

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4796-4806.doi: 10.11843/j.issn.0366-6964.2025.10.004
• Review • Previous Articles Next Articles
DONG Jianhua1,2(
), YANG Baigao1, ZHANG Xiaomeng1, FENG Xiaoyi1, SONG Haoran1, LIU Yang1, WANG Zizhuo1, WANG Yanbo1, LI Chongyang1, LÜ Lihua2, ZHAO Xueming1,*(
)
Received:2025-03-10
Online:2025-10-23
Published:2025-11-01
Contact:
ZHAO Xueming
E-mail:15143173829@163.com;zhaoxueming@caas.cn
CLC Number:
DONG Jianhua, YANG Baigao, ZHANG Xiaomeng, FENG Xiaoyi, SONG Haoran, LIU Yang, WANG Zizhuo, WANG Yanbo, LI Chongyang, LÜ Lihua, ZHAO Xueming. Research Progress on Cryopreservation Technology of Animal Embryos after Sampling[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4796-4806.
Fig. 1
Micromanipulation procedure for polar body biopsy[14] A. After positioning the oocyte, both polar bodies are aligned on the same focal plane; B. An opening is precisely introduced; C.Through this opening, a blunt biopsy capillary can be inserted to aspirate the polar bodies; D.The polar bodies are then released into a separate droplet within the same culture dish"
Fig. 2
Schematic diagram of blastomere biopsy micromanipulation[20] A. Cleavage-stage embryo immobilized on a holding pipette; B. Biopsy pipette gently positioned within the zona pellucida; B. Gentle aspiration applied to remove the blastomere through the zona pellucida; D. Complete removal of the targeted blastomere; E. Embryo and biopsied blastomere released into the culture medium; F. Post-biopsy embryo developing into a hatching blastocyst"
Fig. 3
Trophectoderm (TE) biopsy procedure[26] A. Laser pulse (90 μs) applied to create an opening in the zona pellucida; B. Culture medium injected through the opening to expand the perivitelline space; C. Laser irradiation (90-120 μs) enlarges the zona opening while maintaining perivitelline space integrity; D. Medium injected to dislodge TE cells from the inner surface of the zona opening; E. TE cells extruding through the opening; F. Aspiration of extruded TE cells into biopsy pipette upon obtaining sufficient sample volume"
Table 1
Different animal embryo sampling schedule"
| 物种 Species | 推荐活检阶段 Recommendation for biopsy stage | 取样细胞类型 Sample cell type | 技术特点 Technical characteristics | 参考文献 Reference |
| 牛Cattle | 囊胚期 | 滋养外胚层(TE) | 激光辅助透明带打孔,取5~8个细胞;玻璃化冷冻技术成熟。 | [ |
| 小鼠Mouse | 卵裂期(8细胞) | 卵裂球 | 显微操作针机械取样,单细胞活检;冻存耐受性差,需改良冷冻液。 | [ |
| 人类Human | 囊胚期 | 滋养外胚层(TE) | 激光脉冲精准切割,取5~10个细胞;玻璃化冷冻后存活率可达90%以上。 | [ |
| 猪Pig | 囊胚期 | 滋养外胚层(TE) | 透明带厚且弹性差,需高强度激光或酶解法辅助打孔;冷冻保存技术落后。 | [ |
| 绵羊Sheep | 囊胚期 | 滋养外胚层(TE) | 激光辅助取样,活检后短期培养(5~8 h)可提升冷冻存活率。 | [ |
| 山羊Goat | 囊胚期 | 滋养外胚层(TE) | 透明带较薄,激光打孔后机械吸取;冷冻耐受性中等。 | [ |
| 兔Rabbit | 卵裂期(8细胞) | 卵裂球 | 胚胎体积较大(120~150 μm),操作相对容易;冻存耐受性中等。 | [ |
| 猴Monkey | 囊胚期 | 滋养外胚层(TE) | 非侵入性cfDNA分析为主,避免伦理争议;激光取样技术成熟。 | [ |
| 斑马鱼Zebrafish | 卵裂期(16-32细胞) | 卵裂球 | 胚胎透明,易于观察;显微注射技术成熟。 | [ |
| 1 |
FERRE L B , KJELLAND M E , STROBECH L B , et al. Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods[J]. Animal, 2020, 14 (5): 991- 1004.
