

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6025-6033.doi: 10.11843/j.issn.0366-6964.2025.12.008
马登军(
), 陈佳欣, 周瑞琳, 王力宏, 李会凤, 刘昕恬, 杨震国*(
)
收稿日期:2025-05-30
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
杨震国
E-mail:18325048022@163.com;guoguo00002@163.com
作者简介:马登军(2000-),男,山东陵城人,硕士生,主要从事母体营养与繁殖生理研究,E-mail:18325048022@163.com
基金资助:
MA Dengjun(
), CHEN Jiaxin, ZHOU Ruilin, WANG Lihong, LI Huifeng, LIU Xintian, YANG Zhenguo*(
)
Received:2025-05-30
Online:2025-12-23
Published:2025-12-24
Contact:
YANG Zhenguo
E-mail:18325048022@163.com;guoguo00002@163.com
摘要:
胃肠道是动物体最大的微生态系统,复杂的微生物群落组成了动物体的肠道微生物屏障。5-羟色胺(5-hydroxytryptamine,5-HT)又称血清素,是动物体内的一种神经递质,90%以上由肠道产生,具有调节肠道蠕动、分泌、免疫和维护肠道屏障功能等生物学特性,作为肠-脑轴中的核心信号分子,其可通过神经、内分泌、免疫系统传递信息,对维持神经、肠道稳态和调控疾病至关重要。目前关于5-HT的研究多集中在生物学、医学、行为学和心理学等领域,在畜禽中的相关研究鲜有报道。本文系统综述了5-HT在鼠、畜禽的神经性异常行为和肠道疾病中的调控机制,并探讨通过添加色氨酸前体如瘤胃保护型五羟色胺酸(5-hydroxytryptophan,5-HTP)、益生菌或植物提取物(如黄芪多糖、天然辣椒素)来调控肠道5-HT合成与菌群平衡,改善断奶仔猪腹泻、肉鸡坏死性肠炎等肠道疾病;针对热应激、运输应激等场景,利用有益菌提升5-HT水平或通过初乳喂养调节肠道5-HT受体基因表达,缓解应激导致的行为异常与免疫紊乱,以期为畜牧生产实践提供理论依据。
中图分类号:
马登军, 陈佳欣, 周瑞琳, 王力宏, 李会凤, 刘昕恬, 杨震国. 5-HT调控畜禽神经行为异常及肠道功能紊乱的研究进展[J]. 畜牧兽医学报, 2025, 56(12): 6025-6033.
MA Dengjun, CHEN Jiaxin, ZHOU Ruilin, WANG Lihong, LI Huifeng, LIU Xintian, YANG Zhenguo. Research Advances in 5-HT Regulation of Neurobehavioral Abnormalities and Gastrointestinal Dysfunction in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6025-6033.
表 1
5-HT变化、微生物屏障的破坏诱发疾病"
| 动物种类 Animal species | 疾病 Diseases | 干预条件 Experimental conditions | 结论 Conclusion | 参考文献 Reference |
| 鼠 Mouse | 应激 | CRS处理 | Kyn途径激活;吲哚胺2, 3-双加氧酶表达↑;5-HT水平↓ | [ |
| 抑郁行为 | 日粮添加小檗碱 | 抑郁行为↓;5-HT↑、NE↑、DA↑、BNDF↑;菌群结构、SCFA代谢改变 | [ | |
| 抑郁焦虑行为 | 移植短双歧杆菌CCFM1025 | 抑郁焦虑症状↓;应激和炎症↓;BNDF表达↑;5-HTP↑;SCFA↑ | [ | |
| 应激 | 饲喂高胆固醇饮食 | Akkermansia_muciniphila ↓;Akkermansia_mFuciniphila与血清MCP-1、IL-17A、海马5-HT浓度呈显著负相关 | [ | |
| 猪 Swine | 肠道菌群变化 | 日粮添加天然辣椒提取物 | 血清中5-HT水平显著提高,肠道微生物群组成得到改善;Faecalibacterium等↑ | [ |
| 断奶应激 | 饲喂初乳 | 回肠5-HT受体4和SLC4A4基因的表达↑;肠道相关菌群基因表达↑ | [ | |
| 动物行为 | 日粮补充瘤胃保护型5-HTP | 大脑5-HT↑;运动时间↓ | [ | |
| 羊 Sheep & Goat | 早期断奶 | 观测5-HT变化 | 肠细胞分泌大量5-HT,肠道绒毛损伤并引发肠道炎症性损伤;湖羔羊血清氨基酸代谢紊乱,尤其是苯丙氨酸和酪氨酸平衡的失调 | [ |
