1 |
PEANA M , PELUCELLI A , CHASAPIS C T , et al. Biological effects of human exposure to environmental cadmium[J]. Biomolecules, 2022, 13 (1): 36.
|
2 |
WANG B , DU Y L . Cadmium and its neurotoxic effects[J]. Oxid Med Cell Longev, 2013, 2013, 898034.
|
3 |
郭宝福, 刘祥萍, 王艳莉, 等. 芦蒿中重金属铅、镉污染现状及溯源分析[J]. 东南大学学报: 医学版, 2021, 40 (6): 826- 830.
|
|
GUO B F , LIU X P , WANG Y L , et al. Pollution status and traceability analysis of heavy metals lead and cadmium in artemisia selengensis[J]. Journal of Southeast University: Medical Science Edition, 2021, 40 (6): 826- 830.
|
4 |
LAMTAI M , AZIRAR S , ZGHARI O , et al. Melatonin ameliorates cadmium-induced affective and cognitive impairments and hippocampal oxidative stress in rat[J]. Biol Trace Elem Res, 2021, 199 (4): 1445- 1455.
|
5 |
PARI L , MURUGAVEL P . Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats[J]. Toxicology, 2007, 234 (1-2): 44- 50.
|
6 |
JIMÉNEZ-ORTEGA V , CANO-BARQUILLA P , SCACCHI P A , et al. Cadmium-induced disruption in 24-h expression of clock and redox enzyme genes in rat medial basal hypothalamus: prevention by melatonin[J]. Front Neurol, 2011, 2, 13.
|
7 |
KENSLER T W , WAKABAYASHI N , BISWAL S . Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47, 89- 116.
|
8 |
BAIRD L , DINKOVA-KOSTOVA A T . The cytoprotective role of the Keap1-Nrf2 pathway[J]. Arch Toxicol, 2011, 85 (4): 241- 272.
|
9 |
TAGUCHI K , MOTOHASHI H , YAMAMOTO M . Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution[J]. Genes Cells, 2011, 16 (2): 123- 140.
|
10 |
陈嘉兴, 吴礼康, 田亚锋, 等. 转录因子NF-E2相关因子2信号通路在金属污染物毒理学作用中的机制及其研究进展[J]. 环境与健康杂志, 2017, 34 (5): 466- 470.
|
|
CHEN J X , WU L K , TIAN Y F , et al. Role of transcription factor NF-E2-related factor 2 signaling pathway in toxicity of metal pollutants: a review of recent studies[J]. Journal of Environment and Health, 2017, 34 (5): 466- 470.
|
11 |
GENCHI G , SINICROPI M S , LAURIA G , et al. The effects of cadmium toxicity[J]. Int J Environ Res Public Health, 2020, 17 (11): 3782.
|
12 |
LI X J , BREJNROD A D , ERNST M , et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites[J]. Environ Int, 2019, 126, 454- 467.
|
13 |
HE X W , QI Z D , HOU H , et al. Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure[J]. Chemosphere, 2020, 246, 125747.
|
14 |
HEIJTZ R D , WANG S G , ANUAR F , et al. Normal gut microbiota modulates brain development and behavior[J]. Proc Natl Acad Sci U S A, 2011, 108 (7): 3047- 3052.
|
15 |
COBLEY J N , FIORELLO M L , BAILEY D M . 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15, 490- 503.
|
16 |
王光亮. 镉暴露对DSS诱导小鼠结肠炎的促进作用及机制研究[D]. 天津: 天津科技大学, 2021.
|
|
WANG G L. The promoting effect and mechanism of cadmium exposure on DSS-induced colitis in mice[D]. Tianjin: Tianjin University of Science and Technology, 2021. (in Chinese)
|
17 |
OLSON C A , VUONG H E , YANO J M , et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet[J]. Cell, 2018, 174 (2): 497.
|
18 |
REIKVAM D H , EROFEEV A , SANDVIK A , et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression[J]. PLoS One, 2011, 6 (3): e17996.
|
19 |
郑文璐, 李莉, 王昆, 等. 肠道微生物群移植和益生菌补充剂对妊娠期糖尿病大鼠抗炎症、抗氧化及妊娠结局的影响[J]. 中国微生态学杂志, 2024, 36 (6): 657-664, 670.