doi: 10.1017/S1751731119002775 |
| 2 |
RHON-CALDERON E A , HEMPHILL C N , VROOMAN L A , et al. Trophectoderm biopsy of blastocysts following IVF and embryo culture increases epigenetic dysregulation in a mouse model[J]. Hum Reprod, 2024, 39 (1): 154- 176.
doi: 10.1093/humrep/dead238 |
| 3 |
MARIN D , XU J , TREFF N R . Preimplantation genetic testing for aneuploidy: A review of published blastocyst reanalysis concordance data[J]. Prenat Diagn, 2021, 41 (5): 545- 553.
doi: 10.1002/pd.5828 |
| 4 | TWISK M , MASTENBROEK S , VAN WELY M , et al. Preimplantation genetic screening for abnormal number of chromosomes(aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection[J]. Cochrane Database Syst Rev, 2006 (1): CD005291. |
| 5 | CORNELISSE S , ZAGERS M , KOSTOVA E , et al. Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation[J]. Cochrane Database Syst Rev, 2020, 9 (9): CD005291. |
| 6 |
FRIEDENTHAL J , MAXWELL S M , TIEGS A W , et al. Clinical error rates of next generation sequencing and array comparative genomic hybridization with single thawed euploid embryo transfer[J]. Eur J Med Genet, 2020, 63 (5): 103852.
doi: 10.1016/j.ejmg.2020.103852 |
| 7 |
MANDLIK J S , PATIL A S , SINGH S . Next-generation sequencing (NGS): Platforms and applications[J]. J Pharm Bioallied Sci, 2024, 16 (Suppl 1): S41- S45.
doi: 10.4103/jpbs.jpbs_838_23 |
| 8 | BADEAU M , LINDSAY C , BLAIS J , et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women[J]. Cochrane Database Syst Rev, 2017, 11 (11): CD11767. |
| 9 |
MORALES C . Current applications and controversies in preimplantation genetic testing for aneuploidies (PGT-A) in in vitrofertilization[J]. Reprod Sci, 2024, 31 (1): 66- 80.
doi: 10.1007/s43032-023-01301-0 |
| 10 |
LI S , LI H , GAO Y , et al. Identification of cryptic balanced translocations in couples with unexplained recurrent pregnancy loss based upon embryonic PGT-A results[J]. J Assist Reprod Genet, 2024, 41 (1): 171- 184.
doi: 10.1007/s10815-023-02999-2 |
| 11 |
MADRITSCH S , ARNOLD V , HAIDER M , et al. Aneuploidy detection in pooled polar bodies using rapid nanopore sequencing[J]. J Assist Reprod Genet, 2024, 41 (5): 1261- 1271.
doi: 10.1007/s10815-024-03108-7 |
| 12 | AGHAJANI S , SALEHZADEH A , GHASEMIAN F , et al. TEffect of single embryo blastomere biopsy from human frozen embryos on assisted reproductive outcomes[J]. Cell J, 2022, 24 (10): 628- 636. |
| 13 |
GERAEDTS J , COLLINS J , GIANAROLI L , et al. What next for preimplantation genetic screening? A polar body approach![J]. Hum Reprod, 2010, 25 (3): 575- 577.
doi: 10.1093/humrep/dep446 |
| 14 |
DAWSON A , GRIESINGER G , DIEDRICH K . Screening oocytes by polar body biopsy[J]. Reprod Biomed Online, 2006, 13 (1): 104- 109.
doi: 10.1016/S1472-6483(10)62023-8 |
| 15 |
HU X , HE W B , ZHANG S P , et al. Next-generation sequence-based preimplantation genetic testing for monogenic disease resulting from maternal mosaicism[J]. Mol Genet Genomic Med, 2021, 9 (5): e1662.
doi: 10.1002/mgg3.1662 |
| 16 |
SCHMUTZLER A G . Theory and practice of preimplantation genetic screening (PGS)[J]. Eur J Med Genet, 2019, 62 (8): 103670.
