畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 979-994.doi: 10.11843/j.issn.0366-6964.2025.03.002
张燕敏1,2(), 刘帅1,2, 滕战伟1,2, 谢红兵1,2, 夏小静1,2, 贺永惠1,2, 常美楠1,2,*(
)
收稿日期:
2024-04-23
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
常美楠
E-mail:zyanmin0718@163.com;meinan5176@126.com
作者简介:
张燕敏(2000-),女,河南漯河人,硕士生,主要从事反刍动物营养研究,E-mail: zyanmin0718@163.com
基金资助:
ZHANG Yanmin1,2(), LIU Shuai1,2, TENG Zhanwei1,2, XIE Hongbing1,2, XIA Xiaojing1,2, HE Yonghui1,2, CHANG Meinan1,2,*(
)
Received:
2024-04-23
Online:
2025-03-23
Published:
2025-04-02
Contact:
CHANG Meinan
E-mail:zyanmin0718@163.com;meinan5176@126.com
摘要:
犊牛腹泻是养牛业面临的重要问题,其发病率高、死亡率高、防治成本高,甚至愈后易出现发育迟缓、生产性能低下等现象,威胁着养牛业的可持续发展。而功能性寡糖作为一类水溶性膳食纤维和具有双歧因子特性的益生元,被广泛应用于维护肠道健康。本文综述了功能性寡糖的结构、功能以及犊牛腹泻的致病因子,并重点阐述了功能性寡糖缓解犊牛腹泻的作用机理研究进展,将为促进犊牛肠道健康与功能性寡糖的合理利用提供重要参考。
中图分类号:
张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994.
ZHANG Yanmin, LIU Shuai, TENG Zhanwei, XIE Hongbing, XIA Xiaojing, HE Yonghui, CHANG Meinan. Research Progress on the Mechanism of Functional Oligosaccharides Alleviating Calf Diarrhea[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 979-994.
表 1
常见功能性寡糖的化学组成、来源及功能"
项目 Item | 单糖单元 Monosaccharide | 功能性糖苷键 Functional glucosidic bond | 来源 Origins | 功能 Function | 参考文献 References |
果寡糖 Fructo-oligosaccharides | 果糖 | β-1, 2 | 小麦、菊芋、香蕉、洋葱、大蒜、芦笋 | 改善肠道微生态,抑制致病菌、提高生长性能和免疫力、缓解断奶应激、抗氧化、改善肥胖、减轻非酒精性脂肪肝病 | [ |
大豆寡糖 Soybean oligosaccharides | 果糖、葡萄糖、 | α-1, 6 | 脱脂大豆 | 维护肠道健康、保护肝功能、增强机体免疫力、调节脂质代谢、抗氧化、保护心脏功能免受心肌缺血再灌注损伤、降低禽类排泄物中的气味化合物、抑制肠道菌群产生腐败化合物 | [ |
半乳寡糖 Galacto-oligosaccharides | 半乳糖、葡萄糖 | α-1, 4、β-1, 2、β-1, 4、β-1, 6 | 母乳、牛乳等动物乳汁乳糖、乳清、豆科植物的种子 | 促进瘤胃发酵和微生物蛋白质合成、抑制金黄色葡萄球菌和铜绿假单胞菌的生长、加强中性粒细胞的吞噬作用、缓解腹泻、提高生长性能、调节脂质代谢、促进矿物质元素吸收、提高肠道中短链脂肪酸含量、缓解脂多糖(LPS)导致的肠道炎症反应、维持肠道屏障功能、减少LPS诱导的巨噬细胞炎症、促进伤口闭合和皮肤健康 | [ |
异麦芽寡糖 Isomalto-oligosaccharides | 葡萄糖 | α-1, 6 | 大麦、小麦、木薯、玉米、马铃薯 | 提高生长性能和免疫功能、调节肠道微生物群、降低盲肠pH、促进甲状腺素和生长激素分泌、减少胰高血糖素分泌、调节肥胖、调节 2型糖尿病、在体外或者体内可以维持普雷沃氏菌生长、通过调节肝脂代谢显著降低血液胆固醇水平 | [ |
木寡糖 Wood oligosaccharides | 木糖 | α-1, 4、β-1, 4、β-1, 6 | 牛奶、蜂蜜、蔗渣、秸秆、麦麸、玉米芯 | 诱导拟南芥植株对营养型病原产生抗性、提高鸡蛋品质、促进钙吸收、改善肥胖、预防鸡感染鼠伤寒沙门菌、改善胰岛素抵抗、通过优化肠道微生物群及其代谢物来增强肠道屏障和提高免疫力、抗抑郁、减轻炎症性皮肤病 | [ |
甘露寡糖 Mannan oligosaccharides | 甘露糖、葡萄糖 | α-1, 2、α-1, 3、α-1, 6、β-1, 3、β-1, 4 | 魔芋粉、田青胶、椰子壳、棕榈粕、瓜尔豆胶 | 提高生长性能、提高免疫力、调节肠道菌群结构、抗氧化、提高机体营养代谢、通过抑制细菌黏附预防尿道感染、改善貉毛皮品质 | [ |
壳寡糖 Chito-oligosaccharide | N-乙酰-D- 葡萄糖胺 | β-1, 4 | 虾、螃蟹等甲壳类动物 | 抗氧化、促进种子萌发、预防肉鸡感染大肠杆菌、提高肉鸡屠宰性能、促进成骨细胞分化,预防骨质疏松、降血压 | [ |
褐藻寡糖 Alginate oligosaccharide | 甘露糖醛酸、古洛糖醛酸 | 1, 4-糖苷键 | 褐藻类植物 | 缓解肝损伤、改善黄瓜生长,提高品质和产量、抑制沙门菌生长和毒性、缓解血管衰老、缓解热应激 | [ |
异麦芽酮糖Isomaltose | 葡萄糖、果糖 | α-1, 6 | 蜂蜜、甘蔗汁 | 预防龋齿、促进肠道内双歧杆菌增殖、降血糖、降低肝脂肪积累 | [ |
低聚龙胆糖 Gentio-oligosaccharides | 葡萄糖 | β-1, 6 | 龙胆根、茎 | 促进肠道中双歧杆菌和乳酸菌增殖,抑制腐败菌、保持食品中的水分,防止淀粉类食品的老化、调节草本植物龙胆芽休眠 | [ |
水苏糖Stachyose | 葡萄糖 | α-1, 4 | 宝塔菜、毛叶地笋、地黄、大豆种子 | 抗氧化、改善肠道健康、降血糖、调节脂质代谢、促进肠道蠕动,缓解便秘、缓解食物过敏、缓解皮质酮诱导的长期增强损伤、抗炎 | [ |
棉子糖 Raffinose | 半乳糖、果糖、葡萄糖 | α-1, 2、α-1, 4 | 甜菜、棉籽、蜂蜜、酵母、葡萄、卷心菜、马铃薯、麦类,玉米和豆科植物种子 | 促进肠道发育、改善血清免疫指标、提高生长性能和屠宰性能、改善肝脂肪积累、抗氧化 | [ |
乳果糖Lactulose | 半乳糖、果糖 | β-1, 4 | 蔗糖、乳糖 | 改善肠道菌群、增强免疫力、促进钙吸收、抑制脂肪积累 | [ |
表 2
引起犊牛腹泻的大肠杆菌及其毒力因子"
菌 Strain | 毒力因子 Virulence factor | 参考文献 References |
产肠毒素大肠杆菌 Enterotoxigenic Escherichia coli | 毒力因子:Sta、STb、LT 定植因子:CS1、CS2、CS3、CS4、CS5、CS6、CS7、CS12、CS14、 CS17、CS20、CS21、CS30、EAST1、EatA 非典型毒力因子:Tia、TibA、EtpA、EaeH、EatA 黏附素:F4(K88ab、K88ac、K88ad)、F5(K99)、F6(987p)、F41、F42 | [ |
肠致病性大肠杆菌 Enteropathogenic Escherichia coli | 定植因子:eae、bfp、tir、lifA、csgA、fimA、bcsA 适应性因子:sdiA 效应分子:espA、espB、espC、espD、espF、espH、espJ、espP、 MAP、nleA、nleF、cif | [ |
肠侵袭性大肠杆菌 Enteroinvasive Escherichia coli | 适应性因子:iutA、iucB 效应分子:ipaA、ipaB、ipaC、ipaD、ipaH、ipaJ、ipgB1、ipgD、virA、 virB、virF、virG、ospB、ospE、ospF、ospG、ospI、ospZ | [ |
肠出血性大肠杆菌 Enterohemorrhagic Escherichia coli | 定植因子:eae、tir、csgA、fimA、eha、saa、sab、toxB、nleB、nleE、 nleH、bleG、Lfp 毒力因子:Stx1、Stx2 | [ |
