Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (11): 3731-3736.doi: 10.11843/j.issn.0366-6964.2022.11.002
• REVIEW • Previous Articles Next Articles
HONG Mian1, HUANG Jiamin1, CHEN Dongmei1,2, XIE Shuyu1*
Received:
2022-03-29
Online:
2022-11-23
Published:
2022-11-25
CLC Number:
HONG Mian, HUANG Jiamin, CHEN Dongmei, XIE Shuyu. Research Progress of Nanotechnology to Enhance Antibacterial Efficacy of Antibacterial Drugs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3731-3736.
[1] | BEYER P, MOORTHY V, PAULIN S, et al.The drugs don't work:WHO's role in advancing new antibiotics[J].Lancet, 2018, 392(10144):264-266. |
[2] | ANANTHAKRISHNAN A, PAINTER C, TEERAWATTANANON Y.A protocol for a systematic literature review of economic evaluation studies of interventions to address antimicrobial resistance[J].Syst Rev, 2021, 10(1):242. |
[3] | FEYNMAN R P.There's plenty of room at the bottom[J].J Microelectromech Syst, 1992, 1(1):60-66. |
[4] | BAYDA S, ADEEL M, TUCCINARDI T, et al.The History of nanoscience and nanotechnology:from chemical-physical applications to nanomedicine[J].Molecules, 2020, 25(1):112. |
[5] | EL-SAYED A, KAMEL M.Advanced applications of nanotechnology in veterinary medicine[J].Environ Sci Pollut Res Int, 2020, 27(16):19073-19086. |
[6] | YANG Z Y, HE S Q, WU H, et al.Nanostructured antimicrobial peptides:crucial steps of overcoming the bottleneck for clinics[J].Front Microbiol, 2021, 12:710199. |
[7] | DÍEZ-PASCUAL A M.State of the art in the antibacterial and antiviral applications of carbon-based polymeric nanocomposites[J].Int J Mol Sci, 2021, 22(19):10511. |
[8] | GUO Z C, CHEN Y, WANG Y H, et al.Advances and challenges in metallic nanomaterial synthesis and antibacterial applications[J].J Mater Chem B, 2020, 8(22):4764-4777. |
[9] | CHEESEMAN S, CHRISTOFFERSON A J, KARIUKI R, et al.Antimicrobial metal nanomaterials:from passive to stimuli-activated applications[J].Adv Sci, 2020, 7(10):1902913. |
[10] | UCAK S, SUDAGIDAN M, BORSA B A, et al.Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains[J].World J Microbiol Biotechnol, 2020, 36(5):69. |
[11] | OMOLO C A, KALHAPURE R S, AGRAWAL N, et al.A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics[J].J Control Release, 2018, 290:112-128. |
[12] | ZHAO Y Y, TIAN Y, CUI Y, et al.Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria[J].J Am Chem Soc, 2010, 132(35):12349-12356. |
[13] | GURUNATHAN S, CHOI Y J, KIM J H.Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle[J].Int J Mol Sci, 2018, 19(4):1210. |
[14] | KAUR K, REDDY S, BARATHE P, et al.Combating drug-resistant bacteria using photothermally active nanomaterials:a perspective review[J].Front Microbiol, 2021, 12:747019. |
[15] | WEI X S, GAO Y C, HU Y Q, et al.A light-activated nanotherapeutic with broad-spectrum bacterial recognition to eliminate drug-resistant pathogens[J].J Mater Chem B, 2021, 9(5):1364-1369. |
[16] | YANG X Q, XIA P P, ZHANG Y, et al.Photothermal nano-antibiotic for effective treatment of multidrug-resistant bacterial infection[J].ACS Appl Bio Mater, 2020, 3(8):5395-5406. |
[17] | WANG Y, YANG Y N, SHI Y R, et al.Antibiotic-free antibacterial strategies enabled by nanomaterials:progress and perspectives[J].Adv Mater, 2020, 32(18):1904106. |
[18] | WEI X S, SUN H N, BAI Y Y, et al.An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria[J].Biomater Sci, 2020, 8(24):6912-6919. |
[19] | WANG S, XU M, HUANG K W, et al.Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication[J].Sci China Mater, 2020, 63(2):316-324. |
[20] | GAO F, SHAO T Y, YU Y P, et al.Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action[J].Nat Commun, 2021, 12(1):745. |