doi: 10.1016/j.ejmg.2019.103670 |
| 17 | DELHANTY J D . Is the polar body approach best for pre-implantation genetic screening?[J]. Placenta, 2011, 32 (Suppl 3): S268- S270. |
| 18 |
NEUMANN K , SERMON K , BOSSUYT P , et al. An economic analysis of preimplantation genetic testing for aneuploidy by polar body biopsy in advanced maternal age[J]. BJOG, 2020, 127 (6): 710- 718.
doi: 10.1111/1471-0528.16089 |
| 19 |
HARTON G L , MAGLI M C , LUNDIN K , et al. ESHRE PGD consortium/embryology special interest Group-- best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS)[J]. Hum Reprod, 2011, 26 (1): 41- 46.
doi: 10.1093/humrep/deq265 |
| 20 |
NOMM M , IVASK M , PARN P , et al. Detecting embryo developmental potential by single blastomere RNA-Seq[J]. Genes (Basel), 2023, 14 (3): 569.
doi: 10.3390/genes14030569 |
| 21 |
CAPALBO A , BONO S , SPIZZICHINO L , et al. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development[J]. Hum Reprod, 2013, 28 (2): 509- 518.
doi: 10.1093/humrep/des394 |
| 22 |
SCOTT K L , HONG K H , SCOTT R J . Selecting the optimal time to perform biopsy for pre-implantation genetic testing[J]. Fertil Steril, 2013, 100 (3): 608- 614.
doi: 10.1016/j.fertnstert.2013.07.004 |
| 23 |
SCOTT R J , UPHAM K M , FORMAN E J , et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial[J]. Fertil Steril, 2013, 100 (3): 697- 703.
doi: 10.1016/j.fertnstert.2013.04.035 |
| 24 |
De VOS A , STAESSEN C , De RYCKE M , et al. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers[J]. Hum Reprod, 2009, 24 (12): 2988- 2996.
doi: 10.1093/humrep/dep251 |
| 25 |
PARK J , BANG S , LEE W , et al. Sex ratio and conception rates of fresh/vitrified embryos at different developmental stages by ovum pick up in Hanwoo cows[J]. J Anim Sci Technol, 2024, 66 (5): 920- 935.
doi: 10.5187/jast.2023.e98 |
| 26 |
MIZOBE Y , KUWATSURU Y , KUROKI Y , et al. A novel trophectoderm biopsy technique for all blastocyst stages[J]. Reprod Med Biol, 2022, 21 (1): e12418.
doi: 10.1002/rmb2.12418 |
| 27 |
MCARTHUR S J , LEIGH D , MARSHALL J T , et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts[J]. Fertil Steril, 2005, 84 (6): 1628- 1636.
doi: 10.1016/j.fertnstert.2005.05.063 |
| 28 |
MARTINEZ-RODERO I , SALAS-HUETOS A , DIAZ-MUNOZ J , et al. Blastocoel fluid aspiration improves vitrification outcomes and produces similar sexing results of in vitro-produced cattle embryos compared to microblade biopsy[J]. Theriogenology, 2024, 218, 142- 152.
doi: 10.1016/j.theriogenology.2024.01.042 |
| 29 |
RUBINO P , TAPIA L , RUIZ D A A R , et al. Trophectoderm biopsy protocols can affect clinical outcomes: time to focus on the blastocyst biopsy technique[J]. Fertil Steril, 2020, 113 (5): 981- 989.
doi: 10.1016/j.fertnstert.2019.12.034 |
| 30 |
MICHAELI J , GE N , HUSZTI E , et al. Is a day 7 blastocyst predictive of the reproductive potential of sibling day 5 and day 6 blastocysts?[J]. J Assist Reprod Genet, 2024, 41 (7): 1835- 1842.
doi: 10.1007/s10815-024-03129-2 |
| 31 |
PICCOLOMINI M M , NICOLIELO M , BONETTI T C , et al. Does slow embryo development predict a high aneuploidy rate on trophectoderm biopsy?[J]. Reprod Biomed Online, 2016, 33 (3): 398- 403.