肠聚集性大肠杆菌 Enteroaggregative Escherichia coli | 定植因子:aggR、aggA、aafA、agg3A、agg4A、agg5A、aap 毒力因子:astA、pet、pic、sigA、sepA、hlyE 效应分子:aaiA-Y | [ |
产志贺毒素大肠杆菌 Shiga toxin-producing Escherichia coli | 毒力因子:Stx1、Stx2、 溶血素:hlyA 细胞毒素:CdtV | [ |
1 |
DU W J , WANG X H , HU M Y , et al. Modulating gastrointestinal microbiota to alleviate diarrhea in calves[J]. Front Microbiol, 2023, 14, 1181545.
doi: 10.3389/fmicb.2023.1181545 |
2 |
ABD EL-TAWAB M M , YOUSSEF I M I , BAKR H A , et al. Role of probiotics in nutrition and health of small ruminants[J]. Pol J Vet Sci, 2016, 19 (4): 893- 906.
doi: 10.1515/pjvs-2016-0114 |
3 |
CHANG M N , WANG F F , MA F T , et al. Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves[J]. Anim Nutr, 2022, 10, 223- 233.
doi: 10.1016/j.aninu.2022.04.009 |
4 |
LIU T , CHEN H , BAI Y , et al. Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves[J]. J Dairy Sci, 2020, 103 (3): 2315- 2323.
doi: 10.3168/jds.2019-16647 |
5 |
JAHANI-AZIZABADI H , BARAZ H , BAGHERI N , et al. Effects of a mixture of phytobiotic-rich herbal extracts on growth performance, blood metabolites, rumen fermentation, and bacterial population of dairy calves[J]. J Dairy Sci, 2022, 105 (6): 5062- 5073.
doi: 10.3168/jds.2021-20687 |
6 |
ZHENG C , ZHOU J W , ZENG Y Q , et al. Effects of mannan oligosaccharides on growth performance, nutrient digestibility, ruminal fermentation and hematological parameters in sheep[J]. PeerJ, 2021, 9, e11631.
doi: 10.7717/peerj.11631 |
7 |
ZHENG C , LI F D , HAO Z L , et al. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity, and antioxidant capacity of sheep[J]. J Anim Sci, 2018, 96 (1): 284- 292.
doi: 10.1093/jas/skx040 |
8 |
ROODPOSHTI P M , DABIRI N . Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves[J]. Asian-Australas J Anim Sci, 2012, 25 (9): 1255- 1261.
doi: 10.5713/ajas.2011.11312 |
9 |
GHOSH S , MEHLA R K . Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves[J]. Trop Anim Health Prod, 2012, 44 (3): 617- 622.
doi: 10.1007/s11250-011-9944-8 |
10 | 崔连杰, 李科, 李震宇, 等. 寡糖提取分离与质谱结构解析研究进展[J]. 药学学报, 2020, 55 (5): 843- 853. |
CUI L J , LI K , LI Z Y , et al. Progress in oligosaccharide extraction, separation and structural analysis by mass spectrometry[J]. Acta Pharmaceutica Sinica, 2020, 55 (5): 843- 853. | |
11 |
常美楠, 朱亚如, 赵元, 等. 功能性低聚糖及其缓解机体过敏反应的研究进展[J]. 动物营养学报, 2018, 30 (6): 2090- 2096.
doi: 10.3969/j.issn.1006-267x.2018.06.011 |
CHANG M N , ZHU Y R , ZHAO Y , et al. Research progress of functional oligosaccharides alleviate body allergic reaction and its mechanism[J]. Chinese Journal of Animal Nutrition, 2018, 30 (6): 2090- 2096.
doi: 10.3969/j.issn.1006-267x.2018.06.011 |
|
12 |
HUANG X Q , CHEN Q Y , FAN Y Y , et al. Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism[J]. Biomed Pharmacother, 2023, 159, 114300.
doi: 10.1016/j.biopha.2023.114300 |
13 | 李炯, 唐亚楠, 魏赜, 等. 果寡糖对哺乳羔羊营养物质表观消化率及粪便微生物菌群的影响[J]. 动物营养学报, 2024, 36 (2): 1096- 1106. |
LI J , TANG Y N , WEI Z , et al. Effects of fructooligosaccharides on apparent digestibility of nutrients and fecal microbial flora in suckling lambs[J]. Chinese Journal of Animal Nutrition, 2024, 36 (2): 1096- 1106. | |
14 | 李炯, 唐亚楠, 魏赜, 等. 果寡糖对哺乳羔羊生长性能及断奶应激的影响[J]. 动物营养学报, 2024, 36 (1): 397- 405. |
LI J , TANG Y N , WEI Z , et al. Effects of fructooligosaccharides on growth performance and weaning stress of suckling lambs[J]. Chinese Journal of Animal Nutrition, 2024, 36 (1): 397- 405. | |
15 | 赵义润, 马晓康, 张文熙, 等. 低聚果糖替代金霉素对断奶仔猪生长性能及血清生化指标的影响[J]. 饲料研究, 2023, 46 (19): 16- 20. |
ZHAO Y R , MA X K , ZHANG W X , et al. Effect of fructooligosaccharides replacing chloramphenicol on growth performance and serum biochemical indexes of weaned piglets[J]. Feed Research, 2023, 46 (19): 16- 20. | |
16 |
PENGRATTANACHOT N , THONGNAK L , LUNGKAPHIN A . The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease[J]. Food Funct, 2022, 13 (11): 5925- 5945.
