Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (2): 421-433.doi: 10.11843/j.issn.0366-6964.2023.02.001
• REVIEW • Previous Articles Next Articles
LIU Yuanyi1, LI Xinyu1, Bayinnamula1, CUI Fang2, MANG Lai1, DU Ming1*
Received:
2022-08-15
Online:
2023-02-23
Published:
2023-02-21
CLC Number:
LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433.
[1] | BAZZANO M, TROISI A.Diagnostic and therapeutic advancements in the field of animal reproduction[J].Animals (Basel), 2022, 12(11):1457. |
[2] | 高建明.动物繁殖学[M].北京:中央广播电视大学出版社, 2003.GAO J M.Animal reproduction[M].Beijing:China Central Radio and Television University Press, 2003.(in Chinese) |
[3] | BEZDÍČEK J, NESVADBOVÁ A, MAKAREVICH A, et al.Relationship between the animal body condition and reproduction:the biotechnological aspects[J].Arch Anim Breed, 2020, 63(1):203-209. |
[4] | 赵志显, 常雪蕊, 郭 勇, 等.种公鸡精液品质营养调控的研究进展[J].畜牧兽医学报, 2022, 53(8):2435-2443.ZHAO Z X, CHANG X R, GUO Y, et al.Research progress on nutritional regulation of semen quality in breeder roosters[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2435-2443.(in Chinese) |
[5] | VRIEZEN R, SARGEANT J M, VRIEZEN E, et al.Systematic reviews and meta-analyses in animal health, performance, and on-farm food safety:a scoping review[J].Anim Health Res Rev, 2019, 20(2):116-127. |
[6] | ZHOU X X, CUI J, MENG J, et al.Interactions and links among the noncoding RNAs in plants under stresses[J].Theor Appl Genet, 2020, 133(12):3235-3248. |
[7] | 张俊珍, 李彩娥, 刘 博, 等.不同生理阶段边鸡卵巢转录谱的构建及卵泡发育相关基因的分析[J].畜牧兽医学报, 2022, 53(2):423-435.ZHANG J Z, LI C E, LIU B, et al.Construction of ovary transcription profile of bian chicken at different physiological stages and analysis of genes related to follicular development[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(2):423-435.(in Chinese) |
[8] | BANFALVI G.Origin of coding RNA from random-sequence RNA[J].DNA Cell Biol, 2019, 38(3):223-228. |
[9] | VARMA E, LUO X R, MUTHUKUMAR T.Dissecting the human kidney allograft transcriptome:single-cell RNA sequencing[J]. Curr Opin Organ Transplant, 2021, 26(1):43-51. |
[10] | CHEN Y W, SONG J, RUAN Q Y, et al.Single-cell sequencing methodologies:from transcriptome to multi-dimensional measurement[J]. Small Methods, 2021, 5(6):e2100111. |
[11] | 巴黎根·达列力汗, 常铤晋, 汪富文, 等.单细胞转录组测序技术及其应用研究进展[J].家畜生态学报, 2021, 42(11):1-5.DALIELIHAN B, CHANG T J, WANG F W, et al.Research progress on single cell RNA sequencing technology and its application[J].Acta Ecologae Animalis Domastici, 2021, 42(11):1-5.(in Chinese) |
[12] | TANG F C, BARBACIORU C, WANG Y Z, et al.mRNA-seq whole-transcriptome analysis of a single cell[J].Nat Methods, 2009, 6(5):377-382. |
[13] | ISLAM S, KJÄLLQUIST U, MOLINER A, et al.Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J].Genome Res, 2011, 21(7):1160-1167. |
[14] | GOETZ J J, TRIMARCHI J M.Transcriptome sequencing of single cells with Smart-Seq[J].Nat Biotechnol, 2012, 30(8):763-765. |
[15] | BLACKBURN D M, LAZURE F, SOLEIMANI V D.SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells[J].Crit Rev Biochem Mol Biol, 2021, 56(3):284-300. |
[16] | SEKI M, SUZUKI A, SEREEWATTANAWOOT S, et al.Single-cell DNA-seq and RNA-seq in cancer using the C1 system[M]//SUZUKI Y.Single Molecule and Single Cell Sequencing.Singapore:Springer, 2019, 1129:27-50. |