| 高原反应 | 观测瘤胃微生物与5-HT的相互作用 | 纤维降解菌丰度↑;ECs合成5-HT↑;病原菌丰度↓ | [ | |
| 牛 Cattle | 断奶应激 | 饲喂初乳 | 回肠5-HT受体4和SLC4A4基因的表达↑;肠道相关菌群基因表达↑ | [ |
| 热应激 | 观测奶牛行为和生理变化 | 热敏奶牛血清5-HT ↓,耐热奶牛5-HT介导的神经内分泌应激反应减弱;产奶量损失减少,体温调节效率提升 | [ | |
| 家禽 Poultry | 啄羽行为 | 观察低频啄羽和高频啄羽 | 高频啄羽蛋鸡菌群丰度的Firmicutes↓,Lactobacillus↓,Proteobacteria↑,Escherichia Shigella↑,Desulfovibrio↑色氨酸代谢物水平↑,免疫机能↑ | [ |
| 肠道菌群变化 | 盲肠微生物移植 | 肠道5-HT的活性和代谢增强 | [ | |
| 坏死性肠炎 | 日粮中添加黄芪多糖 | 坏死性肠炎肉鸡回肠内容物中的5-HT水平降低;Trp代谢增强,产气荚膜梭菌的丰度↓;Romboutsia↑;Halomonas↑ | [ | |
| 热应激 | 饲喂含甘露果糖的益生菌 | 有益菌↑;5-HT↑;热应激得到缓解 | [ |
| 1 |
LEE J S , PRIATNO W , GHASSEMI NEJAD J , et al. Effect of dietary Rumen-Protected L-Tryptophan supplementation on growth performance, blood hematological and biochemical profiles, and gene Expression in korean native nteers under cold environment[J]. Animals, 2019, 9 (12): 1036.
doi: 10.3390/ani9121036 |
| 2 | YAO K , FANG J , YIN Y L , et al. Tryptophan metabolism in animals: important roles in nutrition and health[J]. Front Biosc, 2011, 3 (1): 286- 297. |
| 3 |
SEO S K , KWON B . Immune regulation through tryptophan metabolism[J]. Exp Mol Med, 2023, 55 (7): 1371- 1379.
doi: 10.1038/s12276-023-01028-7 |
| 4 |
SU X , GAO Y , YANG R . Gut microbiota-derived tryptophan metabolites maintain mut and systemic homeostasis[J]. Cells, 2022, 11 (15): 2296.
doi: 10.3390/cells11152296 |
| 5 |
WANG B , SUN S , LIU M , et al. Dietary L-Tryptophan regulates colonic serotonin homeostasis in mice with dextran sodium sulfate-induced colitis[J]. J Nutr, 2020, 150 (7): 1966- 1976.
doi: 10.1093/jn/nxaa129 |
| 6 |
XUE C , LI G , ZHENG Q , et al. Tryptophan metabolism in health and disease[J]. Cell Metab, 2023, 35 (8): 1304- 1326.
doi: 10.1016/j.cmet.2023.06.004 |
| 7 |
GERSHON M D . 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract[J]. Curr Opin Endocrinol Diabetes Obes, 2013, 20 (1): 14- 21.
doi: 10.1097/MED.0b013e32835bc703 |
| 8 |
WALTHER D J , PETER J U , BASHAMMAKH S , et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform[J]. Science, 2003, 299 (5603): 76.
doi: 10.1126/science.1078197 |
| 9 |
BANSKOTA S , GHIA J-E , KHAN W I . Serotonin in the gut: blessing or a curse[J]. Biochimie, 2019, 161, 56- 64.