doi: 10.1039/D1FO04428A |
17 |
NAKATA T , KYOUI D , TAKAHASHI H , et al. Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota[J]. Int J Biol Macromol, 2017, 97, 173- 180.
doi: 10.1016/j.ijbiomac.2017.01.015 |
18 | 刘小平, 周英焕, 高玉云. 大豆寡糖的生理功能及在畜禽营养中的应用研究进展[J]. 中国畜牧杂志, 2024, 60 (3): 39- 45. |
LIU X P , ZHOU Y H , GAO Y Y . Research progress on the physiological function of soybean oligosaccharides and its application in livestock and poultry nutrition[J]. Chinese Journal of Animal Science, 2024, 60 (3): 39- 45. | |
19 |
ZHANG M , CAI S L , MA J W . Evaluation of cardio-protective effect of soybean oligosaccharides[J]. Gene, 2015, 555 (2): 329- 334.
doi: 10.1016/j.gene.2014.11.027 |
20 |
LIU H Y , LI X , ZHU X , et al. Soybean oligosaccharides attenuate odour compounds in excreta by modulating the caecal microbiota in broilers[J]. Animal, 2021, 15 (3): 100159.
doi: 10.1016/j.animal.2020.100159 |
21 |
BERGANDI L , FLUTTO T , VALENTINI S , et al. Whey derivatives and galactooligosaccharides stimulate the wound healing and the function of human keratinocytes through the NF-κB and FOXO-1 signaling pathways[J]. Nutrients, 2022, 14 (14): 2888.
doi: 10.3390/nu14142888 |
22 |
SUN C C , HAO B F , PANG D R , et al. Diverse galactooligosaccharides differentially reduce LPS-induced inflammation in macrophages[J]. Foods, 2022, 11 (24): 3973.
doi: 10.3390/foods11243973 |
23 |
WANG G , WANG H D , JIN Y Y , et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J]. Food Res Int, 2022, 155, 111003.
doi: 10.1016/j.foodres.2022.111003 |
24 |
高仁, 田时祎, 汪晶, 等. 低聚半乳糖对脂多糖刺激哺乳仔猪盲肠微生物区系、肠道炎症和屏障功能的影响[J]. 动物营养学报, 2022, 34 (1): 177- 189.
doi: 10.3969/j.issn.1006-267x.2022.01.018 |
GAO R , TIAN S Y , WANG J , et al. Effects of galacto-oligosaccharides on cecal microflora, intestinal inflammation and barrier function of suckling piglets stimulated by lipopolysaccharides[J]. Chinese Journal of Animal Nutrition, 2022, 34 (1): 177- 189.
doi: 10.3969/j.issn.1006-267x.2022.01.018 |
|
25 |
MORTAZ E , NOMANI M , ADCOCK I , et al. Galactooligosaccharides and 2'-fucosyllactose can directly suppress growth of specific pathogenic microbes and affect phagocytosis of neutrophils[J]. Nutrition, 2022, 96, 111601.
doi: 10.1016/j.nut.2022.111601 |
26 |
王飞飞, 常美楠, 马峰涛, 等. 低聚半乳糖对荷斯坦犊牛生长性能、血清生化指标及矿物质元素含量的影响[J]. 动物营养学报, 2022, 34 (3): 1623- 1631.
doi: 10.3969/j.issn.1006-267x.2022.03.025 |
WANG F F , CHANG M N , MA F T , et al. Effects of galactooligosaccharides on growth performance, serum biochemical parameters and mineral element contents of Holstein calves[J]. Chinese Journal of Animal Nutrition, 2022, 34 (3): 1623- 1631.
doi: 10.3969/j.issn.1006-267x.2022.03.025 |
|
27 |
DOS SANTOS E F , TSUBOI K H , ARAÚJO M R , et al. Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats[J]. Rev Col Bras Cir, 2011, 38 (3): 186- 191.
doi: 10.1590/S0100-69912011000300009 |
28 |
KIM S K , JANG W J , KIM C E , et al. Characterization of Latilactobacillus curvatus MS2 isolated from Korean traditional fermented seafood and cholesterol reduction effect as synbiotics with isomalto-oligosaccharide in BALB/c mice[J]. Biochem Biophys Res Commun, 2021, 571, 125- 130.
doi: 10.1016/j.bbrc.2021.07.073 |
29 | 吴俊, 许二学, 刘强. 日粮添加异麦芽寡糖对断奶仔猪生长性能、抗氧化和免疫性能及肠道微生物含量的影响[J]. 中国饲料, 2018 (12): 46- 50. |
WU J , XU E X , LIU Q . Effects of dietary supplementation of isomalto oligosaccharide on growth performance, antioxidant capacity, immunity and gut microbiota of weaning pigs[J]. China Feed, 2018 (12): 46- 50. | |
30 | 孙镇平, 孙伟, 于瑞奎, 等. 异麦芽寡糖菌质粉对黄羽肉鸡盲肠pH及免疫性能的影响[J]. 饲料研究, 2014 (11): 23- 27. |
SUN Z P , SUN W , YU R K , et al. Effects of isomaltooligosaccharide fungal powder on cecal pH and immune performance of yellow-feathered broilers[J]. Feed Reaserch, 2014 (11): 23- 27. | |
31 |
孙镇平, 于瑞奎, 林琳, 等. 玉米源异麦芽寡糖菌质粉对黄羽肉鸡生长性能和激素分泌的影响[J]. 动物营养学报, 2012, 24 (5): 918- 925.
doi: 10.3969/j.issn.1006-267x.2012.05.017 |
SUN Z P , YU R K , L L , et al. Effects of activity flour of isomalto-oligosaccharides bacterium substance from corn on growth performance and hormone secretion of yellow-feathered broilers[J]. Chinese Journal of Animal Nutrition, 2012, 24 (5): 918- 925.
doi: 10.3969/j.issn.1006-267x.2012.05.017 |
|
32 |
UM H E , PARK B R , KIM Y M , et al. Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae[J]. Food Chem, 2023, 417, 135892.
doi: 10.1016/j.foodchem.2023.135892 |
33 |
CHEN J K , LI Z P , WANG X F , et al. Isomaltooligosaccharides sustain the growth of Prevotella both in vitro and in animal models[J]. Microbiol Spectr, 2022, 10 (6): e0262121.
doi: 10.1128/spectrum.02621-21 |
34 |
PI G L , WANG J M , SONG W X , et al. Effects of isomalto-oligosaccharides and herbal extracts on growth performance, serum biochemical profiles and intestinal bacterial populations in early-weaned piglets[J]. J Anim Physiol Anim Nutr (Berl), 2022, 106 (3): 671- 681.