[21] | YAN L X, WANG B B, ZHAO X, et al.A pH-responsive persistent luminescence nanozyme for selective imaging and killing of Helicobacter pylori and common resistant bacteria[J].ACS Appl Mater Interfaces, 2021, 13(51):60955-60965. |
[22] | MAKABENTA J M V, NABAWY A, LI C H, et al.Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J].Nat Rev Microbiol, 2021, 19(1):23-36. |
[23] | GUO L X, WANG H P, WANG Y X, et al.Organic polymer nanoparticles with primary ammonium salt as potent antibacterial nanomaterials[J].ACS Appl Mater Interfaces, 2020, 12(19):21254-21262. |
[24] | WU L N, YANG Y J, HUANG L X, et al.Levofloxacin-based carbon dots to enhance antibacterial activities and combat antibiotic resistance[J].Carbon, 2022, 186:452-464. |
[25] | WELDRICK P J, IVESON S, HARDMAN M J, et al.Breathing new life into old antibiotics:overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality[J].Nanoscale, 2019, 11(21):10472-10485. |
[26] | ELEFTHERIADOU I, GIANNOUSI K, PROTONOTARIOU E, et al.Cocktail of CuO, ZnO, or CuZn nanoparticles and antibiotics for combating multidrug-resistant Pseudomonas aeruginosa via efflux pump inhibition[J].ACS Appl Nano Mater, 2021, 4(9):9799-9810. |
[27] | VARELA M F, STEPHEN J, LEKSHMI M, et al.Bacterial resistance to antimicrobial agents[J].Antibiotics (Basel), 2021, 10(5):593. |
[28] | AKHLAGHI N, NAJAFPOUR-DARZI G.Multifunctional metal-chelated phosphonate/Fe3O4 magnetic nanocomposite particles for defeating antibiotic-resistant bacteria[J].Powder Technol, 2021, 384:1-8. |
[29] | SUN H N, YU Y J, ZHANG Y F, et al.Glycosylated Nanotherapeutics with β-lactamase reversible competitive inhibitory activity reinvigorates antibiotics against gram-negative bacteria[J].Biomacromolecules, 2021, 22(7):2834-2849. |
[30] | ZHENG H Z, JI Z X, ROY K R, et al.Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance[J].ACS Nano, 2019, 13(10):11488-11499. |
[31] | WANG H B, WANG M J, XU X H, et al.Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance[J].Nat Commun, 2021, 12(1):3331. |
[32] | VAISHAMPAYAN A, GROHMANN E.Antimicrobials functioning through ROS-mediated mechanisms:current insights[J].Microorganisms, 2022, 10(1):61. |
[33] | DRYDEN M.Reactive oxygen species:a novel antimicrobial[J].Int J Antimicrob Agents, 2018, 51(3):299-303. |
[34] | ZHAO Y C, JIA Y X, XU J Y, et al.The antibacterial activities of MoS2 nanosheets towards multi-drug resistant bacteria[J].Chem Commun, 2021, 57(24):2998-3001. |
[35] | LI J, WEI X S, HU Y Q, et al.A fluorescent nanobiocide based on ROS generation for eliminating pathogenic and multidrug-resistant bacteria[J].J Mater Chem B, 2021, 9(17):3689-3695. |
[36] | HUANG R, CAI G Q, LI J, et al.Correction to:platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus[J].J Nanobiotechnology, 2021, 19(1):278. |
[37] | LI X, AHMAD K Z, HE J, et al.Silver nanoflowers coupled with low dose antibiotics enable the highly effective eradication of drug-resistant bacteria[J].J Mater Chem B, 2021, 9(48):9839-9851. |
[38] | GALLO G, SCHILLACI D.Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections[J].Appl Microbiol Biotechnol, 2021, 105(13):5357-5366. |
[39] | SINGH B P, GHOSH S, CHAUHAN A.Development, dynamics and control of antimicrobial-resistant bacterial biofilms:a review[J].Environ Chem Lett, 2021, 19(3):1983-1993. |
[40] | ROBERTS A P, MULLANY P.Oral biofilms:a reservoir of transferable, bacterial, antimicrobial resistance[J].Expert Rev Anti Infect Ther, 2010, 8(12):1441-1450. |
[41] | LI X Y, CHEN D M, XIE S Y.Current progress and prospects of organic nanoparticles against bacterial biofilm[J].Adv Colloid Interface Sci, 2021, 294:102475. |
[42] | MAKABENTA J M V, PARK J, LI C H, et al.Polymeric nanoparticles active against dual-species bacterial biofilms[J].Molecules, 2021, 26(16):4958. |
[43] | HE W, WANG Z Y, BAI H T, et al.Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms[J].Nanoscale, 2021, 13(32):13610-13616. |