doi: 10.1016/j.biochi.2018.06.008 |
| 10 |
BULBRING E , LIN R C . The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity[J]. J Physio-Londonl, 1958, 140 (3): 381- 407.
doi: 10.1113/jphysiol.1958.sp005940 |
| 11 | JACOBSEN J P . Use of 5-Hydroxytryptophan labeled with carbon 11 in social anxiety disorder[J]. JAMA Psychiatry, 2016, 73 (2): 177. |
| 12 |
ZHU L , ZHANG Z , LUO T . Cognitive and behavioral benefits of 2'-fucosyllactose in growing mice: the roles of 5-hydroxytryptophan and gut microbiota[J]. Microbiome, 2025, 13 (1): 97.
doi: 10.1186/s40168-025-02094-x |
| 13 |
SILBER B Y , SCHMITT J A . Effects of tryptophan loading on human cognition, mood, and sleep[J]. Neurosci Biobehav Rev, 2010, 34 (3): 387- 407.
doi: 10.1016/j.neubiorev.2009.08.005 |
| 14 | COMAI S , BERTAZZO A , BRUGHERA M , et al. Tryptophan in health and disease[J]. Advan Clin Chem, 2020, 95, 165- 218. |
| 15 |
HOGLUND E , OVERLI O , WINBERG S . Tryptophan metabolic pathways and brain serotonergic activity: a comparative review[J]. Front Endocrinol, 2019, 10, 158.
doi: 10.3389/fendo.2019.00158 |
| 16 |
BACQUÉ-CAZENAVE J , BHARATIYA R , BARRIÈRE G , et al. Serotonin in animal cognition and behavior[J]. Int J Mol Sci, 2020, 21 (5): 1649.
doi: 10.3390/ijms21051649 |
| 17 |
DE DEURWAERDÈRE P , DI GIOVANNI G . Serotonin in health and disease[J]. Int J Mol Sci, 2020, 21 (10): 3500.
doi: 10.3390/ijms21103500 |
| 18 |
YANG D F , HUANG W C , WU C W , et al. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms[J]. Microbiol Res, 2023, 268, 127292.
doi: 10.1016/j.micres.2022.127292 |
| 19 |
BISCHOFF S C , BARBARA G , BUURMAN W , et al. Intestinal permeability--a new target for disease prevention and therapy[J]. BMC Gastroenterol, 2014, 14, 189.
doi: 10.1186/s12876-014-0189-7 |
| 20 |
PERSON H , KEEFER L . Psychological comorbidity in gastrointestinal diseases: Update on the brain-gut-microbiome axis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 107, 110209.
doi: 10.1016/j.pnpbp.2020.110209 |
| 21 |
COX L M , WEINER H L . Microbiota signaling pathways that influence neurologic disease[J]. Neurotherapeutics, 2018, 15 (1): 135- 145.
doi: 10.1007/s13311-017-0598-8 |
| 22 |
MAKRIS A P , KARIANAKI M , TSAMIS K I , et al. Correction to: the role of the gut-brain axis in depression: endocrine, neural, and immune pathways[J]. Hormones, 2021, 20, 1- 12.
doi: 10.1007/s42000-020-00236-4 |
| 23 |
CONIO B , MARTINO M , MAGIONCALDA P , et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders[J]. Mol Psychiatr, 2020, 25 (1): 82- 93.
doi: 10.1038/s41380-019-0406-4 |
| 24 |
LI G , DONG S , LIU C , et al. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective[J]. Life Metab, 2025, 4 (2): loae039.
doi: 10.1093/lifemeta/loae039 |
| 25 |
WANG J , ZHU N , SU X , et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis[J]. Cells, 2023, 12 (5): 793.
doi: 10.3390/cells12050793 |
| 26 |
BHATT S , KANOUJIA J , LAKSHMI S M , et al. Role of Brain-Gut-Microbiota Axis in depression: emerging therapeutic Avenues[J]. CNS Neurol Disord-Drug Targets, 2023, 22 (2): 276- 288.
doi: 10.2174/1871527321666220329140804 |
| 27 |
DICKS L M T . Gut bacteria and neurotransmitters[J]. Microorganisms, 2022, 10 (9): 1838.