doi: 10.1111/jpn.13687 |
35 | 方明玉, 汤柳, 李子墨, 等. 低聚木糖缓解DNFB诱导的特应性皮炎小鼠炎症性皮肤病及相关抑郁样行为(英文)[J/OL]. 食品科学, 1-24[2024-02-27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20240227.0943.008.html. |
FANG M Y, TANG L, LI Z M, et al. Xylooligosaccharide alleviates inflammatory dermatosis and related depressive-like behaviors in atopic dermatitis mice induced by DNFB(in English)[J/OL]. Food Science, 1-24[2024-02-27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20240227.0943.008.html. | |
36 | 缪金露, 张华建. 木寡糖提高拟南芥抗病性[J]. 中国生物防治学报, 2021, 37 (1): 150- 155. |
MIAO J L , ZHANG H J . Xylo-oligosaccharides elicits disease resistance in Arabidopsis[J]. Chinese Journal of Biological Control, 2021, 37 (1): 150- 155. | |
37 | 杨海峰, 何宏勇, 李艳艳, 等. 木寡糖对蛋鸡产蛋性能、蛋品质、营养物质消化率和血清生化指标的影响[J]. 中国饲料, 2018 (8): 50- 55. |
YANG H F , HE H Y , LI Y Y , et al. Effects of xylooligosaccharides on laying performance, egg quality, nutrient digestibility and serum biochemistry parameters in laying hens[J]. China Feed, 2018 (8): 50- 55. | |
38 |
ZHANG S M , REN L L , ZHANG C M , et al. Research note: xylooligosaccharide directly attenuates Salmonella Typhimurium colonization and its induction of impairments in intestinal barrier and growth performance of broilers[J]. Poult Sci, 2024, 103 (1): 103184.
doi: 10.1016/j.psj.2023.103184 |
39 |
LI Q , WANG J X , YANG J Y , et al. Xylooligosaccharide ameliorates insulin resistance by alleviating gut microbiota dybiosis and modulating NKG2D signaling in gestational diabetes mellitus women[J]. Curr Dev Nutr, 2023, 7, 101534.
doi: 10.1016/j.cdnut.2023.101534 |
40 |
TANG S L , CHEN Y X , DENG F L , et al. Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model[J]. Carbohydr Polym, 2022, 294, 119776.
doi: 10.1016/j.carbpol.2022.119776 |
41 |
SHU X L , TONG Y J , YANG R J . Administration of xylo-oligosaccharides improves depressive-like behaviour in mice caused by chronic unpredictable mild stress by altering microbiota composition[J]. Int J Food Sci Technol, 2022, 57 (7): 4222- 4233.
doi: 10.1111/ijfs.15745 |
42 |
YUAN C S , REN L L , SUN R , et al. Mannan oligosaccharides improve the fur quality of raccoon dogs by regulating the gut microbiota[J]. Front Microbiol, 2023, 14, 1324277.
doi: 10.3389/fmicb.2023.1324277 |
43 | 王贺丽. 甘露寡糖对断奶仔猪生长性能、血清免疫指标及经济效益的影响[J]. 饲料研究, 2023, 46 (11): 35- 39. |
WANG H L . Effect of mannan oligosaccharides on growth performance, serum immunity indicators and breeding economic benefits of weaned piglets[J]. Feed Research, 2023, 46 (11): 35- 39. | |
44 | 张赛伟, 段春辉, 张昕妍, 等. 甘露寡糖对围产期湖羊母羊采食量、体重及血清生化指标的影响[J]. 动物营养学报, 2023, 35 (3): 1791- 1802. |
ZHANG S W , DUAN C H , ZHANG X Y , et al. Effects of Mannan oligosaccharide on feed intake, body weight and serum biochemical indexes of perinatal Hu sheep ewes[J]. Chinese Journal of Animal Nutrition, 2023, 35 (3): 1791- 1802. | |
45 | 李胜, 袁非凡, 李寒梅, 等. 甘露寡糖剂量和添加时间对肉鸡生长性能及血清生化指标的影响[J]. 中国饲料, 2022 (13): 66- 71. |
LI S , YUAN F F , LI H M , et al. Effects of mannan oligosaccharide dosage and addition time on growth performance and serum biochemical indexes of broilers[J]. China Feed, 2022 (13): 66- 71. | |
46 |
FAUSTINO M , SILVA S , COSTA E M , et al. Effect of mannan oligosaccharides extracts in uropathogenic Escherichia coli adhesion in human bladder cells[J]. Pathogens, 2023, 12 (7): 885.
doi: 10.3390/pathogens12070885 |
47 |
LU Z Y , FENG L , JIANG W D , et al. Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp (Ctenopharyngodon idella) via the Nrf2 signaling pathway after Aeromonas hydrophila infection[J]. J Anim Sci Biotechnol, 2023, 14 (1): 58.
doi: 10.1186/s40104-023-00844-1 |
48 |
MITTAL A , SINGH A , HONG H , et al. Chitooligosaccharide and its conjugates with different polyphenols: antihypertensive activity and blood pressure lowering effects in spontaneously hypertensive rats[J]. J Funct Foods, 2024, 113, 106039.
doi: 10.1016/j.jff.2024.106039 |
49 | 沈巧玲, 刘光敏, 王亚钦, 等. 壳寡糖对羽衣甘蓝芽苗硫代葡萄糖苷及抗氧化活性的影响[J]. 华北农学报, 2024, 39 (1): 104- 112. |
SHEN Q L , LIU G M , WANG Y Q , et al. Effects on glucosinolates and antioxidant activity of chitooligosaccharides on kale sprouts[J]. Acta Agriculturae Boreali-Sinica, 2024, 39 (1): 104- 112. | |
50 | 尹明华, 肖心怡, 方雅轩, 等. 壳寡糖浸种对低温下江西铅山红芽芋脱毒试管芋萌发及生理代谢的影响[J]. 农业工程学报, 2024, 40 (1): 320- 330. |
YIN M H , XIAO X Y , FANG Y X , et al. Effects of chitosan oligosaccharide soaking on germination and physiological metabolism of virus-free test tube taro from Jiangxi Yanshan red bud taro at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (1): 320- 330. | |
51 | 皮得金, 滕奕, 李冰, 等. 壳寡糖对大肠杆菌K88感染肉鸡生长性能、抗氧化能力及肠道屏障功能的影响[J]. 中国畜牧杂志, 2024, 60 (4): 292- 297. |
PI D J , TENG Y , LI B , et al. Effects of chitosan oligosaccharides on growth performance, antioxidant capacity and intestinal barrier function of broilers infected with Escherichia coli K88[J]. Chinese Journal of Animal Science, 2024, 60 (4): 292- 297. | |
52 |
VIMALRAJ S , GOVINDARAJAN D , SUDHAKAR S , et al. Chitosan derived chito-oligosaccharides promote osteoblast differentiation and offer anti-osteoporotic potential: molecular and morphological evidence from a zebrafish model[J]. Int J Biol Macromol, 2024, 259, 129250.
doi: 10.1016/j.ijbiomac.2024.129250 |
53 |
YE X Q , ZHU Y R , YANG Y Y , et al. Biogenic selenium nanoparticles synthesized with alginate oligosaccharides alleviate heat stress-induced oxidative damage to organs in broilers through activating Nrf2-mediated anti-Oxidation and anti-Ferroptosis pathways[J]. Antioxidants (Basel), 2023, 12 (11): 1973.
doi: 10.3390/antiox12111973 |
54 |
王毓甜, 米金秋, 全浩玮, 等. 褐藻寡糖对呕吐毒素诱导小鼠肝脏损伤的影响[J]. 动物营养学报, 2023, 35 (10): 6748- 6758.