doi: 10.1016/j.rbmo.2016.06.005 |
| 32 |
TAYLOR T H , PATRICK J L , GITLIN S A , et al. Comparison of aneuploidy, pregnancy and live birth rates between day 5 and day 6 blastocysts[J]. Reprod Biomed Online, 2014, 29 (3): 305- 310.
doi: 10.1016/j.rbmo.2014.06.001 |
| 33 |
HERNANDEZ-NIETO C , LEE J A , SLIFKIN R , et al. What is the reproductive potential of day 7 euploid embryos?[J]. Hum Reprod, 2019, 34 (9): 1697- 1706.
doi: 10.1093/humrep/dez129 |
| 34 |
POLI M , ORI A , CHILD T , et al. Characterization and quantification of proteins secreted by single human embryos prior to implantation[J]. EMBO Mol Med, 2015, 7 (11): 1465- 1479.
doi: 10.15252/emmm.201505344 |
| 35 |
MARCOS J , PEREZ-ALBALA S , MIFSUD A , et al. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study[J]. Hum Reprod, 2015, 30 (11): 2501- 2508.
doi: 10.1093/humrep/dev216 |
| 36 |
BODRI D , SUGIMOTO T , YAO S J , et al. Blastocyst collapse is not an independent predictor of reduced live birth: a time-lapse study[J]. Fertil Steril, 2016, 105 (6): 1476- 1483.
doi: 10.1016/j.fertnstert.2016.02.014 |
| 37 |
JOCHEMS R , CANEDO-RIBEIRO C , SILVESTRI G , et al. Preimplantation genetic testing for aneuploidy (PGT-A) reveals high levels of chromosomal errors in in vivo-derived pig embryos, with an increased incidence when produced in vitro[J]. Cells, 2023, 12 (5): 790.
doi: 10.3390/cells12050790 |
| 38 |
De MARTIN H , BONETTI T , NISSEL C , et al. Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy[J]. Sci Rep, 2024, 14 (1): 739.
doi: 10.1038/s41598-023-51087-z |
| 39 |
GLEICHER N , PATRIZIO P , BRIVANLOU A . Preimplantation genetic testing for aneuploidy - a castle built on sand[J]. Trends Mol Med, 2021, 27 (8): 731- 742.
doi: 10.1016/j.molmed.2020.11.009 |
| 40 |
NAJAFZADEH V , BOJSEN-MOLLER S J , PIHL M , et al. Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J]. Theriogenology, 2021, 171, 44- 54.
doi: 10.1016/j.theriogenology.2021.04.020 |
| 41 |
CHANG S , FULMER D , HUR S K , et al. Dysregulated H19/Igf2 expression disrupts cardiac-placental axis during development of Silver-Russell syndrome-like mouse models[J]. Elife, 2022, 11, e78754.
doi: 10.7554/eLife.78754 |
| 42 |
TOCCI A . The unknown human trophectoderm: implication for biopsy at the blastocyst stage[J]. J Assist Reprod Genet, 2020, 37 (11): 2699- 2711.
doi: 10.1007/s10815-020-01925-0 |
| 43 |
ZHANG Y , YANG L , ZHANG Y , et al. Identification of important factors causing developmental arrest in cloned pig embryos by embryo biopsy combined with microproteomics[J]. Int J Mol Sci, 2022, 23 (24): 15975.
doi: 10.3390/ijms232415975 |
| 44 | FALCHI L , LEDDA S , ZEDDA M T . Embryo biotechnologies in sheep: Achievements and new improvements[J]. Reprod Domest Anim, 2022, 57 (Suppl 5): 22- 33. |
| 45 |
JIMENEZ-MACEDO A R , PARAMIO M T , ANGUITA B , et al. Effect of ICSI and embryo biopsy on embryo development and apoptosis according to oocyte diameter in prepubertal goats[J]. Theriogenology, 2007, 67 (8): 1399- 1408.