doi: 10.3390/microorganisms10091838 |
| 28 |
AALDIJK E , VERMEIREN Y . The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review[J]. Ageing Res Rev, 2022, 75, 101556.
doi: 10.1016/j.arr.2021.101556 |
| 29 |
ROTH W , ZADEH K , VEKARIYA R , et al. Tryptophan metabolism and Gut-Brain homeostasis[J]. Int J Mol Sci, 2021, 22 (6): 2973.
doi: 10.3390/ijms22062973 |
| 30 | FERRER L , ELSARAF M , MINDT M , et al. l-Serine Biosensor-Controlled Fermentative production of L-Tryptophan derivatives by corynebacterium glutamicum[J]. Biology-Basel, 2022, 11 (5): 744. |
| 31 | MICHALSKA K , KOWIEL M , BIGELOW L , et al. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase[J]. Acta Crystallogr Sect D-Struct Biol, 2020, 76, 166- 175. |
| 32 |
XIONG B , ZHU Y , TIAN D , et al. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli[J]. Biotechnol Bioeng, 2021, 118 (3): 1393- 1404.
doi: 10.1002/bit.27665 |
| 33 |
WANG J , XU W , WANG R , et al. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling[J]. Food Funct, 2021, 12 (8): 3597- 3610.
doi: 10.1039/D1FO00115A |
| 34 |
YANO J M , YU K , DONALDSON G P , et al. Indigenous Bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161 (2): 264- 276.
doi: 10.1016/j.cell.2015.02.047 |
| 35 |
TIAN P , CHEN Y , ZHU H , et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial[J]. Brain Behav Immun, 2022, 100, 233- 241.
doi: 10.1016/j.bbi.2021.11.023 |
| 36 |
ENGEVIK M A , LUCK B , VISUTHRANUKUL C , et al. Human-Derived bifidobacterium dentium modulates the mammalian serotonergic system and Gut-Brain Axis[J]. Cell Mol Gastroenterology Hepatol, 2021, 11 (1): 221- 248.
doi: 10.1016/j.jcmgh.2020.08.002 |
| 37 |
ZHAI L , HUANG C , NING Z , et al. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis[J]. Cell Host Microbe, 2023, 31 (1): 33.
doi: 10.1016/j.chom.2022.11.006 |
| 38 |
WLODARSKA M , LUO C , KOLDE R , et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22 (1): 25.
doi: 10.1016/j.chom.2017.06.007 |
| 39 |
YE L , BAE M , CASSILLY C D , et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways[J]. Cell Host Microbe, 2021, 29 (2): 179.
doi: 10.1016/j.chom.2020.11.011 |
| 40 |
SUGIYAMA Y , MORI Y , NARA M , et al. Gut bacterial aromatic amine production: aromatic amino acid decarboxylase and its effects on peripheral serotonin production[J]. Gut Microbes, 2022, 14 (1): 2128605.
doi: 10.1080/19490976.2022.2128605 |
| 41 |
CAO C , CHOWDHURY V S , CLINE M A , et al. The Microbiota-Gut-Brain Axis during heat stress in chickens: a review[J]. Front Physiol, 2021, 12, 752265.
doi: 10.3389/fphys.2021.752265 |
| 42 |
MOHAMMED A A , JACOBS J A , MURUGESAN G R , et al. Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress[J]. Poult Sci, 2018, 97 (4): 1101- 1108.
doi: 10.3382/ps/pex421 |
| 43 |
HUANG W , SHA Y , CHEN Q , et al. The interaction between rumen microbiota and neurotransmitters plays an important role in the adaptation of phenological changes in Tibetan sheep[J]. BMC Vet Res, 2025, 21 (1): 373- 373.
doi: 10.1186/s12917-025-04823-8 |
| 44 |
REIGSTAD C S , SALMONSON C E , RAINEY J F , 3 RD , et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. FASEB J, 2015, 29 (4): 1395- 1403.
doi: 10.1096/fj.14-259598 |
| 45 |
VAZQUEZ-MEDINA A , RODRIGUEZ-TRUJILLO N , AYUSO-RODRIGUEZ K , et al. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis[J]. Front Microbiol, 2024, 15, 1326584.