doi: 10.12418/CJAN2023.615 |
WANG Y T , MI J Q , QUAN H W , et al. Effects of alginate oligosaccharides on liver injury of mice induced by deoxynivalenol[J]. Chinese Journal of Animal Nutrition, 2023, 35 (10): 6748- 6758.
doi: 10.12418/CJAN2023.615 |
|
55 | 孙冰, 张金梅, 刘朋宇, 等. 不同浓度褐藻寡糖对黄瓜生长、产量、品质与抗氧化酶及其基因表达的影响[J]. 江苏农业科学, 2023, 51 (13): 175- 181. |
SUN B , ZHANG J M , LIU P Y , et al. Impacts of different concentrations of brown algal oligosaccharides on growth, yield, quality and expression of antioxidant enzymes and their genes of cucumber[J]. Jiangsu Agricultural Sciences, 2023, 51 (13): 175- 181. | |
56 |
WANG S , YU Y , LIU J , et al. Alginate oligosaccharide alleviates vascular aging by upregulating glutathione peroxidase 7[J]. J Nutr Biochem, 2024, 126, 109578.
doi: 10.1016/j.jnutbio.2024.109578 |
57 | 程佳莹, 肖梦诗, 任昕淼, 等. 基于转录组学分析肠道菌群发酵褐藻胶寡糖对沙门氏菌的作用机制[J]. 河南农业科学, 2023, 52 (6): 139- 149. |
CHENG J Y , XIAO M S , REN X M , et al. Mechanism of alginate oligosaccharides fermented with gut microbiota inoculum against Salmonella enterica by transcriptomic analysis[J]. Journal of Henan Agricultural Sciences, 2023, 52 (6): 139- 149. | |
58 | 高学秀, 李宁, 袁卫涛, 等. 异麦芽酮糖研究进展[J]. 中国食品添加剂, 2022, 33 (1): 26- 31. |
GAO X X , LI N , YUAN W T , et al. Review of isomaltulose[J]. China Food Additives, 2022, 33 (1): 26- 31. | |
59 |
CORBEE R J , MES J J , DE JONG G A H , et al. Brush border enzyme hydrolysis and glycaemic effects of isomaltulose compared to other saccharides in dogs[J]. J Anim Physiol Anim Nutr (Berl), 2023, 107 (6): 1456- 1464.
doi: 10.1111/jpn.13860 |
60 | 何秋玲, 张彩平, 桂静, 等. 异麦芽酮糖减少小鼠肝脏脂肪堆积的关键基因筛选与验证[J]. 食品工业科技, 2022, 43 (16): 1- 8. |
HE Q L , ZHANG C P , GUI J , et al. Screening and verification of key genes for isomaltulose reducing liver fat accumulation in mice[J]. Science and Technology of Food Industry, 2022, 43 (16): 1- 8. | |
61 |
TAKAHASHI H , IMAMURA T , KONNO N , et al. The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana[J]. Plant Cell, 2014, 26 (10): 3949- 3963.
doi: 10.1105/tpc.114.131631 |
62 |
黄琼华. 带苦味的低聚龙胆糖玉米糖浆[J]. 中国食品添加剂, 2001 (2): 52- 54.
doi: 10.3969/j.issn.1006-2513.2001.02.014 |
HUANG Q H . Gentiooligaccharide corn syrup with amer flavor[J]. China Food Additives, 2001 (2): 52- 54.
doi: 10.3969/j.issn.1006-2513.2001.02.014 |
|
63 |
LIU G M , BEI J , LI L , et al. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats[J]. Mol Nutr Food Res, 2018, 62 (6): e1700954.
doi: 10.1002/mnfr.201700954 |
64 | 郭鹏, 王际英, 李宝山, 等. 棉子糖对刺参幼参生长、生理指标及糖代谢的影响[J]. 水产学报, 2022, 46 (10): 1940- 1949. |
GUO P , WANG J Y , LI B S , et al. Effects of dietary raffinose on growth performance, physiological indices and glycometabolism of juvenile sea cucumber (Apostichopus japonicus)[J]. Journal of Fisheries of China, 2022, 46 (10): 1940- 1949. | |
65 | 段盛林. 水苏糖的益生元活性及其应用研究进展[J]. 中国食品添加剂, 2023, 34 (1): 75- 82. |
DUAN S L . Research progress on prebiotic activity and application of stachyose[J]. China Food Additives, 2023, 34 (1): 75- 82. | |
66 |
LI Q , TANG X L , XU J H , et al. Study on alleviation effect of stachyose on food allergy through TLR2/NF-κB signal pathway in a mouse model[J]. Life Sci, 2021, 286, 120038.
doi: 10.1016/j.lfs.2021.120038 |
67 |
HUANG Y , LI D , WANG C , et al. Stachyose alleviates corticosterone-induced long-term potentiation impairment via the gut-brain axis[J]. Front Pharmacol, 2022, 13, 799244.
doi: 10.3389/fphar.2022.799244 |
68 |
GUO Y N , SONG L Q , HUANG Y M , et al. Latilactobacillus sakei Furu2019 and stachyose as probiotics, prebiotics, and synbiotics alleviate constipation in mice[J]. Front Nutr, 2023, 9, 1039403.
doi: 10.3389/fnut.2022.1039403 |
69 |
FU H T , ZHAO Y , HUANG J Q , et al. Reduced glutathione and raffinose lengthens postharvest storage of cassava root tubers by improving antioxidant capacity and antibiosis[J]. BMC Plant Biol, 2023, 23 (1): 475.
doi: 10.1186/s12870-023-04466-7 |
70 | 杨凯, 杨硕, 周诗轩, 等. 棉子糖对肉兔生长性能、屠宰性能、肠道形态以及血清生化和免疫指标的影响[J]. 动物营养学报, 2024, 36 (1): 507- 513. |
YANG K , YANG S , ZHOU S X , et al. Effects of raffinose on growth performance, slaughtering performance, intestinal morphology, serum biochemical and immune indexes of meat rabbits[J]. Chinese Journal of Animal Nutrition, 2024, 36 (1): 507- 513. | |
71 |
MAEGAWA K , KOYAMA H , FUKIYA S , et al. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats[J]. Br J Nutr, 2022, 127 (11): 1621- 1630.