[17] | HASHIMSHONY T, WAGNER F, SHER N, et al.CEL-seq:single-cell RNA-seq by multiplexed linear amplification[J].Cell Rep, 2012, 2(3):666-673. |
[18] | YANAI I, HASHIMSHONY T.CEL-seq2-single-cell RNA sequencing by multiplexed linear amplification[M]//PROSERPIO V.Single Cell Methods.New York:Humana, 2019, 1979:45-56. |
[19] | PICELLI S, BJÖRKLUND Å K, FARIDANI O R, et al.Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J].Nat Methods, 2013, 10(11):1096-1098. |
[20] | WONGSURAWAT T, PUNYADEE N, JENJAROENPUN P, et al.RNA sequencing data sets and their whole-genome sequence assembly of dengue virus from three serial passages in vero cells[J].Microbiol Resour Announc, 2021, 10(17):e00145-21. |
[21] | 张子敬, 刘燕蓉, 张顺进, 等.第三代测序技术的方法原理及其在生物领域的应用[J].中国畜牧杂志, 2020, 56(6):11-15.ZHANG Z J, LIU Y R, ZHANG S J, et al.The principle of the third generation sequencing technology and its application in biological field[J].Chinese Journal of Animal Science, 2020, 56(6):11-15.(in Chinese) |
[22] | 刘宏祥, 沈永杰, 张丽华, 等.基于简化基因组测序的娄门鸭遗传多样性评价[J].畜牧兽医学报, 2022, 53(6):1735-1748.LIU H X, SHEN Y J, ZHANG L H, et al.Genetic diversity evaluation of loumen duck based on reduced-representation genome sequencing[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(6):1735-1748.(in Chinese) |
[23] | ZHANG C L, WANG Y C, LU Y T, et al.Multilocus sequence typing analysis and second-generation sequencing analysis of Salmonella Wandsworth[J].J Clin Lab Anal, 2021, 35(9):e23901. |
[24] | BAGATOLLI L A, NEEDHAM D.Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles[J].Chem Phys Lipids, 2014, 181:99-120. |
[25] | ROY A, DENG M, ALDINGER K A, et al.Laser capture micro-dissection (LCM) of neonatal mouse forebrain for RNA isolation[J]. Bio Protoc, 2020, 10(1):e3475. |
[26] | BACON K, LAVOIE A, RAO B M, et al.Past, present, and future of affinity-based cell separation technologies[J].Acta Biomater, 2020, 112:29-51. |
[27] | LIU H R, XU X, PENG K, et al.Microdroplet enabled cultivation of single yeast cells correlates with bulk growth and reveals subpopulation phenomena[J].Biotechnol Bioeng, 2021, 118(2):647-658. |
[28] | SUN L J, YANG W G, CAI S X, et al.Recent advances in microfluidic technologies for separation of biological cells[J].Biomed Microdev, 2020, 22(3):55. |
[29] | KOLODZIEJCZYK A, KIM J K, SVENSSON V, et al.The technology and biology of single-cell RNA sequencing[J].Mol Cell, 2015, 58(4):610-620. |
[30] | ZIEGENHAIN C, VIETH B, PAREKH S, et al.Comparative analysis of single-cell RNA sequencing methods[J].Molecular Cell, 2017, 65(4):631-643.e4. |
[31] | MEREU E, LAFZI A, MOUTINHO C, et al.Benchmarking single-cell RNA-sequencing protocols for cell atlas projects[J].Nat Biotechnol, 2020, 38(6):747-755. |
[32] | CHEN G, NING B T, SHI T L.Single-cell RNA-Seq technologies and related computational data analysis[J].Front Genet, 2019, 10:317. |
[33] | TOWNES F W, HICKS S C, ARYEE M J, et al.Feature selection and dimension reduction for single-cell RNA-seq based on a multinomial model[J].Genome Biol, 2019, 20(1):295. |
[34] | BACHER R, KENDZIORSKI C.Design and computational analysis of single-cell RNA-sequencing experiments[J].Genome Biol, 2016, 17(1):63. |