doi: 10.3389/fmicb.2024.1326584 |
| 46 | DENG Y , ZHOU M , WANG J , et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain[J]. Gut Microbes, 2021, 13 (1): 1- 16. |
| 47 |
FUNG T C , VUONG H E , LUNA C D G , et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut[J]. Nat Microbiol, 2019, 4 (12): 2064- 2073.
doi: 10.1038/s41564-019-0540-4 |
| 48 |
XIA Y , PENG X , MAO J , et al. Dietary 5-hydroxytryptophan supplementation improves growth performance and intestinal health of weaned piglets[J]. Porcine Health Manag, 2024, 10 (1): 60.
doi: 10.1186/s40813-024-00412-7 |
| 49 |
LONG S , LIU S , WANG J , et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs[J]. Anim Nutr, 2021, 7 (2): 305- 314.
doi: 10.1016/j.aninu.2020.12.004 |
| 50 |
CHEN C , HU H , LI Z , et al. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets[J]. J Nutr Biochem, 2024, 129, 109637.
doi: 10.1016/j.jnutbio.2024.109637 |
| 51 |
HUANG M , HE Y , TIAN L , et al. Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats[J]. J Affect Disord, 2023, 325, 141- 150.
doi: 10.1016/j.jad.2022.12.166 |
| 52 |
TIAN P , O'RIORDAN K J , LEE Y K , et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice[J]. Neurobiol Stress, 2020, 12, 100216.
doi: 10.1016/j.ynstr.2020.100216 |
| 53 |
ZOU L , TIAN Y , WANG Y , et al. High-cholesterol diet promotes depression- and anxiety-like behaviors in mice by impact gut microbe and neuroinflammation[J]. J Affec Disord, 2023, 327, 425- 438.
doi: 10.1016/j.jad.2023.01.122 |
| 54 |
ZHENG K Y , GAO B , WANG H J , et al. Melatonin ameliorates depressive-like behaviors in ovariectomized mice by improving tryptophan metabolism via inhibition of gut microbe alistipes inops[J]. Adv Sci, 2024, 11 (34): e2309473.
doi: 10.1002/advs.202309473 |
| 55 |
HROMÁDKOVÁ J , SUZUKI Y , PLETTS S , et al. Effect of colostrum feeding strategies on the expression of neuroendocrine genes and active gut mucosa-attached bacterial populations in neonatal calves[J]. J Dairy Sci, 2020, 103 (9): 8629- 8642.
doi: 10.3168/jds.2019-17710 |
| 56 |
CHEN X , SHU H , SUN F , et al. Impact of heat stress on blood, production, and physiological indicators in heat-tolerant and heat-sensitive dairy cows[J]. Animals, 2023, 13 (16): 2562.
doi: 10.3390/ani13162562 |
| 57 |
HUANG C , HAO E , YUE Q , et al. Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens[J]. Poult Sci, 2023, 102 (8): 102686.
doi: 10.1016/j.psj.2023.102686 |
| 58 |
CHEN J , HUANG G , WEI B , et al. Effects of rumen-protected 5-hydroxytryptophan on circulating serotonin concentration, behaviour, and mammary gland involution in goats[J]. Animal, 2024, 18 (8): 101254.
doi: 10.1016/j.animal.2024.101254 |
| 59 |
FORD A C , SPERBER A D , CORSETTI M , et al. Functional gastrointestinal disorders 2 irritable bowel syndrome[J]. Lancet, 2020, 396 (10263): 1675- 1688.
doi: 10.1016/S0140-6736(20)31548-8 |
| 60 |
SHULPEKOVA Y O , NECHAEV V M , POPOVA I R , et al. Food Intolerance: The role of histamine[J]. Nutrients, 2021, 13 (9): 3207.
doi: 10.3390/nu13093207 |
| 61 |
MANDOLA A , NOZAWA A , EIWEGGER T . Histamine, histamine receptors, and anti-histamines in the context of allergic responses[J]. LymphoSign J, 2019, 6 (2): 35- 51.
doi: 10.14785/lymphosign-2018-0016 |
| 62 |
MAWE G M , HOFFMAN J M . Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets[J]. Nat Rev Gastroenterol Hepatol, 2013, 10 (8): 473- 486.