doi: 10.1017/S0007114521002610 |
72 | 霍润甜, 夏伟, 刘展志, 等. 节杆菌(Arthrobacter sp.)EpRS66 β-呋喃果糖苷酶重组表达及酶促合成低聚乳果糖[J]. 微生物学通报, 2024, 51 (9): 3398- 3408. |
HUO R T , XIA W , LIU Z Z , et al. Recombinant expression of β-fructofuranosidase from Arthrobacter sp. EpRS66 and enzymatic synthesis of lactosucrose[J]. Microbiology China, 2024, 51 (9): 3398- 3408. | |
73 | 史漱石, 王力群, 乔建国, 等. 用乳酮糖奶粉喂养小鼠粪便中双歧杆菌属增殖的实验[J]. 卫生研究, 1993 (4): 238- 239. |
SHI S S , WANG L Q , QIAO J G , et al. Experiment on the proliferation of Bifidobacterium in feces of mice fed with lactose milk powder[J]. Journal of Hygiene Research, 1993 (4): 238- 239. | |
74 | JACK A A , KHAN S , POWELL L C , et al. Alginate oligosaccharide-induced modification of the lasI-lasR and rhlI-rhlR quorum-sensing systems in pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2018, 62 (5): e02318- e02317. |
75 | 王寿权, 赵双枝, 张彦昊, 等. 自制壳寡糖抑菌性能及抑菌机理的初步研究[J]. 食品工业科技, 2014, 35 (24): 218- 221. |
WANG S Q , ZHAO S Z , ZHANG Y H , et al. Preliminary study on antibacterialactivity and mechanism of chitosan oligosaccharide[J]. Science and Technology of Food Industry, 2014, 35 (24): 218- 221. | |
76 | 王巍, 牟德华, 李丹丹. 山楂果胶寡糖的抑菌性能及机理[J]. 食品科学, 2018, 39 (3): 110- 116. |
WANG W , MOU D H , LI D D . Antibacterial activity and mechanism of hawthorn pectin oligosaccharides[J]. Food Science, 2018, 39 (3): 110- 116. | |
77 |
YU D W , FENG J Y , YOU H M , et al. The microstructure, antibacterial and antitumor activities of chitosan oligosaccharides and derivatives[J]. Mar Drugs, 2022, 20 (1): 69.
doi: 10.3390/md20010069 |
78 |
GUAN G P , AZAD M A K , LIN Y S , et al. Biological effects and applications of chitosan and chito-oligosaccharides[J]. Front Physiol, 2019, 10, 516.
doi: 10.3389/fphys.2019.00516 |
79 |
ABD EL-HACK M E , EL-SAADONY M T , SHAFI M E , et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review[J]. Int J Biol Macromol, 2020, 164, 2726- 2744.
doi: 10.1016/j.ijbiomac.2020.08.153 |
80 |
YAO X C , CAO Y , WU S J . Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides[J]. Int J Biol Macromol, 2013, 62, 1- 3.
doi: 10.1016/j.ijbiomac.2013.08.022 |
81 |
SCHWAB C G , BRODERICK G A . A 100-Year Review: protein and amino acid nutrition in dairy cows[J]. J Dairy Sci, 2017, 100 (12): 10094- 10112.
doi: 10.3168/jds.2017-13320 |
82 |
SHARMA A N , CHAUDHARY P , KUMAR S , et al. Effect of synbiotics on growth performance, gut health, and immunity status in pre-ruminant buffalo calves[J]. Sci Rep, 2023, 13 (1): 10184.
doi: 10.1038/s41598-023-37002-6 |
83 |
FLORES-MALTOS D A , MUSSATTO S I , CONTRERAS-ESQUIVEL J C , et al. Biotechnological production and application of fructooligosaccharides[J]. Crit Rev Biotechnol, 2016, 36 (2): 259- 267.
doi: 10.3109/07388551.2014.953443 |
84 |
WANG G , SUN W J , PEI X , et al. Galactooligosaccharide pretreatment alleviates damage of the intestinal barrier and inflammatory responses in LPS-challenged mice[J]. Food Funct, 2021, 12 (4): 1569- 1579.
doi: 10.1039/D0FO03020A |
85 |
肖定福, 钟佳, 刘进辉, 等. 壳寡糖对脂多糖诱导猪空肠上皮细胞氧化损伤的作用[J]. 动物营养学报, 2016, 28 (7): 2090- 2095.
doi: 10.3969/j.issn.1006-267x.2016.07.013 |
XIAO D F , ZHONG J , LIU J H , et al. Effects of chitooligosaccharide on lipopolysaccharide induced oxidative damage in epithelial cells of pig jejunum[J]. Chinese Journal of Animal Nutrition, 2016, 28 (7): 2090- 2095.
doi: 10.3969/j.issn.1006-267x.2016.07.013 |
|
86 | 杨晓莉, 唐延东, 张方东, 等. 6-羧基壳寡糖清除活性氧的能力及作用机理[J]. 天津科技大学学报, 2021, 36 (4): 73- 80. |
YANG X L , TANG Y D , ZHANG F D , et al. Activity and mechanism of 6-carboxyl chitosan oligosaccharide to scavenge reactive oxygen species[J]. Journal of Tianjin University of Science & Technology, 2021, 36 (4): 73- 80. | |
87 | 高温婷. 甘露寡糖的抗氧化作用机制研究[D]. 郑州: 河南工业大学, 2021. |
GAO W T. Study on the antioxidant mechanism of Mannan-oligosaccharides[D]. Zhengzhou: Henan University of Technology, 2021. (in Chinese) | |
88 |
WANG J P , ZHANG C H , ZHAO S J , et al. Dietary apple pectic oligosaccharide improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders[J]. Poult Sci, 2021, 100 (4): 100976.
doi: 10.1016/j.psj.2020.12.073 |
89 | 阿拉腾珠拉, 胡永飞. 褐藻寡糖的制备方法及生物活性研究进展[J]. 生物工程学报, 2022, 38 (1): 104- 118. |
A LA TENG ZHU LA , HU Y F . Advances in the preparation of alginate oligosaccharides and its biological functions[J]. Chinese Journal of Biotechnology, 2022, 38 (1): 104- 118. | |
90 |
ACRES S D . Enterotoxigenic Escherichia coli infections in newborn calves: a review[J]. J Dairy Sci, 1985, 68 (1): 229- 256.
doi: 10.3168/jds.S0022-0302(85)80814-6 |
91 |
VON MENTZER A , SVENNERHOLM A M . Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC)[J]. Trends Microbiol, 2024, 32 (5): 448- 464.
doi: 10.1016/j.tim.2023.11.001 |
92 |
ZHANG Y C , TAN P , ZHAO Y , et al. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota[J]. Gut Microbes, 2022, 14 (1): 2055943.
doi: 10.1080/19490976.2022.2055943 |
93 |
RIVERA F P , MEDINA A , RIVEROS M , et al. Colonizing and virulence factors in enterotoxigenic Escherichia coli from Peru[J]. Am J Trop Med Hyg, 2023, 108 (5): 948- 953.
doi: 10.4269/ajtmh.22-0677 |
94 |
VON MENTZER A , ZALEM D , CHRIENOVA Z , et al. Colonization factor CS30 from enterotoxigenic Escherichia coli binds to sulfatide in human and porcine small intestine[J]. Virulence, 2020, 11 (1): 381- 390.
doi: 10.1080/21505594.2020.1749497 |
95 |
PAKBIN B , BRVCK W M , ROSSEN J W A . Virulence factors of enteric pathogenic Escherichia coli: a review[J]. Int J Mol Sci, 2021, 22 (18): 9922.
doi: 10.3390/ijms22189922 |
96 | BIELASZEWSKA M , GREUNE L , BAUWENS A , et al. Virulence factor cargo and host cell interactions of Shiga toxin-producing Escherichia coli outer membrane vesicles[J]. Methods Mol Biol, 2021, 2291, 177- 205. |
97 |
ASADPOOR M , ITHAKISIOU G N , HENRICKS P A J , et al. Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against Enterotoxin-Producing Bacteria and their toxins[J]. Toxins (Basel), 2021, 13 (3): 175.
