[1] LEE J S, PRIATNO W, GHASSEMI NEJAD J, et al. Effect of dietary Rumen-Protected L-Tryptophan supplementation on growth performance, blood hematological and biochemical profiles, and gene Expression in korean native nteers under cold environment [J]. Animals,2019,9(12):1036. [2] YAO K, FANG J, YIN Y L, et al. Tryptophan metabolism in animals: important roles in nutrition and health [J]. Front Biosc,2011,3(1):286-297. [3] SEO S K, KWON B. Immune regulation through tryptophan metabolism [J].Exp Mol Med,2023,55(7):1371-1379. [4] SU X, GAO Y, YANG R. Gut microbiota-derived tryptophan metabolites maintain mut and systemic homeostasis [J]. Cells,2022,11(15):2296. [5] WANG B, SUN S, LIU M, et al. Dietary L-Tryptophan regulates colonic serotonin homeostasis in mice with dextran sodium sulfate-induced colitis [J]. J Nutr,2020,150(7):1966-1976. [6] XUE C, LI G, ZHENG Q, et al. Tryptophan metabolism in health and disease [J]. Cell Metab,2023,35(8):1304-1326. [7] GERSHON M D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract [J].Curr Opin Endocrinol Diabetes Obes,2013,20(1):14-21. [8] WALTHER D J, PETER J U, BASHAMMAKH S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform [J]. Science,2003,299(5603):76. [9] BANSKOTA S, GHIA J-E, KHAN W I. Serotonin in the gut: blessing or a curse [J]. Biochimie,2019,161:56-64. [10] BULBRING E, LIN R C. The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity [J]. J Physio-Londonl,1958,140(3):381-407. [11] JACOBSEN J P. Use of 5-Hydroxytryptophan labeled with carbon 11 in social anxiety disorder [J]. JAMA Psychiatry,2016,73(2):177. [12] ZHU L, ZHANG Z, LUO T. Cognitive and behavioral benefits of 2'-fucosyllactose in growing mice: the roles of 5-hydroxytryptophan and gut microbiota [J]. Microbiome,2025,13(1):97. [13] SILBER B Y, SCHMITT J A. Effects of tryptophan loading on human cognition, mood, and sleep [J].Neurosci Biobehav Rev,2010,34(3):387-407. [14] COMAI S, BERTAZZO A, BRUGHERA M, et al. Tryptophan in health and disease [J].Advan Clin Chem, 2020, 95:165-218. [15] HOGLUND E, OVERLI O, WINBERG S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review [J]. Front Endocrinol,2019,10:158. [16] BACQUÉ-CAZENAVE J, BHARATIYA R, BARRIÈRE G, et al. Serotonin in animal cognition and behavior [J]. Int J Mol Sci,2020,21(5):1649. [17] DE DEURWAERDÈRE P, DI GIOVANNI G. Serotonin in health and disease [J]. Int J Mol Sci,2020,21(10):3500. [18] YANG D F, HUANG W C, WU C W, et al. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms [J]. Microbiol Res,2023,268:127292. [19] BISCHOFF S C, BARBARA G, BUURMAN W, et al. Intestinal permeability——a new target for disease prevention and therapy [J]. BMC Gastroenterol,2014,14:189. [20] PERSON H, KEEFER L. Psychological comorbidity in gastrointestinal diseases: Update on the brain-gut-microbiome axis [J]. Prog Neuropsychopharmacol Biol Psychiatry,2021,107:110209. [21] COX L M, WEINER H L. Microbiota signaling pathways that influence neurologic disease [J]. Neurotherapeutics,2018,15(1):135-145. [22] MAKRIS A P, KARIANAKI M, TSAMIS K I, et al. Correction to: the role of the gut-brain axis in depression: endocrine, neural, and immune pathways [J]. Hormones,2021,20:1-12. [23] CONIO B, MARTINO M, MAGIONCALDA P, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders [J].Mol Psychiatr,2020,25(1):82-93. [24] LI G, DONG S, LIU C, et al. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective [J]. Life Metab,2025,4(2): loae039. [25] WANG J, ZHU N, SU X, et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis [J]. Cells,2023,12(5):793. [26] BHATT S, KANOUJIA J, LAKSHMI S M, et al. Role of Brain-Gut-Microbiota Axis in depression: emerging therapeutic Avenues [J].CNS Neurol Disord-Drug Targets,2023,22(2):276-288. [27] DICKS L M T. Gut bacteria and neurotransmitters [J]. Microorganisms,2022,10(9):1838. [28] AALDIJK E, VERMEIREN Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review [J]. Ageing Res Rev,2022,75:101556. [29] ROTH W, ZADEH K, VEKARIYA R, et al. Tryptophan metabolism and Gut-Brain homeostasis [J].Int J Mol Sci,2021,22(6):2973. [30] FERRER L, ELSARAF M, MINDT M, et al. l-Serine Biosensor-Controlled Fermentative production of L-Tryptophan derivatives by corynebacterium glutamicum [J]. Biology-Basel,2022,11(5):744. [31] MICHALSKA K, KOWIEL M, BIGELOW L, et al. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase [J].Acta Crystallogr Sect D-Struct Biol,2020,76:166-175. [32] XIONG B, ZHU Y, TIAN D, et al. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli [J]. Biotechnol Bioeng,2021,118(3):1393-1404. [33] WANG J, XU W, WANG R, et al. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling [J]. Food Funct,2021,12(8):3597-3610. [34] YANO J M, YU K, DONALDSON G P, et al. Indigenous Bacteria from the gut microbiota regulate host serotonin biosynthesis [J]. Cell,2015,161(2):264-276. [35] TIAN P, CHEN Y, ZHU H, et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial [J]. Brain Behav Immun,2022,100:233-241. [36] ENGEVIK M A, LUCK B, VISUTHRANUKUL C, et al. Human-Derived bifidobacterium dentium modulates the mammalian serotonergic system and Gut-Brain Axis [J]. Cell Mol Gastroenterology Hepatol,2021,11(1):221-248. [37] ZHAI L, HUANG C, NING Z, et al. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis [J]. Cell Host Microbe,2023,31(1):33. [38] WLODARSKA M, LUO C, KOLDE R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation [J]. Cell Host Microbe,2017,22(1):25. [39] YE L, BAE M, CASSILLY C D, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways [J]. Cell Host Microbe,2021,29(2):179. [40] SUGIYAMA Y, MORI Y, NARA M, et al. Gut bacterial aromatic amine production: aromatic amino acid decarboxylase and its effects on peripheral serotonin production [J]. Gut Microbes,2022,14(1):2128605. [41] CAO C, CHOWDHURY V S, CLINE M A, et al. The Microbiota-Gut-Brain Axis during heat stress in chickens: a review [J]. Front Physiol,2021,12:752265. [42] MOHAMMED A A, JACOBS J A, MURUGESAN G R, et al. Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress [J]. Poult Sci,2018,97(4):1101-1108. [43] HUANG W, SHA Y, CHEN Q, et al. The interaction between rumen microbiota and neurotransmitters plays an important role in the adaptation of phenological changes in Tibetan sheep [J]. BMC Vet Res,2025,21(1):373-373. [44] REIGSTAD C S, SALMONSON C E, RAINEY J F, 3RD, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells [J]. FASEB J,2015,29(4):1395-1403. [45] VAZQUEZ-MEDINA A, RODRIGUEZ-TRUJILLO N, AYUSO-RODRIGUEZ K, et al. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis [J]. Front Microbiol,2024,15:1326584. [46] DENG Y, ZHOU M, WANG J, et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain [J]. Gut Microbes,2021,13(1):1-16. [47] FUNG T C, VUONG H E, LUNA C D G, et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut [J]. Nat Microbiol,2019,4(12):2064-2073. [48] XIA Y, PENG X, MAO J, et al. Dietary 5-hydroxytryptophan supplementation improves growth performance and intestinal health of weaned piglets [J]. Porcine Health Manag,2024,10(1):60. [49] LONG S, LIU S, WANG J, et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs [J].Anim Nutr,2021,7(2):305-314. [50] CHEN C, HU H, LI Z, et al. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets [J]. J Nutr Biochem,2024,129:109637. [51] HUANG M, HE Y, TIAN L, et al. Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats [J]. J Affect Disord,2023,325:141-150. [52] TIAN P, O'RIORDAN K J, LEE Y K, et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice [J]. Neurobiol Stress,2020,12:100216. [53] ZOU L, TIAN Y, WANG Y, et al. High-cholesterol diet promotes depression- and anxiety-like behaviors in mice by impact gut microbe and neuroinflammation [J]. J Affec Disord,2023,327:425-438. [54] ZHENG K Y, GAO B, WANG H J, et al. Melatonin ameliorates depressive-like behaviors in ovariectomized mice by improving tryptophan metabolism via inhibition of gut microbe alistipes inops [J]. Adv Sci,2024,11(34):e2309473. [55] HROMÁDKOVÁ J, SUZUKI Y, PLETTS S, et al. Effect of colostrum feeding strategies on the expression of neuroendocrine genes and active gut mucosa-attached bacterial populations in neonatal calves [J]. J Dairy Sci,2020,103(9):8629-8642. [56] CHEN X, SHU H, SUN F, et al. Impact of heat stress on blood, production, and physiological indicators in heat-tolerant and heat-sensitive dairy cows [J]. Animals,2023,13(16):2562. [57] HUANG C, HAO E, YUE Q, et al. Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens [J]. Poult Sci,2023,102(8):102686. [58] CHEN J, HUANG G, WEI B, et al. Effects of rumen-protected 5-hydroxytryptophan on circulating serotonin concentration, behaviour, and mammary gland involution in goats [J]. Animal,2024,18(8):101254. [59] FORD A C, SPERBER A D, CORSETTI M, et al. Functional gastrointestinal disorders 2 irritable bowel syndrome [J]. Lancet,2020,396(10263):1675-1688. [60] SHULPEKOVA Y O, NECHAEV V M, POPOVA I R, et al. Food Intolerance: The role of histamine [J]. Nutrients,2021,13(9):3207. [61] MANDOLA A, NOZAWA A, EIWEGGER T. Histamine, histamine receptors, and anti-histamines in the context of allergic responses [J]. LymphoSign J,2019,6(2):35-51. [62] MAWE G M, HOFFMAN J M. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets [J]. Nat Rev Gastroenterol Hepatol,2013,10(8):473-486. [63] SPOHN S N, MAWE G M. Non-conventional features of peripheral serotonin signalling - the gut and beyond [J]. Nat Rev Gastroenterol Hepatol,2017,14(7):412-420. [64] KASARELLO K, CUDNOCH-JEDRZEJEWSKA A, CZARZASTA K. Communication of gut microbiota and brain via immune and neuroendocrine signaling [J]. Front Microbiol,2023,14:1118529. [65] FU Y, HU J, ERASMUS M A, et al. Effects of early-life cecal microbiota transplantation from divergently selected inbred chicken lines on growth, gut serotonin, and immune parameters in recipient chickens [J]. Poult Sci,2022,101(7):101925. [66] HANSEN M B, WITTE A B. The role of serotonin in intestinal luminal sensing and secretion [J].Acta Physiologica,2008,193(4):311-323. [67] SONG B, LI P, YAN S, et al. Effects of dietary Astragalus polysaccharide supplementation on the Th17/Treg balance and the gut microbiota of broiler chickens challenged with necrotic enteritis [J]. Front Immunol,2022,13:781934. [68] LINDEN D R, FOLEY K F, MCQUOID C, et al. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis [J]. Neurogastroenterol Motil,2005,17(4):565-574. [69] JIANG H, WANG H, JIA H, et al. Early weaning impairs the growth performance of Hu Lambs through damaging intestinal morphology and disrupting serum metabolite homeostasis [J]. Animals : an open access journal from MDPI,2025,15(1):113. |