doi: 10.1016/j.theriogenology.2007.03.003 |
| 46 | HONDA A . Gene targeting in rabbits: single-step generation of knockout rabbits by microinjection of CRISPR/Cas9 plasmids[J]. Methods Mol Biol, 2023, 2637, 255- 267. |
| 47 |
HUANG B , LUO X , WU R , et al. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis[J]. J Assist Reprod Genet, 2023, 40 (6): 1243- 1253.
doi: 10.1007/s10815-023-02760-9 |
| 48 | ENGLAND S J , ADAMS R J . Blastomere injection of cleavage-stage zebrafish embryos and imaging of labeled cells[J]. Cold Spring Harb Protoc, 2011, 2011 (8): 958- 966. |
| 49 | WASSARMAN P M , LITSCHER E S . The mouse egg′s zona pellucida[J]. Curr Top Dev Biol, 2018, 130, 331- 356. |
| 50 | MANTIKOU E , JONKER M J , WONG K M , et al. Factors affecting the gene expression of in vitro cultured human preimplantation embryos[J]. Hum Reprod, 2016, 31 (2): 298- 311. |
| 51 |
WANG Y , LV C , HUANG H L , et al. Influence of mouse defective zona pellucida in folliculogenesis on apoptosis of granulosa cells and developmental competence of oocytesdagger[J]. Biol Reprod, 2019, 101 (2): 457- 465.
doi: 10.1093/biolre/ioz093 |
| 52 |
HONG B , HAO Y . The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: A retrospective study[J]. Medicine (Baltimore), 2020, 99 (9): e18768.
doi: 10.1097/MD.0000000000018768 |
| 53 |
GRECO E , MINASI M G , FIORENTINO F . Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts[J]. N Engl J Med, 2015, 373 (21): 2089- 2090.
doi: 10.1056/NEJMc1500421 |
| 54 | WALDVOGEL S M , POSEY J E , GOODELL M A . Human embryonic genetic mosaicism and its effects on development and disease[J]. Nat Rev Genet, 2024, 25 (10): 698- 714. |
| 55 |
RIVERA R M , ROSS J W . Epigenetics in fertilization and preimplantation embryo development[J]. Prog Biophys Mol Biol, 2013, 113 (3): 423- 432.
doi: 10.1016/j.pbiomolbio.2013.02.001 |
| 56 |
SANGALLI J R , NOCITI R P , CHIARATTI M R , et al. Beta-hydroxybutyrate alters bovine pre-implantation embryo development through transcriptional and epigenetic mechanismsdagger[J]. Biol Reprod, 2025, 112 (2): 253- 272.
doi: 10.1093/biolre/ioae175 |
| 57 |
FEINBERG A P . Phenotypic plasticity and the epigenetics of human disease[J]. Nature, 2007, 447 (7143): 433- 440.
doi: 10.1038/nature05919 |
| 58 |
BELL C G . Epigenomic insights into common human disease pathology[J]. Cell Mol Life Sci, 2024, 81 (1): 178.
doi: 10.1007/s00018-024-05206-2 |
| 59 |
KRISHER R L , HERRICK J R . Bovine embryo production in vitro: evolution of culture media and commercial perspectives[J]. Anim Reprod, 2024, 21 (3): e20240051.
doi: 10.1590/1984-3143-ar2024-0051 |
| 60 |
RHON-CALDERON E A , VROOMAN L A , RIESCHE L , et al. The effects of Assisted Reproductive Technologies on genomic imprinting in the placenta[J]. Placenta, 2019, 84, 37- 43.
doi: 10.1016/j.placenta.2019.02.013 |
| 61 |
SCIORIO R , TRAMONTANO L , RAPALINI E , et al. Risk of genetic and epigenetic alteration in children conceived following ART: Is it time to return to nature whenever possible?[J]. Clin Genet, 2023, 103 (2): 133- 145.
doi: 10.1111/cge.14232 |
| 62 |
IHIRWE R G , MARTEL J , RAHIMI S , et al. Protective and sex-specific effects of moderate dose folic acid supplementation on the placenta following assisted reproduction in mice[J]. FASEB J, 2023, 37 (1): e22677.
