Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1401-1411.doi: 10.11843/j.issn.0366-6964.2024.04.006
• REVIEW • Previous Articles Next Articles
HUANG Jie, RUAN Zihao, CAI Rui*
Received:
2023-10-19
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411.
[1] WANG L J, CHANG C. Discussion on the development and prospect of pig semen preservation in artificial insemination[J]. Swine Industry Science, 2020, 37(6):102-104. (in Chinese) 王利娟, 常枨. 浅谈猪精液保存在人工授精中的发展与展望[J]. 猪业科学, 2020, 37(6):102-104. [2] SCHULZE M, DATHE M, WABERSKI D, et al. Liquid storage of boar semen:current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders[J]. Theriogenology, 2016, 85(1):39-46. [3] MENG Y P, LIU H, XIANG Y Y, et al. Study on mechanism of action, slow release research, and improvement strategies of antimicrobial peptides[J]. China Medical Herald, 2023, 20(6):37-41. (in Chinese) 孟宇鹏, 刘红, 项闫颜, 等. 抗菌肽的作用机制、缓释研究及改良策略[J]. 中国医药导报, 2023, 20(6):37-41. [4] WANG X G, WANG R, SUN J N, et al. Research progress of antimicrobial peptides in poultry production[J]. Feed Research, 2023, 46(4):148-151. (in Chinese) 王许刚, 王瑞, 孙嘉咛, 等. 抗菌肽在家禽生产中的研究进展[J]. 饲料研究, 2023, 46(4):148-151. [5] SUN C, LI Q, LI J C, et al. Analysis on the influencing factors of pig semen preservation at room temperature[J]. Animal Husbandry and Feed Science, 2018, 39(11):58-61. (in Chinese) 孙超, 李琦, 李井春, 等. 猪精液常温保存的影响因素分析[J]. 畜牧与饲料科学, 2018, 39(11):58-61. [6] WANG S, XU C, LI Y B, et al. Research progress and technical measures on the cryopreservation of pig semen at 4℃[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(1):45-47. (in Chinese) 王硕, 徐超, 李雁冰, 等. 猪精液4℃保存的研究进展及技术措施[J]. 黑龙江畜牧兽医, 2020(1):45-47. [7] FENG H Z, SONG Y L, LI J C. Research progress on the effect of four antioxidants on the cryopreservation of pig semen[J]. Swine Industry Science, 2023, 40(2):102-104. (in Chinese) 冯赫泽, 宋宇伦, 李井春. 四种抗氧化剂对猪精液冷冻保存影响研究进展[J]. 猪业科学, 2023, 40(2):102-104. [8] ZHANG K, LI Y H, YU X L, et al. Current status of artificial insemination with frozen semen in pigs[J]. Heilongjiang Journal of Animal Reproduction, 2023, 31(2):13-18. (in Chinese) 张珂, 栗颖华, 禹学礼, 等. 猪冷冻精液在人工授精中的研究进展[J]. 黑龙江动物繁殖, 2023, 31(2):13-18. [9] BAILEY J L, LESSARD C, JACQUES J, et al. Cryopreservation of boar semen and its future importance to the industry[J]. Theriogenology, 2008, 70(8):1251-1259. [10] SUN F K, RAN B K, JIA Y H, et al. Factors affecting the preservation of boar semen at room temperature[J]. Journal of Animal Science and Veterinary Medicine, 2021, 40(4):99-101, 103. (in Chinese) 孙福魁, 冉本康, 贾永宏, 等. 影响猪精液常温保存效果的因素[J]. 畜牧兽医杂志, 2021, 40(4):99-101, 103. [11] HUANG Q S. Effect of cryopreservation on sperm quality in pigs[D]. Hohhot:Inner Mongolia Agricultural University, 2022. (in Chinese) 黄清松. 冷冻保存对猪精子品质的影响[D]. 呼和浩特:内蒙古农业大学, 2022. [12] LIAO H K, HUANG J J, CHEN Q. Application progress of antioxidants in storing pig semen at room temperature[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44(8):92-93, 97. (in Chinese) 廖欢科, 黄建锦, 陈乾. 猪精液常温保存抗氧化剂应用进展[J]. 山东畜牧兽医, 2023, 44(8):92-93, 97. [13] HE J J, NIU T J, LI Y, et al. Research progress on dilution powder of boar semen stored in room temperature[J]. Journal of Domestic Animal Ecology, 2021, 42(11):87-91. (in Chinese) 贺巾津, 牛统娟, 李宇, 等. 猪精液常温保存稀释粉研究进展[J]. 家畜生态学报, 2021, 42(11):87-91. [14] ÚBEDA J L, AUSEJO R, DAHMANI Y, et al. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality[J]. Theriogenology, 2013, 80(6):565-570. [15] ALTHOUSE G C, KUSTER C E, CLARK S G, et al. Field investigations of bacterial contaminants and their effects on extended porcine semen[J]. Theriogenology, 2000, 53(5):1167-1176. [16] KUSTER C E, ALTHOUSE G C. The impact of bacteriospermia on boar sperm storage andreproductive performance[J]. Theriogenology, 2016, 85(1):21-26. [17] SERGIO SANTOS C, RODRIGUES SILVA A. Current and alternative trends in antibacterial agents used in mammalian semen technology[J]. Anim Reprod, 2020, 17(1):e20190111. [18] COSTINAR L, HERMAN V, PITOIU E, et al. Boar semen contamination:identification of gram-negative bacteria and antimicrobial resistance profile[J]. Animals, 2021, 12(1):43. [19] MAROTO MARTÍN L O, MUÑOZ E C, DE CUPERE F, et al. Bacterial contamination of boar semen affects the litter size[J]. Anim Reprod Sci, 2010, 120(1-4):95-104. [20] TVRDÁ E, BUČKO O, ROJKOVÁ K, et al. The efficiency of selected extenders against bacterial contamination of boar semen in a swine breeding facility in Western Slovakia[J]. Animals, 2021, 11(11):3320. [21] NITSCHE-MELKUS E, BORTFELDT R, JUNG M, et al. Impact of hygiene on bacterial contamination in extended boar semen:an eight-year retrospective study of 28 European AI centers[J]. Theriogenology, 2020, 146:133-139. [22] GOLDBERG A M G, ARGENTI L E, FACCIN J E, et al. Risk factors for bacterial contamination during boar semen collection[J]. Res Vet Sci, 2013, 95(2):362-367. [23] SCHULZE M, JUNG M, HENSEL B. Science-based quality control in boar semen production[J]. Mol Reprod Dev, 2023, 90(7):612-620. [24] ZHAO T T, KOU Z Y, PANG W J. Research progress in the application of Chinese herbal extracts as an alternative to antibiotics during liquid perservation at 17℃[J]. Swine Production, 2021(5):38-42. (in Chinese) 赵甜甜, 寇忠云, 庞卫军. 中草药提取物替代抗生素在猪精液常温保存中的应用研究进展[J]. 养猪, 2021(5):38-42. [25] WIEBKE M, HENSEL B, NITSCHE-MELKUS E, et al. Cooled storage of semen from livestock animals (part Ⅰ):boar, bull, and stallion[J]. Anim Reprod Sci, 2022, 246:106822. [26] PÉREZ-DURAN F, ACOSTA-TORRES L S, SERRANO-DÍAZ P N, et al. Toxicity and antimicrobial effect of silver nanoparticles in swine sperms[J]. Syst Biol Reprod Med, 2020, 66(4):281-289. [27] FEUGANG J M, RHOADS C E, MUSTAPHA P A, et al. Treatment of boar sperm with nanoparticles for improved fertility[J]. Theriogenology, 2019, 137:75-81. [28] SCHULZE M, NITSCHE-MELKUS E, HENSEL B, et al. Antibiotics and their alternatives in artificial breeding in livestock[J]. Anim Reprod Sci, 2020, 220:106284. [29] WANG J J, DOU X J, SONG J, et al. Antimicrobial peptides:promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3):831-859. [30] STEINER H, HULTMARK D, ENGSTRÖM Å, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292(5820):246-248. [31] REN J M, WEN S. Antibacterial mechanisms of antimicrobial peptides and their application in aquaculture[J]. Feed Research, 2023, 46(19):164-169. (in Chinese) 任金美, 温赛. 抗菌肽的抗菌机制及在水产中的应用[J]. 饲料研究, 2023, 46(19):164-169. [32] WEI D X, GONG H L, ZHANG X W. Biosynthesis of antimicrobial peptides and its medical application[J]. Synthetic Biology Journal, 2022, 3(4):709-727. (in Chinese) 魏岱旭, 龚海伦, 张旭维. 抗菌肽的生物合成及医学应用[J]. 合成生物学, 2022, 3(4):709-727. [33] ZONG R, HU Z Z, ZHANG N F, et al. Antimicrobial mechanisms of antimicrobial peptides and its application progress in ruminants[J]. Feed Industry, 2021, 42(9):30-35. (in Chinese) 纵瑞, 胡忠泽, 张乃锋, 等. 抗菌肽的抗菌机制及其在反刍动物中应用的研究进展[J]. 饲料工业, 2021, 42(9):30-35. [34] ZHANG Y, CHEN P. Research progress of antimicrobial peptides produced by genetically engineered[J]. Feed Research, 2021, 44(13):150-152. (in Chinese) 张雨, 陈鹏. 抗菌肽在动物养殖中的研究进展[J]. 饲料研究, 2021, 44(13):150-152. [35] ARIAS M, PIGA K B, HYNDMAN M E, et al. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues[J]. Biomolecules, 2018, 8(2):19. [36] SHEN H F, HUANG J, SONG X P. Research progress on the application of antibacterial peptides in multi-field[J]. Biological Chemical Engineering, 2022, 8(4):173-177. (in Chinese) 沈何放, 黄静, 宋小平. 抗菌肽在多领域的应用研究进展[J]. 生物化工, 2022, 8(4):173-177. [37] ZONG Y F, LIU C X. Application of antimicrobial peptides in swine disease control[J]. Graziery Veterinary Sciences (Electronic Version), 2022(20):157-159. (in Chinese) 宗玉凤, 刘春霞. 抗菌肽在猪病防治中应用[J]. 畜牧兽医科学(电子版), 2022(20):157-159. [38] NIU Q H, RONG Z W. Research on the application of antimicrobial peptides in cosmetics[J]. Detergent & Cosmetics, 2023, 46(2):58-60. (in Chinese) 牛庆华, 荣志伟. 抗菌肽在化妆品中的应用研究[J]. 日用化学品科学, 2023, 46(2):58-60. [39] TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of antimicrobial peptides:from exploration to applications[J]. Nano Today, 2021, 39:101229. [40] ERDEM BVYVKKIRAZ M, KESMEN Z. Antimicrobial peptides (AMPs):a promising class of antimicrobial compounds[J]. J Appl Microbiol, 2022, 132(3):1573-1596. [41] KUMARI S, BOOTH V. Antimicrobial peptide mechanisms studied by whole-Cell deuterium NMR[J]. Int J Mol Sci, 2022, 23(5):2740. [42] YEAMAN M R, YOUNT N Y. Mechanisms of antimicrobial peptide action and resistance[J]. Pharmacol Rev, 2003, 55(1):27-55. [43] ANDRÈS E. Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin[J]. Eur J Clin Microbiol Infect Dis, 2012, 31(6):881-888. [44] ZHANG W, HOU L, YU H M. Research progress of the antimicrobial peptides with dualfunctionality of spermicide and microbicide[J]. Journal of International Reproductive Health/Family Planning, 2013, 32(4):261-263, 266. (in Chinese) 张尉, 侯丽, 于和鸣. 杀精抗菌双功能抗菌肽的研究进展[J]. 国际生殖健康/计划生育杂志, 2013, 32(4):261-263, 266. [45] XU L, SHAN A S, SHAO C X, et al. Advances in biological functions and mechanisms of antimicrobial peptides[J]. Feed Review, 2023(3):9-13. (in Chinese) 徐林, 单安山, 邵长轩, 等. 抗菌肽的生物学功能与作用机制研究进展[J]. 饲料博览, 2023(3):9-13. [46] POWERS J P S, HANCOCK R E W. The relationship between peptide structure and antibacterial activity[J]. Peptides, 2003, 24(11):1681-1691. [47] WU X, ZHANG S Q. Molecular mechanisms of antibacterial peptides against bacterium[J]. Progress in Biochemistry and Biophysics, 2005, 32(12):1109-1113. (in Chinese) 吴希, 张双全. 抗菌肽对细菌杀伤作用的分子机制[J]. 生物化学与生物物理进展, 2005, 32(12):1109-1113. [48] MURZYN K, PASENKIEWICZ-GIERULA M. Construction of a toroidal model for the magainin pore[J]. J Mol Model, 2003, 9(4):217-224. [49] DEAN R E, O'BRIEN L M, THWAITE J E, et al. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes[J]. Peptides, 2010, 31(11):1966-1972. [50] MALINA A, SHAI Y. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide[J]. Biochem J, 2005, 390(Pt 3):695-702. [51] MIGOŃ D, NEUBAUER D, KAMYSZ W. Hydrocarbon stapled antimicrobial peptides[J]. Protein J, 2018, 37(1):2-12. [52] BROGDEN K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3):238-250. [53] OMARDIEN S, BRUL S, ZAAT S A J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives:current progress made in understanding the mode of action and the response of bacteria[J]. Front Cell Dev Biol, 2016, 4:111. [54] CARDOSO M H, MENEGUETTI B T, COSTA B O, et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets[J]. Int J Mol Sci, 2019, 20(19):4877. [55] PATRZYKAT A, FRIEDRICH C L, ZHANG L J, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli[J]. Antimicrob Agents Chemother, 2002, 46(3):605-614. [56] UPERT G, LUTHER A, OBRECHT D, et al. Emerging peptide antibiotics with therapeutic potential[J]. Med Drug Discovery, 2021, 9:100078. [57] SCOCCHI M, MARDIROSSIAN M, RUNTI G, et al. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria[J]. Curr Top Med Chem, 2016, 16(1):76-88. [58] GAGNON M G, ROY R N, LOMAKIN I B, et al. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition[J]. Nucleic Acids Res, 2016, 44(5):2439-2450. [59] MARDIROSSIAN M, PÉRÉBASKINE N, BENINCASA M, et al. The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome[J]. Cell Chem Biol, 2018, 25(5):530-539.e7. [60] YASIR M, DUTTA D, WILLCOX M D P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability[J]. PLoS One, 2019, 14(7):e0215703. [61] OTVOS L Jr, SNYDER C, CONDIE B, et al. Chimeric antimicrobial peptides exhibit multiple modes of action[J]. Int J Pept Res Ther, 2005, 11(1):29-42. [62] CAMPBELL Y, FANTACONE M L, GOMBART A F. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism[J]. Eur J Nutr, 2012, 51(8):899-907. [63] DENNISON S R, MURA M, HARRIS F, et al. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5[J]. Biochim Biophys Acta (BBA)-Biomembr, 2015, 1848(5):1111-1118. [64] SCHULZE M, JUNKES C, MUELLER P, et al. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa[J]. PLoS One, 2014, 9(6):e100490. [65] LI J C, LI Q, WANG S, et al. Analysis on the research status of boar semen preservation technique at room temperature[J]. Swine Industry Science, 2020, 37(6):50-53. (in Chinese) 李井春, 李琦, 王硕, 等. 浅析猪精液常温保存技术的研究现状[J]. 猪业科学, 2020, 37(6):50-53. [66] JUNKES C, HARVEY R D, BRUCE K D, et al. Cyclic antimicrobial R-, W-rich peptides:the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action[J]. Eur Biophys J, 2011, 40(4):515-528. [67] SPECK S, COURTIOL A, JUNKES C, et al. Cationic synthetic peptides:assessment of their antimicrobial potency in liquid preserved boar semen[J]. PLoS One, 2014, 9(8):e105949. [68] HENSEL B, JAKOP U, SCHEINPFLUG K, et al. Low temperature preservation of porcine semen:influence of short antimicrobial lipopeptides on sperm quality and bacterial load[J]. Sci Rep, 2020, 10(1):13225. [69] WANG J, SONG B Y, MEI J S, et al. Effect of methionine iodine on the quality of porcine sperm preserving at room temperature[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(9):45-50. (in Chinese) 王健, 宋博宇, 梅军四, 等. 蛋氨酸碘对常温保存猪精液品质的影响[J]. 畜牧与兽医, 2016, 48(9):45-50. [70] FANG Q, WANG J, HAO Y Y, et al. Effects of iodine methionine on boar sperm quality during liquid storage at 17℃[J]. Reprod Domest Anim, 2017, 52(6):1061-1066. [71] WEI N, HOU Z K, XIE J X, et al. Study on the effect of ε-polylysine on the preservation of semen of black pig in Guanzhong at room temperature[J]. Swine Industry Science, 2017, 34(9):114-117. (in Chinese) 魏宁, 候震坤, 谢景兴, 等. ε-聚赖氨酸对关中黑猪精液常温保存效果研究[J]. 猪业科学, 2017, 34(9):114-117. [72] KEERATIKUNAKORN K, KAEWCHOMPHUN-UCH T, KAEOKET K, et al. Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen[J]. Sci Rep, 2023, 13(1):5995. [73] ZHAO Y, SHEN W, ZHANG H F. Boar nutrition and fertility[J]. Swine Industry Science, 2021, 38(5):32-36. (in Chinese) 赵勇, 沈伟, 张宏福. 公猪营养与繁殖[J]. 猪业科学, 2021, 38(5):32-36. [74] REDDY K V R, SHAHANI S K, MEHERJI P K. Spermicidal activity of Magainins:in vitro and in vivo studies[J]. Contraception, 1996, 53(4):205-210. [75] BUSSALLEU E, SANCHO S, BRIZ M D, et al. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen?[J]. Theriogenology, 2017, 89:235-243. [76] SANCHO S, BRIZ M, YESTE M, et al. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses[J]. Reprod Domest Anim, 2017, 52(S4):69-71. [77] PUIG-TIMONET A, CASTILLO-MARTÍN M, PEREIRA B A, et al. Evaluation of porcine beta defensins-1 and-2 as antimicrobial peptides for liquid-stored boar semen:effects on bacterial growth and sperm quality[J]. Theriogenology, 2018, 111:9-18. [78] SHAOYONG W K, LI Q, REN Z Q, et al. Evaluation of ε-polylysine as antimicrobial alternative for liquid-stored boar semen[J]. Theriogenology, 2019, 130:146-156. [79] KOBAYASHI S, HIRAKURA Y, MATSUZAKI K. Bacteria-selective synergism between the antimicrobial peptides α-helical magainin 2 and cyclic β-sheet tachyplesin Ⅰ:toward cocktail therapy[J]. Biochemistry, 2001, 40(48):14330-14335. [80] HENSEL B, JAKOP U, SCHEINPFLUG K, et al. Low temperature preservation:influence of putative bioactive microalgae and hop extracts on sperm quality and bacterial load in porcine semen[J]. Sustain Chem Pharm, 2021, 19:100359. [81] TANPHAICHITR N, SRAKAEW N, ALONZI R, et al. Potential use of antimicrobial peptides as vaginal spermicides/microbicides[J]. Pharmaceuticals (Basel), 2016, 9(1):13. [82] ZHAO Y, JIN M C, TANG X F. Function of antibacterial peptide and its research progress in animals[J]. Guangdong Feed, 2023, 32(4):39-40. (in Chinese) 赵颖, 金明昌, 唐谢芳. 抗菌肽的作用功能及其在动物上的研究进展[J]. 广东饲料, 2023, 32(4):39-40. [83] SHAO C X, DANG A K, ZHAN Z H, et al. Development and application strategy of beta sheet antimicrobial peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2490-2501. (in Chinese) 邵长轩, 党安凯, 战昭含, 等. β-折叠抗菌肽的研发及应用策略[J]. 畜牧兽医学报, 2022, 53(8):2490-2501. [84] ZHANG L, HUA S. Application of antimicrobial peptides as new antibiotic substitutes in livestock and poultry breeding[J]. Journal of Animal Science and Veterinary Medicine, 2023, 42(3):120-122. (in Chinese) 张利, 华松. 新型抗生素替代品抗菌肽在畜禽养殖上的应用[J]. 畜牧兽医杂志, 2023, 42(3):120-122. [85] LI Q K, LI J Z, WU H, et al. Design strategy and application on targeted antimicrobial peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2):243-251. (in Chinese) 李丘轲, 李金泽, 吴华, 等. 靶向抗菌肽的设计策略与应用[J]. 畜牧兽医学报, 2020, 51(2):243-251. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[3] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[4] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[5] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[6] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
[7] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[8] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[9] | WEI Miaoyi, WU Shihai, YANG Fulin, YU Chenyun, SUN Zhigang, LIU Xinyuan, XU Yuanyuan, LIANG Bingbing, LI Fuhuang, SUN Hong, LIU Xiaoye, DONG Hong. Clinical Efficacy of Herbal Gentian Combat Trichomonas pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 785-796. |
[10] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[11] | ZHANG Jinpeng, CHEN Cuiteng, LIN Lin, FU Huanru, LI Zhaolong, JIANG Bin, HUANG Yu, WAN Chunhe. Establishment of a Real-time Fluorescent RT-PCR Assay for Detection of Pigeon Megrivirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 860-866. |
[12] | NIU Naiqi, ZHAO Runze, ZONG Wencheng, LIU Xiance, LIU Hai, SHI Guohua, JING Xitao, ZHANG Longchao. Association of Polymorphisms of GREB1L and MIB1 Genes with Rib Number and Carcass Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 79-86. |
[13] | ZHU Xueli, ZHANG Longchao, WANG Lixian, PU Lei, LIU Xin. Association Analysis of AQP9 and RPS10 Gene Polymorphisms with Backfat Thickness in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 87-98. |
[14] | SHI Shengjie, WANG Liguang, GAO Lei, CAI Chuanjiang, HE Weixian, CHU Guiyan. Effect of miR-24-3p on Estradiol Synthesis in Porcine Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 169-178. |
[15] | MA Yajun, JIAO Zhihui, LIU Xiaoning, LU Xiangyu, LIU Tao, WANG Yue, PIAO Chenxi, WANG Hongbin. Effects of Adipose-derived Mesenchymal Stem Cells on Pyroptosis of Miniature Pigs with Hepatic Ischemia-Reperfusion Combined with Hepatectomy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 355-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||