[35] | 文 路, 汤富酬.单细胞转录组分析研究进展[J].生命科学, 2014, 26(3):228-233.WEN L, TANG F C.Recent progresses in single-cell transcriptome analysis[J].Chinese Bulletin of Life Sciences, 2014, 26(3):228-233.(in Chinese) |
[36] | 刘 青, 徐 斌, 元小冬, 等.神经细胞分化及相关疾病的单细胞转录组测序研究进展[J].生物医学工程与临床, 2022, 26(5):646-651.LIU Q, XU B, YUAN X D, et al.Research progress of single-cell RNA-sequencing of neuronal differentiation and related diseases[J].Biomedical Engineering and Clinical Medicine, 2022, 26(5):646-651.(in Chinese) |
[37] | HWANG B, LEE J H, BANG D.Single-cell RNA sequencing technologies and bioinformatics pipelines[J].Exp Mol Med, 2018, 50(8):1-14. |
[38] | ERICKSON D L, JONES F A, SWENSON N G, et al.Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots:a mega-phylogeny approach[J].Front Genet, 2014, 5:358. |
[39] | 杨佳凤, 陈鹏璐, 龚 熹.单细胞转录组测序技术在细胞分类中的应用[J].中国细胞生物学学报, 2021, 43(2):476-483.YANG J F, CHEN P L, GONG X.Application of single-cell RNA sequencing technology in cell classification[J].Chinese Journal of Cell Biology, 2021, 43(2):476-483.(in Chinese) |
[40] | 夏银钊, 何天乐, 陈俊材, 等.单细胞转录组测序在家畜生产中的应用[J].中国兽医学报, 2022, 42(2):405-412.XIA Y Z, HE T L, CHEN J C, et al.Application of single cell transcriptome sequencing technology in livestock produc-tion[J].Chinese Journal of Veterinary Science, 2022, 42(2):405-412.(in Chinese) |
[41] | 贾昌路, 张 瑶, 朱 玲, 等.转录组测序技术在生物测序中的应用研究进展[J].分子植物育种, 2015, 13(10):2388-2394.JIA C L, ZHANG Y, ZHU L, et al.Application progress of transcriptome sequencing technology in biological sequencing[J].Molecular Plant Breeding, 2015, 13(10):2388-2394.(in Chinese) |
[42] | CHOUDHARY S, SATIJA R.Comparison and evaluation of statistical error models for scRNA-seq[J].Genome Biol, 2022, 23(1):27. |
[43] | 李 益, 孙 超.植物单细胞转录组测序研究进展[J].生物技术通报, 2021, 37(1):60-66.LI Y, SUN C.Research progress in single-cell RNA-seq of Plant[J].Biotechnology Bulletin, 2021, 37(1):60-66.(in Chinese) |
[44] | 陈柳宏, 赵春雷, 王 希, 等.单细胞转录组测序技术及其在植物研究中的应用[J].中国农学通报, 2022, 38(3):87-93.CHEN L H, ZHAO C L, WANG X, et al.Single-cell transcriptome sequencing technology and its application in plant research[J].Chinese Agricultural Science Bulletin, 2022, 38(3):87-93.(in Chinese) |
[45] | SUN X B, LIN X C, LI Z Y, et al.A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq[J].Brief Bioinform, 2022, 23(2):bbab567. |
[46] | MACOSKO E Z, BASU A, SATIJA R, et al.Highly parallel genome-wide expression profiling of individual cells using NANOLITER droplets[J].Cell, 2015, 161(5):1202-1214. |
[47] | 丁 蕾, 高彩霞, 刘兆远, 等.少量细胞输入的自制转录组测序文库构建试剂评测[J].上海交通大学学报:医学版, 2020, 40(4):472-477.DING L, GAO C X, LIU Z Y, et al.Evaluation of a custom transcriptome sequencing library construction reagent with a small amount of cell input[J].Journal of Shanghai Jiaotong University:Medical Science, 2020, 40(4):472-477.(in Chinese) |
[48] | SCHWEINGRUBER C, NIJSSEN J, BENITEZ J A, et al.Single-cell mRNA-seq of in vitro-derived human neurons using Smart-seq2[M]//SONG Q, TAO Z P.Transcription Factor Regulatory Networks.New York:Humana, 2023, 2594:143-164. |
[49] | FREYTAG S, TIAN L Y, LÖNNSTEDT I, et al.Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data[J].F1000Res, 2018, 7:1297. |
[50] | KRAUS G, WEIGELT M, REINHARDT S, et al.Reproducibility of 10x Genomics single cell RNA sequencing method in the immune cell environment[J].J Immunol Methods, 2022, 502:113227. |