|
|
ZHENG W L , LI L , WANG K , et al. Effects of fecal microbiota transplantation and probiotic supplementation on anti-inflammation, antioxidation and pregnancy outcome in gestational diabetic rats[J]. Chinese Journal of Microecology, 2024, 36 (6): 657-664, 670.
|
20 |
TSENTSEVITSKY A N , ZAKYRJANOVA G F , PETROV A M . Cadmium desynchronizes neurotransmitter release in the neuromuscular junction: key role of ROS[J]. Free Radic Biol Med, 2020, 155, 19- 28.
|
21 |
TSIKAS D . Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524, 13- 30.
|
22 |
BECKMAN J S , KOPPENOL W H . Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly[J]. Am J Physiol, 1996, 271 (5 Pt 1): C1424- C1437.
|
23 |
任娜, 张暄梓, 郝小燕, 等. 核黄素对羔羊生长性能、氮代谢及血清生化和抗氧化指标的影响[J]. 动物营养学报, 2023, 35 (5): 3183- 3189.
|
|
REN N , ZHANG X Z , HAO X Y , et al. Effects of riboflavin on growth performance, nitrogen metabolism and serum biochemical and antioxidant indices of lambs[J]. Chinese Journal of Animal Nutrition, 2023, 35 (5): 3183- 3189.
|
24 |
ZHANG W H , XU W C , WEN S Q , et al. Puerarin alleviates cadmium-induced rat neurocyte injury by alleviating Nrf2-mediated oxidative stress and inhibiting mitochondrial unfolded protein response[J]. Ecotoxicol Environ Saf, 2022, 247, 114239.
|
25 |
TANG K K , LIU X Y , WANG Z Y , et al. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis[J]. Metallomics, 2019, 11 (12): 2043- 2051.
|
26 |
YU J J , MENG J H , QIN Z W , et al. Dysbiosis of gut microbiota inhibits NMNAT2 to promote neurobehavioral deficits and oxidative stress response in the 6-OHDA-lesioned rat model of Parkinson's disease[J]. J Neuroinflammation, 2023, 20 (1): 117.
|
27 |
DING Y X , LI X , LIU Y T , et al. Protection mechanisms underlying oral administration of chlorogenic acid against cadmium-induced hepatorenal injury related to regulating intestinal flora balance[J]. J Agric Food Chem, 2021, 69 (5): 1675- 1683.
|
28 |
BOKOLIYA S C , DORSETT Y , PANIER H , et al. Procedures for fecal microbiota transplantation in murine microbiome studies[J]. Front Cell Infect Microbiol, 2021, 11, 711055.
|
29 |
XIAO W P , SU J B , GAO X J , et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids[J]. Microbiome, 2022, 10 (1): 62.
|
30 |
IBRAHIM F , HALTTUNEN T , TAHVONEN R , et al. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms[J]. Can J Microbiol, 2006, 52 (9): 877- 885.
|
31 |
NIES D H . Efflux-mediated heavy metal resistance in prokaryotes[J]. FEMS Microbiol Rev, 2003, 27 (2-3): 313- 339.
|
32 |
ALKHALIFAH E A R , ALOBAID A A , ALMAJED M A , et al. Cardamom extract alleviates the oxidative stress, inflammation and apoptosis induced during acetaminophen-induced hepatic toxicity via modulating Nrf2/HO-1/NQO-1 pathway[J]. Curr Issues Mol Biol, 2022, 44 (11): 5390- 5404.
|
33 |
HE J , ZHOU D , YAN B . Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins[J]. Ann Transl Med, 2020, 8 (12): 757.
|
34 |
SALEH H M , EL-SAYED Y S , NASER S M , et al. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain[J]. Environ Sci Pollut Res Int, 2017, 24 (31): 24593- 24601.
|
35 |
ALMEER R S , ALBASHER G I , ALARIFI S , et al. Royal jelly attenuates cadmium-induced nephrotoxicity in male mice[J]. Sci Rep, 2019, 9 (1): 5825.
|
36 |
ALHARTHY S A , ZUGHAIBI T A , VIJ P , et al. Mirtazapine attenuated cadmium-induced neuronal intoxication by regulating Nrf2 and NF-κB/TLR4 signals[J]. Toxicol Mech Methods, 2023, 33 (8): 675- 687.
|
37 |
SAEEDI B J , LIU K H , OWENS J A , et al. Gut-resident Lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury[J]. Cell Metab, 2020, 31 (5): 956- 968.
|