doi: 10.1038/nrgastro.2013.105 |
| 63 |
SPOHN S N , MAWE G M . Non-conventional features of peripheral serotonin signalling - the gut and beyond[J]. Nat Rev Gastroenterol Hepatol, 2017, 14 (7): 412- 420.
doi: 10.1038/nrgastro.2017.51 |
| 64 |
KASARELLO K , CUDNOCH-JEDRZEJEWSKA A , CZARZASTA K . Communication of gut microbiota and brain via immune and neuroendocrine signaling[J]. Front Microbiol, 2023, 14, 1118529.
doi: 10.3389/fmicb.2023.1118529 |
| 65 |
FU Y , HU J , ERASMUS M A , et al. Effects of early-life cecal microbiota transplantation from divergently selected inbred chicken lines on growth, gut serotonin, and immune parameters in recipient chickens[J]. Poult Sci, 2022, 101 (7): 101925.
doi: 10.1016/j.psj.2022.101925 |
| 66 |
HANSEN M B , WITTE A B . The role of serotonin in intestinal luminal sensing and secretion[J]. Acta Physiologica, 2008, 193 (4): 311- 323.
doi: 10.1111/j.1748-1716.2008.01870.x |
| 67 |
SONG B , LI P , YAN S , et al. Effects of dietary Astragalus polysaccharide supplementation on the Th17/Treg balance and the gut microbiota of broiler chickens challenged with necrotic enteritis[J]. Front Immunol, 2022, 13, 781934.
doi: 10.3389/fimmu.2022.781934 |
| 68 |
LINDEN D R , FOLEY K F , MCQUOID C , et al. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis[J]. Neurogastroenterol Motil, 2005, 17 (4): 565- 574.
doi: 10.1111/j.1365-2982.2005.00673.x |
| 69 | JIANG H , WANG H , JIA H , et al. Early weaning impairs the growth performance of Hu Lambs through damaging intestinal morphology and disrupting serum metabolite homeostasis[J]. Animals : an open access journal from MDPI, 2025, 15 (1): 113. |
| [1] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [2] | 杨宇翔, 王朋朋, 李斌, 谢留威, 修福晓, 刘成武. 益生菌在犬肠道疾病中作用及机制的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3610-3620. |
| [3] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| [4] | 李志强, 陈雪清, 张源淑. 猪流行性腹泻病毒临床感染仔猪肠道组织中血管紧张素转化酶2的检测及其与肠道病理变化的关系分析[J]. 畜牧兽医学报, 2025, 56(7): 3463-3473. |
| [5] | 陆乐, 罗贤祖, 黄心昱, 邹辉, 顾建红, 刘学忠, 卞建春, 刘宗平, 袁燕. 镉可通过影响大鼠肠道菌群致大脑皮质氧化应激[J]. 畜牧兽医学报, 2025, 56(7): 3540-3547. |
| [6] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
| [7] | 丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026. |
| [8] | 王坤, 张永杰, 胡瑞莹, 郭丽阳, 陈春丽. 利用小鼠模型分析黄芩素调节肠道菌群缓解葡聚糖硫酸钠诱导的结肠炎机制[J]. 畜牧兽医学报, 2025, 56(12): 6458-6476. |
| [9] | 白慧涛, 孙健, 解伟纯, 王雪莹, 王晓娜, 唐丽杰. 粪菌移植改善仔猪断奶早期肠道屏障功能的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5379-5388. |
| [10] | 谢秀兰, 王建东, 晏仕英, 高海慧, 杨宇为, 赵建. 植物乳杆菌X86对大鼠子代早期发育和肠道菌群的影响[J]. 畜牧兽医学报, 2025, 56(10): 5315-5327. |
| [11] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
| [12] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
| [13] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
| [14] | 杜红旭, 苏利娟, 何政科, 谭晓燕, 张旭, 马琪, 曹立亭, 陈红伟, 甘玲. 五味子多糖纳米硒的体外抗氧化和肠道菌群调节作用研究[J]. 畜牧兽医学报, 2024, 55(7): 3234-3245. |
| [15] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||