[51] | SRIKANTH K, PARK J E, LIM D, et al.A comparison between Hi-C and 10X Genomics linked read sequencing for whole genome phasing in Hanwoo cattle[J].Genes (Basel), 2020, 11(3):332. |
[52] | MENDE N, LAURENTI E, GÖTTGENS B, et al.Simultaneous analysis of single-cell transcriptomes and cell surface protein expression of human hematopoietic stem cells and progenitors using the 10x Genomics platform[M]//OOI A T.Single-Cell Protein Analysis.New York:Humana, 2022, 2386:189-201. |
[53] | WANG X L, HE Y, ZHANG Q M, et al.Direct comparative analyses of 10X Genomics chromium and Smart-seq2[J].Genom Proteom Bioinformat, 2021, 19(2):253-266. |
[54] | KRAUS G, WEIGELT M, REINHARDT S, et al.Reproducibility of 10x Genomics single cell RNA sequencing method in the immune cell environment[J].J Immunol Methods, 2022, 502:113227. |
[55] | BRVNING R S, TOMBOR L, SCHULZ M H, et al.Comparative analysis of common alignment tools for single-cell RNA sequencing[J].Gigascience, 2022, 11:giac001. |
[56] | PAVESE V, CAVALET-GIORSA E, BARCHI L, et al.Whole-genome assembly of Corylus avellana cv "tonda gentile delle langhe" using linked-reads (10X Genomics)[J].G3 (Bethesda), 2021, 11(7):jkab152. |
[57] | SAVARA J, NOVOSÁD T, GAJDOŠ P, et al.Comparison of structural variants detected by optical mapping with long-read next-generation sequencing[J].Bioinformatics, 2021, 37(20):3398-3404. |
[58] | WANG C S, HAN B.Twenty years of rice genomics research:From sequencing and functional genomics to quantitative genomics[J].Mol Plant, 2022, 15(4):593-619. |
[59] | KASHIMA Y, SAKAMOTO Y, KANEKO K, et al.Single-cell sequencing techniques from individual to multiomics analyses[J]. Exp Mol Med, 2020, 52(9):1419-1427. |
[60] | HU C X, LI T Y, XU Y Q, et al.CellMarker 2.0:an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J].Nucleic Acids Res, 2022:gkac947. |
[61] | RAPLEE I D, EVSIKOV A V, DE EVSIKOVA C M.Aligning the aligners:comparison of RNA sequencing data alignment and gene expression quantification tools for clinical breast cancer research[J].J Pers Med, 2019, 9(2):18. |
[62] | NGUYEN V, GRISS J.scAnnotatR:framework to accurately classify cell types in single-cell RNA-sequencing data[J].BMC Bioinformatics, 2022, 23(1):44. |
[63] | 梁维炜, 李明娜, 罗玉柱, 等.性成熟期辽宁绒山羊与子午岭黑山羊睾丸发育比较[J].畜牧兽医学报, 2021, 52(12):3461-3470.LIANG W W, LI M N, LUO Y Z, et al.Comparation of the testes development between liaoning cashmere goat and Ziwuling black goat at sexual maturity[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(12):3461-3470.(in Chinese) |
[64] | GREEN C D, MA Q Y, MANSKE G L, et al.A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq[J].Dev Cell, 2018, 46(5):651-667.e10. |
[65] | 高 源.安格斯牛睾丸组织非编码RNA鉴定及单细胞转录图谱绘制[D].杨凌:西北农林科技大学, 2021.GAO Y.Non-coding RNA identification and single-cell transcriptome atlas of angus bull testis[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[66] | 雷佩佩.基于单细胞测序解析猪精原细胞的异质性[D].杨凌:西北农林科技大学, 2021.LEI P P.The analysis of heterogeneity in porcine spermatogonia based on the single cell sequencing[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[67] | HE Y L, CHEN Q Z, DAI J C, et al.Single-cell RNA-seq reveals a highly coordinated transcriptional program in mouse germ cells during primordial follicle formation[J].Aging Cell, 2021, 20(7):e13424. |