doi: 10.3390/toxins13030175 |
98 |
XIE Y , ZHAN X , TU J Y , et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021, 272, 113925.
doi: 10.1016/j.jep.2021.113925 |
99 |
WANG H X , ZHONG Z F , LUO Y , et al. Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity[J]. Toxins (Basel), 2019, 11 (1): 24.
doi: 10.3390/toxins11010024 |
100 | DODET B , HESELTINE E , MARY C , et al. Rotaviruses in human and veterinary medicine[J]. Sante, 1997, 7 (3): 195- 199. |
101 | 贾伟强, 曲庆, 赵帅, 等. 牛轮状病毒研究进展[J]. 中国奶牛, 2020 (2): 49- 52. |
JIA W Q , QU Q , ZHAO S , et al. Research progress of bovine rotavirus[J]. China Dairy Cattle, 2020 (2): 49- 52. | |
102 |
BLANCHARD P C . Diagnostics of dairy and beef cattle diarrhea[J]. Vet Clin North Am Food Anim Pract, 2012, 28 (3): 443- 464.
doi: 10.1016/j.cvfa.2012.07.002 |
103 |
THOMSON S , HAMILTON C A , HOPE J C , et al. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies[J]. Vet Res, 2017, 48 (1): 42.
doi: 10.1186/s13567-017-0447-0 |
104 | 常美楠. 低聚半乳糖对荷斯坦犊牛直肠菌群结构的调控机制研究[D]. 北京: 中国农业科学院, 2022. |
CHANG M N. Mechanism of Galacto-oligosaccharides regulating rectal microbial community structure of Holstein dairy calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022. (in Chinese) | |
105 | 金亚东, 张力莉, 陈绍淑, 等. 甘露寡糖添加方式对哺乳期犊牛生长性能、粪便菌群及血清免疫指标的影响[J]. 中国畜牧兽医, 2016, 43 (11): 2922- 2930. |
JIN Y D , ZHANG L L , CHEN S S , et al. Effect of different addition schemes of mannan oligosaccharide on growth performance, fecal microorganism and serum immune indexes of calves[J]. China Animal Husbandry & Veterinary Medicine, 2016, 43 (11): 2922- 2930. | |
106 |
赵晓静, 李建国, 李秋凤, 等. 甘露寡糖对犊牛粪便菌群影响的研究[J]. 中国畜牧杂志, 2007, 43 (5): 31- 34.
doi: 10.3969/j.issn.0258-7033.2007.05.011 |
ZHAO X J , LI J G , LI Q F , et al. Effects of BIO-MOS in neonatal diets on faecal bacterium populations and health of dairy calves[J]. Chinese Journal of Animal Science, 2007, 43 (5): 31- 34.
doi: 10.3969/j.issn.0258-7033.2007.05.011 |
|
107 |
王智航, 姜成哲, 崔明勋, 等. 低聚半乳糖对延边黄牛犊牛粪样菌群、血液指标及生长性能的影响[J]. 动物营养学报, 2011, 23 (7): 1247- 1252.
doi: 10.3969/j.issn.1006-267x.2011.07.025 |
WANG Z H , JIANG C Z , CUI M X , et al. Effect of galactooligosaccharide on fecal flora, blood indices and growth performance of Yanbian yellow calves[J]. Chinese Journal of Animal Nutrition, 2011, 23 (7): 1247- 1252.
doi: 10.3969/j.issn.1006-267x.2011.07.025 |
|
108 |
SHARMA A N , CHAUDHARY P , GROVER C R , et al. Impact of synbiotics on growth performance and gut health in Murrah buffalo calves[J]. Vet Res Commun, 2024, 48 (1): 179- 190.
doi: 10.1007/s11259-023-10194-y |
109 |
QUIGLEY III J D , KOST C J , WOLFE T A . Effects of spray-dried animal plasma in milk replacers or additives containing serum and oligosaccharides on growth and health of calves[J]. J Dairy Sci, 2002, 85 (2): 413- 421.
doi: 10.3168/jds.S0022-0302(02)74089-7 |
110 |
MWENYA B , SANTOSO B , SAR C , et al. Effects of yeast culture and galacto-oligosaccharides on ruminal fermentation in Holstein cows[J]. J Dairy Sci, 2005, 88 (4): 1404- 1412.
doi: 10.3168/jds.S0022-0302(05)72808-3 |
111 |
LI Z J , BAI H X , ZHENG L X , et al. Bioactive polysaccharides and oligosaccharides as possible feed additives to manipulate rumen fermentation in Rusitec fermenters[J]. Int J Biol Macromol, 2018, 109, 1088- 1094.
doi: 10.1016/j.ijbiomac.2017.11.098 |
112 | 王飞飞. 低聚半乳糖对荷斯坦犊牛生长性能、血液指标、瘤胃发酵及菌群结构的影响[D]. 北京: 中国农业科学院, 2022. |
WANG F F. Effects of Galactooligosaccharides on the growth performance, blood parameters, rumen fermentation and microflora structure of Holstein dairy calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022. (in Chinese) | |
113 |
WIEDEMANN I , BREUKINK E , VAN KRAAIJ C , et al. Specific binding of nisin to the peptidoglycan precursor lipid Ⅱ combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity[J]. J Biol Chem, 2001, 276 (3): 1772- 1779.
doi: 10.1074/jbc.M006770200 |
114 | SHOAF-SWEENEY K D , HUTKINS R W . Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host[J]. Adv Food Nutr Res, 2009, 55, 101- 161. |
115 |
BOEHM G , STAHL B . Oligosaccharides from Milk[J]. J Nutr, 2007, 137 (3): 847S- 849S.
doi: 10.1093/jn/137.3.847S |
116 |
MONTEAGUDO-MERA A , RASTALL R A , GIBSON G R , et al. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health[J]. Appl Microbiol Biotechnol, 2019, 103 (16): 6463- 6472.
doi: 10.1007/s00253-019-09978-7 |
117 |
MORRIN S T , LANE J A , MAROTTA M , et al. Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation[J]. Appl Microbiol Biotechnol, 2019, 103 (6): 2745- 2758.
doi: 10.1007/s00253-019-09642-0 |
118 |
DI R , VAKKALANKA M S , ONUMPAI C , et al. Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells[J]. Food Chem, 2017, 227, 245- 254.
doi: 10.1016/j.foodchem.2017.01.100 |
119 | ROMERO E S , COTONER C A , CAMACHO C P , et al. The intestinal barrier function and its involvement in digestive disease[J]. Rev Esp Enferm Dig, 2015, 107 (11): 686- 696. |
120 |
HE L N , WANG C J , SIMUJIDE H , et al. Effect of early pathogenic Escherichia coli infection on the intestinal barrier and immune function in newborn calves[J]. Front Cell Infect Microbiol, 2022, 12, 818276.
doi: 10.3389/fcimb.2022.818276 |
121 |
LAN R X , LI Y X , CHANG Q Q , et al. Dietary chitosan oligosaccharides alleviate heat stress-induced intestinal oxidative stress and inflammatory response in yellow-feather broilers[J]. Poult Sci, 2020, 99 (12): 6745- 6752.