doi: 10.1096/fj.202201428R |
| 63 |
AGCA Y , MONSON R L , NORTHEY D L , et al. Normal calves from transfer of biopsied, sexed and vitrified IVP bovine embryos[J]. Theriogenology, 1998, 50 (1): 129- 145.
doi: 10.1016/S0093-691X(98)00120-4 |
| 64 |
WANG X , ZHANG S , GU Y , et al. The impact of blastocyst freezing and biopsy on the association of blastocyst morphological parameters with live birth and singleton birthweight[J]. Fertil Steril, 2023, 119 (1): 56- 66.
doi: 10.1016/j.fertnstert.2022.09.030 |
| 65 |
HUANG J , LU Y , HE Y , et al. Trophectoderm grade is associated with the risk of placenta previa in frozen-thawed single-blastocyst transfer cycles[J]. Hum Reprod, 2024, 39 (10): 2249- 2258.
doi: 10.1093/humrep/deae172 |
| 66 |
NAGATOMO H , YAO T , ARAKI Y , et al. Agarose capsules as new tools for protecting denuded mouse oocytes/embryos during handling and freezing-thawing and supporting embryonic development in vivo[J]. Sci Rep, 2017, 7 (1): 17960.
doi: 10.1038/s41598-017-18365-z |
| 67 |
PALINI S , GALLUZZI L , DE STEFANI S , et al. Genomic DNA in human blastocoele fluid[J]. Reprod Biomed Online, 2013, 26 (6): 603- 610.
doi: 10.1016/j.rbmo.2013.02.012 |
| 68 |
TOBLER K J , ZHAO Y , ROSS R , et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J]. Fertil Steril, 2015, 104 (2): 418- 425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 69 |
HANDYSIDE A H . Noninvasive preimplantation genetic testing: dream or reality?[J]. Fertil Steril, 2016, 106 (6): 1324- 1325.
doi: 10.1016/j.fertnstert.2016.08.046 |
| 70 |
GIANAROLI L , MAGLI M C , POMANTE A , et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study[J]. Fertil Steril, 2014, 102 (6): 1692- 1699.
doi: 10.1016/j.fertnstert.2014.08.021 |
| 71 |
ZHANG B , ZHENG H , HUANG B , et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J]. Nature, 2016, 537 (7621): 553- 557.
doi: 10.1038/nature19361 |
| 72 |
WANG L , ZHANG J , DUAN J , et al. Programming and inheritance of parental DNA methylomes in mammals[J]. Cell, 2014, 157 (4): 979- 991.
doi: 10.1016/j.cell.2014.04.017 |
| 73 |
LIU X S , WU H , JI X , et al. Editing DNA methylation in the mammalian genome[J]. Cell, 2016, 167 (1): 233- 247.
doi: 10.1016/j.cell.2016.08.056 |
| 74 |
KAZUMI ITO A S M H . Effect of time interval between biopsy and vitrification on survival of in vitro-produced bovine blastocysts[J]. J Reprod Dev, 1999, 45 (5): 351- 355.
doi: 10.1262/jrd.45.351 |
| 75 |
AGERHOLM J S , MADSEN S E , KROGH A , et al. Health assessment of Holstein calves born after in vitro fertilization, biopsy-based genotyping at the blastocyst stage and subsequent embryo transfer[J]. Theriogenology, 2023, 211, 76- 83.
doi: 10.1016/j.theriogenology.2023.08.005 |
| 76 | CENARIU M , PALL E , CERNEA C , et al. Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability[J]. J Biomed Biotechnol, 2012, 2012, 541384. |
| 77 |
KASAVEN L S , MARCUS D , THEODOROU E , et al. Systematic review and meta-analysis: does pre-implantation genetic testing for aneuploidy at the blastocyst stage improve live birth rate?[J]. J Assist Reprod Genet, 2023, 40 (10): 2297- 2316.
doi: 10.1007/s10815-023-02866-0 |
| 78 |
MONTJEAN D , GEOFFROY-SIRAUDIN C , GERVOISE-BOYER M J , et al. Competence of embryos showing transient developmental arrest during in vitro culture[J]. J Assist Reprod Genet, 2021, 38 (4): 857- 863.