[68] | HONG T H, PARK W Y.Single-cell genomics technology:perspectives[J].Exp Mol Med, 2020, 52(9):1407-1408. |
[69] | KÄLLBERG J, XIAO W J, VAN ASSCHE D, et al.Frontiers in single cell analysis:multimodal technologies and their clinical perspectives[J].Lab Chip, 2022, 22(13):2403-2422. |
[70] | LU S, ZHU N, GUO W W, et al.RNA-seq revealed a circular RNA-microRNA-mRNA regulatory network in Hantaan virus infection[J].Front Cell Infect Microbiol, 2020, 10:97. |
[71] | KANEHISA M, GOTO S, FURUMICHI M, et al.KEGG for representation and analysis of molecular networks involving diseases and drugs[J].Nucleic Acids Res, 2010, 38(S1):D355-D360. |
[72] | SHRESTHA P, KIM M S, ELBASANI E, et al.Prediction of trehalose-metabolic pathway and comparative analysis of KEGG, MetaCyc, and RAST databases based on complete genome of Variovorax sp. PAMC28711[J].BMC Genom Data, 2022, 23(1):4. |
[73] | HÄNZELMANN S, CASTELO R, GUINNEY J.GSVA:gene set variation analysis for microarray and RNA-Seq data[J].BMC Bioinformatics, 2013, 14(1):7. |
[74] | TAO Y W, ZOU W L, NANAYAKKARA S, et al.A revised formulation of the generalized subsystem vibrational analysis (GSVA)[J].Theor Chem Acc, 2021, 140(3):31. |
[75] | YANG H, MA J Y, WAN Z, et al.Characterization of sheep spermatogenesis through single cell RNA sequencing[J].FASEB J, 2020, 35(2):e21187. |
[76] | SUN C H, JIN K, ZUO Q S, et al.Characterization of alternative splicing (AS) events during chicken (Gallus gallus) male germ-line stem cell differentiation with single-cell RNA-seq[J].Animals (Basel), 2021, 11(5):1469. |
[77] | YU X W, LI T T, DU X M, et al.Single-cell RNA sequencing reveals atlas of dairy goat testis cells[J].Zool Res, 2021, 42(4):401-405. |
[78] | ZHANG L K, LI F Y, LEI P P, et al.Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis[J].J Anim Sci Biotechnol, 2021, 12(1):122. |
[79] | LI Z P, SONG X H, YIN S, et al.Single-cell RNA-Seq revealed the gene expression pattern during the in vitro maturation of donkey oocytes[J].Genes (Basel), 2021, 12(10):1640. |
[80] | RUIHUAN G, ZHICHAO L, SONG G, et al.Oocyte vitrification temporarily turns on oxidation-reduction process genes in mouse preimplantation embryos[J].Reprod Sci, 2021, 28(5):1307-1315. |
[81] | 李田田, 熊 鑫, 段林伟, 等.猪胚胎早期卵裂时间与其发育潜能关系的初步研究[J].畜牧兽医学报, 2020, 51(4):743-753.LI T T, XIONG X, DUAN L W, et al.Primary study on the effect of early cleavage time on the developmental potential of pig embryos[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(4):743-753.(in Chinese) |
[82] | DAVIDSON S, EFREMOVA M, RIEDEL A, et al.Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth[J].Cell Rep, 2020, 31(7):107628. |
[83] | KOÇOǦLU C, FERRARI R, ROES M, et al.Protein interaction network analysis reveals genetic enrichment of immune system genes in frontotemporal dementia[J].Neurobiol Aging, 2022, 116:67-79. |
[84] | 於跃进, 张祝谊, 韦艳宏.单细胞转录组测序在毒理学机制研究中的应用[J].中华预防医学杂志, 2022, 56(1):29-32.YU Y J, ZHANG Z Y, WEI Y H.Application of single-cell transcriptome sequencing in mechanistic toxicology[J].Chinese Journal of Preventive Medicine, 2022, 56(1):29-32.(in Chinese) |
[85] | SHAW R, TIAN X, XU J.Single-cell transcriptome analysis in plants:advances and challenges[J].Mol Plant, 2021, 14(1):115-126. |