[44] | CREMONINI E, ZONARO E, DONINI M, et al.Biogenic selenium nanoparticles:characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts[J].Microb Biotechnol, 2016, 9(6):758-771. |
[1] | ZHENG Rui, LIU Zishi, ZHANG Kangyou, YAN Yong, WEI Ling, ZEREN Wengmu, DINGZE Demi, HUANG Jianjun, WANG Li, WEI Yong. Isolation, Identification and Biological Characterization of Colletotrichum jasminigenum in Stems of Peanuts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2206-2213. |
[2] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[3] | ZHANG Yanmin, ZHAO Dongxu, WANG Wenlong. Mechanism of Resistance to Ivermectin in the Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520. |
[4] | LIU Xinhuan, YUN Jialei, MAO Li, LI Jizong, HAO Fei, HE Miaofeng, YANG Leilei, ZHANG Wenwen, CHENG Zilong, SUN Min, LIU Maojun, WANG Shaohui, BAI Juan, LI Wenliang. Isolation, Identification, Virulence Genes and Drug Resistance Analysis of Escherichia coli Isolated from Diarrheal Goat and Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3445-3454. |
[5] | ZHAO Feifei, LI Jie, HAN Ning, XIE Shiting, ZENG Zhenling. Antibacterial Drug Resistance Analysis of Klebsiella pneumoniae Isolated from Slaughterhouse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3044-3053. |
[6] | Lü Ruoyi, SI Xiaohui, SUN Zhigang, SHI Xiaomin, LIU Xiaoye. Drug Resistance Situation of Streptococcus suis and Prevention Measures of Infections [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4920-4933. |
[7] | WANG Jianing, ZHANG Ziqiang, KONG Dejing, FENG Caicai, ZHANG Feike, LIU Yumei. Isolation and Identification of Klebsiella pneumoniae in Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5198-5206. |
[8] | ZHANG Kaichuan, WANG Jinyu, LI Shoujun, JIA Kun. Isolation, Identification and Biological Characteristics of Klebsiella pneumoniae from Sheep in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 328-337. |
[9] | TONG Panpan, HUANG Shunmin, WANG Yudan, SHI Xuhui, CHEN Wenxia, SONG Xinlong, ZHANG Yi, SU Zhanqiang, XIE Jinxin. Phylogenetic Clustering, Serotype and Drug Resistance Analysis of Escherichia coli from Diarrhea with Piglets in Xinjiang [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 414-420. |
[10] | SHAO Changxuan, DANG Ankai, ZHAN Zhaohan, LAI Zhenheng, ZHU Yongjie, SHAN Anshan. Development and Application Strategy of Beta Sheet Antimicrobial Peptides [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2490-2501. |
[11] | YU Yongfeng, QUAN Heng, DONG Wenhao, ZOU Ronghua, WU Xiaoni, GONG Xiaowei, CHEN Qiwei. The Mechanism of Two-component Regulatory System Mediating Drug Resistance of Gram-negative Bacteria [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1689-1701. |
[12] | WANG Xi, LI Ke, LI Tingcui, YAN Hongya, ZHAO Rong, CHANG Zhishun, LIAO Ming, SUN Minhua, XIN Aiguo. MLST Typing and Drug Resistance Analysis of 75 Salmonella Strains Isolated from Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1626-1631. |
[13] | ZHANG Lin, LU Fang, FU Hengfeng, JIANG Xidi, WEI Qiling, QI Caili, GAO Haixia, LI Lin. Regulation Mechanism of BaeSR on Fluoroquinolones Resistance in Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 894-903. |
[14] | LI Huaming, XIANG Wei, LU Wenbing, LIU Feng, LEI Liancheng, ZHANG Fuxian. Pathogenicity and Drug Sensitivity Analysis of a Porcine Klebsiella pneumoniae Type ST-35 [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4356-4366. |
[15] | JIANG Kai, ZHAO Pengyu, WANG Tianshuo, YU Siwen, BI Lan, XIAO Jiawei, HE Xianjing, GUO Donghua. Analysis of Biological Characteristics of Fusobacterium necrophorum 43K OMP Genes Mutant Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4019-4026. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||