Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (2): 715-725.doi: 10.11843/j.issn.0366-6964.2023.02.028
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
ZHANG Chengcheng, SUN Jiahao, WANG Xiuling, ZHANG Xiaorong, WU Yantao*
Received:
2022-06-06
Online:
2023-02-23
Published:
2023-02-21
CLC Number:
ZHANG Chengcheng, SUN Jiahao, WANG Xiuling, ZHANG Xiaorong, WU Yantao. Beclin1 Interacts with the Nonstructural Protein NS5A of CSFV and Promotes Virus Proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 715-725.
[1] | 尹春博. 简述猪瘟研究进展[J]. 中国畜牧兽医文摘, 2016, 32(10):129, 126.YIN C B. A brief description of the research progress of swine fever[J]. Chinese Animal Husbandry and Veterinary Digest, 2016, 32(10):129, 126. (in Chinese) |
[2] | BECHER P, RAMIREZ R A, ORLICH M, et al. Genetic and antigenic characterization of novel pestivirus genotypes:implications for classification[J]. Virology, 2003, 311(1):96-104. |
[3] | LINDENBACH B D, THIEL H J, RICE C M. Flaviviridae:the viruses and their replication[M]//KNIPE D M, HOWLEY P M. Fields Virology. 5th ed. Philadelphia:Lippincott Williams & Wilkins, 2007:1101-1152. |
[4] | DONG W, LV H F, WANG Y F, et al. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells[J]. Res Vet Sci, 2017, 112:89-96. |
[5] | DONG X Y, TANG S Q. Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway[J]. Virol J, 2016, 13:101. |
[6] | LI L F, YU J H, LI Y F, et al. Guanylate-binding protein 1, an interferon-induced GTPase, exerts an antiviral activity against classical swine fever virus depending on its GTPase activity[J]. J Virol, 2016, 90(9):4412-4426. |
[7] | LIN J H, WANG C B, LIANG W L, et al. Rab1A is required for assembly of classical swine fever virus particle[J]. Virology, 2018, 514:18-29. |
[8] | ZHANG L, ZHAO D, JIN M X, et al. Rab18 binds to classical swine fever virus NS5A and mediates viral replication and assembly in swine umbilical vein endothelial cells[J]. Virulence, 2020, 11(1):489-501. |
[9] | LING S F, LUO M Y, JIANG S N, et al. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway[J]. Virology, 2018, 518:202-209. |
[10] | ZHANG C C, KANG K, NING P B, et al. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication[J]. Virology, 2015, 482:9-18. |
[11] | XIE B M, ZHAO M Q, SONG D, et al. Induction of autophagy and suppression of type I IFN secretion by CSFV[J]. Autophagy, 2021, 17(4):925-947. |
[12] | ZHANG C C, ZHAO F X, GUO M J, et al. CSFV protein NS5A activates the unfolded protein response to promote viral replication[J]. Virology, 2020, 541:75-84. |
[13] | ZHANG L, JIN M X, SONG M Z, et al. ARFGAP1 binds to classical swine fever virus NS5A protein and enhances CSFV replication in PK-15 cells[J]. Vet Microbiol, 2021, 255:109034. |
[14] | PEI J J, ZHAO M Q, YE Z D, et al. Autophagy enhances the replication of classical swine fever virus in vitro[J]. Autophagy, 2014, 10(1):93-110. |
[15] | ZHANG C C, WANG X L, SUN J H, et al. Autophagy induced by the N-terminus of the classic swine fever virus nonstructural protein 5A protein promotes viral replication[J]. Front Microbiol, 2021, 12:733385. |
[16] | SHANG Y Y, YAO M, ZHOU Z W, et al. Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling[J]. Oncotarget, 2017, 8(63):107076-107088. |
[17] | PARZYCH K R, KLIONSKY D J. An overview of autophagy:morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3):460-473. |
[18] | HIRANO S, KANNO S. Relevance of autophagy markers to cytotoxicity of zinc compounds in macrophages[J]. Toxicol in Vitro, 2020, 65:104816. |
[19] | LIN L T, DAWSON P W H, RICHARDSON C D. Viral interactions with macroautophagy:a double-edged sword[J]. Virology, 2010, 402(1):1-10. |
[20] | LEVINE B, KLIONSKY D J. Development by self-digestion:molecular mechanisms and biological functions of autophagy[J]. Dev Cell, 2004, 6(4):463-477. |
[21] | LIANG X H, JACKSON S, SEAMAN M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402(6762):672-676. |
[22] | XIE Z P, KLIONSKY D J. Autophagosome formation:core machinery and adaptations[J]. Nat Cell Biol, 2007, 9(10):1102-1109. |
[23] | 宋嘉宁, MUHAMMAD T, 张文婷, 等. 自噬相关蛋白激酶的研究进展[J]. 河北师范大学学报(自然科学版), 2021, 45(6):612-619.SONG J N, MUHAMMAD T, ZHANG W T, et al. Research progress of autophagy-associated protein kinases[J]. Journal of Hebei Normal University (Natural Science), 2021, 45(6):612-619. (in Chinese) |
[24] | EHSAN N A, MOSBEH A M, ELKHADRY S W, et al. Altered protein and gene expression of beclin-1 correlates with poor prognosis of Hcv-associated hepatocellular carcinoma in Egyptian patients[J]. Asian Pac J Cancer Prev, 2021, 22(4):1115-1122. |