[86] | BRISKI O, SALAMONE D F.Past, present and future of ICSI in livestock species[J].Anim Reprod Sci, 2022:106925. |
[87] | LI Y J, STANOJEVIC S, GARMIRE L X.Emerging artificial intelligence applications in Spatial Transcriptomics analysis[J].Comput Struct Biotechnol J, 2022, 20:2895-2908. |
[88] | CIGLIANO R A, AVERSANO R, DI MATTEO A, et al.Multi-omics data integration provides insights into the post-harvest biology of a long shelf-life tomato landrace[J].Hortic Res, 2022, 9:uhab042. |
[89] | CUNIAL F, DENAS O, BELAZZOUGUI D.Fast and compact matching statistics analytics[J].Bioinformatics, 2022, 38(7):1838-1845. |
[90] | 任 发.奶山羊精子发生关键分子挖掘与性控精液研究[D].杨凌:西北农林科技大学, 2021.REN F.The research on key molecular mining of spermatogenesis and sex-sorted semen in dairy goats[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[91] | LI Z K, WANG J J, ZHAO Y, et al.scRNA-seq of ovarian follicle granulosa cells from different fertility goats reveals distinct expression patterns[J].Reprod Domest Anim, 2021, 56(5):801-811. |
[92] | 于秀伟.通过单细胞测序定义奶山羊精子发生综合路线图[D].杨凌:西北农林科技大学, 2021.YU X W.A comprehensive roadmap of dairy goat spermatogenesis defined by single-cell RNA-seq[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[1] | Lü Haimiao, ZHU Hanyu, PENG Zhan, YAN Chenbo, YANG Dexin, HU Wenju, DING Xuefen, WANG Xinzhuang. Study on the Culture of Rabbit (Oryctolagus cuniculus) Primordial Germ Cells in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2443-2452. |
[2] | WANG Jun, HU Jing-jie, REN Hong-yan. Analysis of Applied and Funded Programs in Field of Animal Reproduction of the National Natural Science Foundation of China from 2012 to 2016 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(8): 1446-1451. |
[3] | LI Yan-he,LIU Jun,ZHANG Yong,QUAN Fu-sheng. Technical Strategies of Animal Embryo Breeding and Its Application [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(10): 1954-1960. |
[4] | LI Jian-chao,ZHANG Ying,DAI Ai-qin,WANG Hong-zhi,ZHAI Fei,HUA Deng-ke,XIA Ming-xiu, CHANG Guo-bin,CHEN Guo-hong. In Vitro Inhibition of Piwi Gene Expression and the Influence on Related Genes in Primordial Germ Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(6): 871-878. |
[5] | CHANG Guo-bin;CHENG Xu-mei;LI Bi-chun;LIU Xiang-ping;QIN Yu-rong;CHEN Rong;CHEN Guo-hong. Migration and Accumulation of Primordial Germ Cells in the Quail Earlier Embryo [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2010, 41(4): 505-510. |
[6] | LI Linfeng;PU Yabin;GONG Xuelian;BAI Chunyu;BAI Xiujuan;GUAN Weijun . Production of Interspecies Duck/Chicken Transgenic Chimeras [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2010, 41(1): 10-15. |
[7] | FENG Shu-tang;CONG Xiao-qian;LIU Li-xin;LI Xiu-lan;DONG Xiao;BAO Lin-ping;ZHANG Li;CHEN Hong-ping;MU Yu-lian;KUANG Ling;ZHANG Qing-feng;YAO Zhen. The First Chimeric Piglets was Born from Blastocyst Injection of Primordial Germ Cells of Wuzhishan Inbred Pig in China [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(3): 311-312. |
[8] | CAI Lin-lin;QIN Jie;LI Bi-chun;XIAO Xiao-jun;CHEN Guo-hong;WU Xin-sheng;WU Sheng-long. Study of Differentiation of Chicken Primordial Germ Cells into Neuronlike Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(12): 1354-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||