angke. Effect of Pulsatilla Powder Prescription Decoction Ferments on Intestinal Barrier Function of Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4403-4410. |
| [15] | JIAO Yuzhou, YANG Huanhuan, LU Yao, SHI Congcong, XU Xiaojuan, CAI Xuwang. Effect of Enterococcus faecium on Growth Performance and Intestinal Barrier of Broilers Infected with Eimeria tenella [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1210-1219. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||