doi: 10.1007/s10815-021-02090-8 |
| [1] | WANG Yanbo, ZHANG Xiaomeng, JING Xiujuan, FENG Xiaoyi, ZHANG Yuanqing, ZHAO Xueming. Advances in Nanoparticle Applications for Animal Germplasm Cryopreservation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4156-4164. |
| [2] | LI Yu, BIE Zhiwen, CHEN Shuai, LI Bingzhi, HOU Jinxing, REN Kerun, DENG Yanzhuo, WU Qiang, HU Jianhong. Research Progress on Cryopreservation of Livestock Semen [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3591-3600. |
| [3] | ZONG Yunhe, YANG Yuze, SUN Yanyan, CHEN Jilan, LI Yunlei. Research Advances in the Investigation of the Protective Role of Lysine Acetylation in Chicken Semen Cryopreservation and Its Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3071-3079. |
| [4] | WU Silin, YANG Benshun, YE Miaomiao, LIANG Entang, LI Fuqiang, MA Weidong, ZAN Linsen, ZHAO Chunping, YANG Wucai. Effect of Luteolin on Semen Cryopreservation of Qinchuan Bull [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3244-3251. |
| [5] | ZHANG Jian, HAI Erhan, ZHANG Jianjun, LI Boyuan, ZHANG Jiaxin. Glutamine Enhances Frozen-Thawed Semen Quality in Sheep via Activation of the HSF1/HSP70 Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2219-2229. |
| [6] | ZHANG Hongyan, WANG Shanpeng, CAO Hailiang, MIN Lingjiang, ZHOU Kaifeng, ZHU Zhendong. Study on Freeze Resistance and Fatty Acid Composition of Boar Sperm [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1755-1767. |
| [7] | MA Yingtian, JIANG Luyao, LI Zengkai, QIN Jianping, ZHAO Jianhua, HE Yufang, SONG Yuxuan, ZHANG Lei. Effect of Cyanidin-3-rutinoside on Cryopreservation of Semen of Dairy Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1768-1778. |
| [8] | LIANG Entang, LI Huaxuan, CHEN Shuaicheng, LI Guo, SUN Gege, ZAN Linsen. Effect of Genistein on Semen Cryopreservation of Bull [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 700-710. |
| [9] | Jianhua DONG, Xiaoyi FENG, Baigao YANG, Chongyang LI, Hongmei PAN, Lihua LÜ, Xueming ZHAO. Advances in Cryopreservation of Porcine Embryo [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4796-4807. |
| [10] | FENG Xiaoyi, XU Xi, ZHANG Hang, YANG Baigao, ZHANG Peipei, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Advances in Cryopreservation of Bovine Embryo in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 451-462. |
| [11] | CHEN Siying, SUN Yawen, LI Kang, LIU Shuo, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, PANG Yunwei. Application of Microfluidic Technologies in Livestock in vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4889-4897. |
| [12] | LI Chunyan, ZHANG Yan, Lü Chunrong, DENG Weidong, QUAN Guobo. Research Progress on Antioxidant Mechanisms of Melatonin and Its Application in Cryopreservation of Mammalian Spermatozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4468-4476. |
| [13] | CAI Shaoli, XU Jiehuan, HE Mengqian, ZHANG Defu, SUN Lingwei, ZHANG Shushan, LI Wanjun, WU Caifeng, ZHU Xing, DAI Jianjun. Effects of Forskolin on Lipid Degradation and Cryopreservation of Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 178-188. |
| [14] | WANG Meng, YANG Chaoqun, WU Silin, TAN Jianbing, DU Xinze, LI Zhenxing, ZAN Linsen, YANG Wucai. Impact of Lycopene on Semen Cryopreservation and Fresh Semen Quality of Qinchuan Bull [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4507-4517. |
| [15] | WANG Junyue, DAI Jianjun, ZHANG Shushan, SUN Lingwei, WU Caifeng, ZHANG Defu. Effects of High Pressure Homogeneous Egg Yolk on Apoptosis of Boar Sperm Cryopreservation [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2190-2199. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||