doi: 10.1016/j.psj.2020.09.050 |
122 |
MI M M , CHANG M N , HUANG Y H , et al. Fructo-oligosaccharides ameliorate intestinal mechanical barrier injury in piglets induced by soybean antigen in vitro and in vivo[J]. Curr Protein Pept Sci, 2023, 24 (3): 267- 276.
doi: 10.2174/1389203724666230224090312 |
123 |
XU T , SUN R J , ZHANG Y C , et al. Recent research and application prospect of functional oligosaccharides on intestinal disease treatment[J]. Molecules, 2022, 27 (21): 7622.
doi: 10.3390/molecules27217622 |
124 |
NA K , WEI J N , ZHANG L , et al. Effects of chitosan oligosaccharides (COS) and FMT from COS-dosed mice on intestinal barrier function and cell apoptosis[J]. Carbohydr Polym, 2022, 297, 120043.
doi: 10.1016/j.carbpol.2022.120043 |
125 |
TAO W J , WANG G , PEI X , et al. Chitosan oligosaccharide attenuates lipopolysaccharide-induced intestinal barrier dysfunction through suppressing the inflammatory response and oxidative stress in mice[J]. Antioxidants (Basel), 2022, 11 (7): 1384.
doi: 10.3390/antiox11071384 |
126 |
CUI H , ZHU X Y , WANG Z G , et al. A purified glucomannan oligosaccharide from Amorphophallus konjac improves colonic mucosal barrier function via enhancing butyrate production and histone protein H3 and H4 acetylation[J]. J Nat Prod, 2021, 84 (2): 427- 435.
doi: 10.1021/acs.jnatprod.0c01125 |
127 | 邰秀林, 龙翔, 向钊, 等. 低聚果糖对早期断奶犊牛生长性能和血液理化指标及肠黏膜形态的影响[J]. 中国畜牧杂志, 2009, 45 (11): 34- 38. |
TAI X L , LONG X , XIANG Z , et al. Effects of fructooligosaccharides on performance and blood biochemistry index and intestinal mocosa structure in early-weaned calves[J]. Chinese Journal of Animal Science, 2009, 45 (11): 34- 38. | |
128 | 吴兆海. 粪菌移植对被动免疫失败犊牛肠道屏障功能及肠道菌群构建的影响[D]. 北京: 中国农业大学, 2018. |
WU Z H. Effects of fecal microbiota transplantation on intestinal barrier function and microbiota establishment in calves with failure of passive immune transfer[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
129 |
宋明明, 党丹岐, 赵佳楠, 等. 幼龄反刍动物胃肠道免疫系统发育及其调控的研究进展[J]. 动物营养学报, 2023, 35 (11): 6905- 6913.
doi: 10.12418/CJAN2023.629 |
SONG M M , DANG D Q , ZHAO J N , et al. Research progress in development and regulation of gastrointestinal immune system in young ruminants[J]. Chinese Journal of Animal Nutrition, 2023, 35 (11): 6905- 6913.
doi: 10.12418/CJAN2023.629 |
|
130 | BEHESHTIPOUR J , RAEESZADEH M . Evaluation of interleukin-10 and pro-inflammatory cytokine profile in calves naturally infected with neonatal calf diarrhea syndrome[J]. Arch Razi Inst, 2020, 75 (2): 213- 218. |
131 |
FISCHER S , BAUERFEIND R , CZERNY C P , et al. Serum interleukin-6 as a prognostic marker in neonatal calf diarrhea[J]. J Dairy Sci, 2016, 99 (8): 6563- 6571.
doi: 10.3168/jds.2015-10740 |
132 |
YANG C , ZHANG T X , TIAN Q H , et al. Supplementing mannan oligosaccharide reduces the passive transfer of immunoglobulin G and improves antioxidative capacity, immunity, and intestinal microbiota in neonatal goats[J]. Front Microbiol, 2022, 12, 795081.
doi: 10.3389/fmicb.2021.795081 |
133 | 白雪, 吴妍妍, 张文举. 复合微生态制剂和甘露寡糖对断奶犊牛粪便评分、血清免疫指标及抗氧化指标的影响[J]. 饲料研究, 2021, 44 (14): 9- 13. |
BAI X , WU Y Y , ZHANG W J . Effect of compound probiotics and mannose-oligosaccharides on fecal score, serum immunity and antioxidant indexes of weaned calves[J]. Feed Research, 2021, 44 (14): 9- 13. | |
134 |
WESTLAND A , MARTIN R , WHITE R , et al. Mannan oligosaccharide prepartum supplementation: effects on dairy cow colostrum quality and quantity[J]. Animal, 2017, 11 (10): 1779- 1782.
doi: 10.1017/S1751731117000672 |
135 | 梁金逢, 贾银海, 熊敏芬, 等. 复合益生菌配合功能性寡糖在早期断奶犊牛上的应用效果[J]. 饲料工业, 2023, 44 (18): 47- 50. |
LIANG J F , JIA Y H , XIONG M F , et al. Effects of compound probiotics and functional oligosaccharides on early weaned calves[J]. Feed Industry, 2023, 44 (18): 47- 50. | |
136 |
WAN J , ZHANG J , XU Q S , et al. Alginate oligosaccharide protects against enterotoxigenic Escherichia coli-induced porcine intestinal barrier injury[J]. Carbohydr Polym, 2021, 270, 118316.
doi: 10.1016/j.carbpol.2021.118316 |
[1] | 丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026. |
[2] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[3] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[4] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
[5] | 杜红旭, 苏利娟, 何政科, 谭晓燕, 张旭, 马琪, 曹立亭, 陈红伟, 甘玲. 五味子多糖纳米硒的体外抗氧化和肠道菌群调节作用研究[J]. 畜牧兽医学报, 2024, 55(7): 3234-3245. |
[6] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[7] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[8] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[9] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[10] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[11] | 朱芳, 李璐璐, 赵红奕, 董娅荣, 姜悦才, 李登亮, 张天亮, 熊楠楠, 陈德坤, 马文涛, 赵慧英. 唾液乳杆菌对奶山羊隐性乳房炎的治疗效果分析[J]. 畜牧兽医学报, 2024, 55(12): 5706-5715. |
[12] | 杨作斌, 史晋成, 马紫薇, 陈如龙, 舒展, 李鑫, 王金泉, 钟旗, 马雪连, 姚刚. 粪菌移植治疗犊牛无特异病原性腹泻和细菌性腹泻的疗效及其肠道菌群变化[J]. 畜牧兽医学报, 2024, 55(10): 4720-4734. |
[13] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[14] | 黄江, 李闯, 崔月琦, 袁雪莹, 赵志诚, 刘宇, 周玉龙, 朱战波, 张泽财. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3466-3473. |
[15] | 谢旖, 邹郦睿, 陶冉, 刘莎, 王江萍, 文利新, 邬静, 王吉. 单宁酸对低剂量T-2毒素诱导小鼠结肠黏膜损伤与菌群失调的保护效应[J]. 畜牧兽医学报, 2023, 54(8): 3582-3594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||