[25] | FU N, DU H J, LI D D, et al. Clusterin contributes to hepatitis C virus-related hepatocellular carcinoma by regulating autophagy[J]. Life Sci, 2020, 256:117911. |
[26] | LEE J S, TABATA K, TWU W I, et al. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection[J]. PLoS Pathog, 2019, 15(9):e1008021. |
[27] | 康 恺, 林 鸷, 高海慧, 等. 猪瘟病毒促进细胞自噬并利于病毒增殖[J]. 畜牧兽医学报, 2014, 45(9):1481-1487.KANG K, LIN Z, GAO H H, et al. Classical swine fever virus promotes cell autophagy which facilitates virus proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(9):1481-1487. (in Chinese) |
[28] | HOLM C K, RAHBEK S H, GAD H H, et al. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses[J]. Nat Commun, 2016, 7:10680. |
[29] | LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6:21888. |
[30] | 董小英, 彭国良, 许崇波, 等. miR-21通过PI3K/Akt通路抑制猪瘟病毒复制的机制的研究[J]. 中国预防兽医学报, 2016, 38(8):595-599.DONG X Y, PENG G L, XU C B, et al. miR-21 inhibition of classical swine fever virus replication through the PI3K/Akt signaling pathway[J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(8):595-599. (in Chinese) |
[31] | TWU W I, LEE J Y, KIM H, et al. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation[J]. Cell Rep, 2021, 37(8):110049. |
[32] | DOWDLE W E, NYFELER B, NAGEL J, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo[J]. Nat Cell Biol, 2014, 16(11):1069-1079. |
[33] | GASSEN N C, PAPIES J, BAJAJ T, et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals[J]. Nat Commun, 2021, 12(1):3818. |
[34] | FUNDERBURK S F, WANG Q J, YUE Z Y. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond[J]. Trends Cell Biol, 2010, 20(6):355-362. |
[1] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[2] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[3] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
[4] | TIAN Qihui, ZHANG Liang, LONG Yali. Study on the Effect of Astragalus on Proliferation of Bone Marrow Mesenchymal Stem Cells in Anoxic Microenvironment based on PI3K-AKT Signal Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 346-354. |
[5] | DING Xiaoyan, HE Jiuxiang, ZHOU Xiaoyang, ZHOU Yuxin, LI Jintao. Preliminary Identification of Host Regulatory Genes and Virulence Genes during African Swine Fever Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2964-2971. |
[6] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[7] | WANG Chongnian, YU Jialin, GONG Zhaoqian, WU Xiaoling, DENG Guangcun. Regulation of BCG-induced Autophagy in Macrophages RAW264.7 by PLIN2 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2134-2146. |
[8] | WANG Han, MENG Lijie, LIU Wenjiao, XU Yongjian, GONG Ting. Effect of TAS1R3 Gene Interference on Autophagy Related Factors in Leydig Cells of Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1525-1534. |
[9] | MA Tianwen, YU Yue, LÜ Liangyu, JIA Lina, RUAN Hongri, WANG Haoran, WANG Xinyu, ZHANG Yuxin, ZHANG Jiantao, GAO Li. Effects of Bilobalide on Autophagy, Proliferation and Apoptosis of IL-1β-induced ATDC5 Chondrocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 837-846. |
[10] | MENG Meijuan, WANG Yan, HUO Ran, LI Xuerui, CHANG Guangjun, SHEN Xiangzhen. Effect of Inhibition of PERK on LPS Induced Autophagy in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 351-360. |
[11] | WEN Shuangquan, WANG Li, ZHANG Wenhua, XU Mingchang, ZOU Hui, GU Jianhong, LIU Xuezhong, BIAN Jianchun, LIU Zongping, YUAN Yan. Effects of Fas on Autophagosomes Formation Induced by Cadmium Exposure in Rat Cerebral Cortex [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1608-1614. |
[12] | CAO Qianying, ZHENG Hao, WANG Yaling, ZOU Hui, GU Jianhong, YUAN Yan, LIU Xuezhong, LIU Zongping, BIAN Jianchun. Mechanism of Autophagy Block in PC12 Cells Induced by Zearalenone [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1270-1279. |
[13] | WANG Libin, WANG Meng, SUN Ying, CHEN Rui, ZHANG Tiantian, HUANG Zhenhua, ZHANG Qian, YU Sijiu, PAN Yangyang. CYP19A1 Promotes Autophagy and Early Developmental Ability of Yak Oocytes by Regulating the Levels of Endogenous Estradiol [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4283-4295. |
[14] | GUO Zhenhua, LI Xiang, WENG Maoyang, JIN Qianyue, GUO Junqing, XING Guangxu, ZHANG Gaiping. Host Annexin A2 Interacts with US3 of PRV and Its Effects on Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3927-3935. |
[15] | YIN Yanling, HUANG Shuang, YAO Qian, WU Jiangping, GUO Haochen, YANG Xin, SONG Junke, ZHAO Guanghui. The Mechanisms of Circular RNA ciRS-7 Affecting the Propagation of Cryptosporidium parvum in HCT-8 Cells via Targeting miR-219a-5p [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3989-3999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||