1 |
GOLIOMYTIS M , KARTSONAS N , CHARISMIADOU MA , et al. The influence of naringin or hesperidin dietary supplementation on broiler meat quality and oxidative stability[J]. PLoS One, 2015, 10 (10): e0141652.
doi: 10.1371/journal.pone.0141652
|
2 |
DAL BOSCO A , GERENCSÉR Z , SZENDRŐ Z , et al. Effect of dietary supplementation of spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display[J]. Meat Sci, 2014, 96 (1): 114- 119.
doi: 10.1016/j.meatsci.2013.06.021
|
3 |
MENCHETTI L , CANALI C , CASTELLINI C , et al. The different effects of linseed and fish oil supplemented diets on insulin sensitivity of rabbit does during pregnancy[J]. Res Vet Sci, 2018, 118, 126- 133.
doi: 10.1016/j.rvsc.2018.01.024
|
4 |
ENGBERG RM , LAURIDSEN C , JENSEN SK , et al. Inclusion of oxidized vegetable oil in broiler diets[J]. Poult Sci, 1996, 75 (8): 1003- 1011.
doi: 10.3382/ps.0751003
|
5 |
ESTÉVEZ M . Oxidative damage to poultry: from farm to fork[J]. Poult Sci, 2015, 94 (6): 1368- 1378.
doi: 10.3382/ps/pev094
|
6 |
WANG T , CHENG K , YU CY , et al. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers[J]. Poult Sci, 2021, 100 (9): 101343.
doi: 10.1016/j.psj.2021.101343
|
7 |
NIRMALA C , BISHT M S , BAJWA H K , et al. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry[J]. Trends Food Sci Tech, 2018, 77, 91- 99.
doi: 10.1016/j.tifs.2018.05.003
|
8 |
GOLIOMYTIS M , TSOUREKI D , SIMITZIS P E , et al. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability[J]. Poult Sci, 2014, 93 (8): 1957- 1962.
doi: 10.3382/ps.2013-03585
|
9 |
KAMBOH A A , MEMON A M , MUGHAL M J , et al. Dietary effects of soy and citrus flavonoid on antioxidation and microbial quality of meat in broilers[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102 (1): 235- 240.
doi: 10.1111/jpn.12683
|
10 |
TEIXEIRA F , SILVA A M , DELERUE-MATOS C , et al. Lycium barbarum berries (solanaceae) as source of bioactive compounds for healthy purposes: a review[J]. Int J Mol Sci, 2023, 24 (5): 4777.
doi: 10.3390/ijms24054777
|
11 |
MA R H , ZHANG X X , NI Z J , et al. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects[J]. Crit Rev Food Sci Nutr, 2023, 63 (30): 10621- 10635.
doi: 10.1080/10408398.2022.2078788
|
12 |
DAI Y , GUO J , ZHANG B , et al. Lycium barbarum (Wolfberry) glycopeptide prevents stress-induced anxiety disorders by regulating oxidative stress and ferroptosis in the medial prefrontal cortex[J]. Phytomedicine, 2023, 116, 154864.
doi: 10.1016/j.phymed.2023.154864
|
13 |
NIU Y , CHEN J , FAN Y , et al. Effect of flavonoids from lycium barbarum leaves on the oxidation of myofibrillar proteins in minced mutton during chilled storage[J]. J Food Sci, 2021, 86 (5): 1766- 1777.
doi: 10.1111/1750-3841.15728
|
14 |
LIAO J , GUO J , NIU Y , et al. Flavonoids from Lycium barbarum leaves attenuate obesity through modulating glycolipid levels, oxidative stress, and gut bacterial composition in high-fat diet-fed mice[J]. Front Nutr, 2022, 9, 972794.
doi: 10.3389/fnut.2022.972794
|
15 |
YANG T , HU Y , YAN Y , et al. Characterization and evaluation of antioxidant and anti-inflammatory activities of flavonoids from the fruits of lycium barbarum[J]. Foods, 2022, 11 (3): 306.
doi: 10.3390/foods11030306
|
16 |
GAO Y , WEI Y , WANG Y , et al. Lycium barbarum: a traditional chinese herb and a promising anti-aging agent[J]. Aging Dis, 2017, 8 (6): 778- 791.
doi: 10.14336/AD.2017.0725
|
17 |
CHEN S , ZHOU B , ZHANG J , et al. Effects of dietary nano-zinc oxide supplementation on meat quality, antioxidant capacity and cecal microbiota of intrauterine growth retardation finishing pigs[J]. Foods, 2023, 12 (9): 1885.
doi: 10.3390/foods12091885
|
18 |
刘慧娟, 张佳琦, 庄苏, 等. 日粮添加姜黄素对IUGR猪肝脏抗氧化功能和脂代谢的影响[J]. 南京农业大学学报, 2022, 45 (2): 359- 367.
|
|
LIU H J , ZHANG J Q , ZHUANG S , et al. Effects of dietary curcumin on liver antioxidant function and lipid metabolism in IUGR pig[J]. Journal of Nanjing Agricultural University, 2022, 45 (2): 359- 367.
|
19 |
NUÑEZ S M , CÁRDENAS C , VALENCIA P , et al. Effect of adding bovine skin gelatin hydrolysates on antioxidant properties, texture, and color in chicken meat processing[J]. Foods, 2023, 12 (7): 1496.
doi: 10.3390/foods12071496
|
20 |
YANG C C , CHEN T C . Effects of refrigerated storage, pH adjustment, and marinade on color of raw and microwave cooked chicken meat[J]. Poult Sci, 1993, 72 (2): 355- 362.
doi: 10.3382/ps.0720355
|
21 |
高嘉怡, 李香玲, 孙明洁, 等. 石吊兰素对黄羽肉鸡生长性能、屠宰性能、肉品质和脂肪沉积的影响[J]. 现代畜牧兽医, 2023 (11): 36- 40.
|
|
GAO J Y , LI X L , SUN M J , et al. Effects of chlorophytum comosum on growth performance, slaughter performance, meat quality and fat deposition of yellow feather broilers[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2023 (11): 36- 40.
|
22 |
WAN X L , SONG Z H , NIU Y , et al. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers[J]. Poult Sci, 2017, 96 (4): 844- 850.
doi: 10.3382/ps/pew307
|
23 |
李同树, 刘风民, 尹逊河, 等. 鸡肉嫩度评定方法及其指标间的相关分析[J]. 畜牧兽医学报, 2004, 35 (2): 171- 177.
|
|
LI T S , LIU F M , YIN S H , et al. Correlation analysis between evaluation methods and indicators of chicken tenderness[J]. Acta Veterinaria et Zootechnica Sinica, 2004, 35 (2): 171- 177.
|
24 |
U-CHUPAJ J , MALILA Y , GAMONPILAS C , et al. Differences in textural properties of cooked caponized and broiler chicken breast meat[J]. Poult Sci, 2017, 96 (7): 2491- 2500.
doi: 10.3382/ps/pex006
|
25 |
JIANG Z Y , JIANG S Q , LIN YC , et al. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers[J]. Poult Sci, 2007, 86 (7): 1356- 1362.
doi: 10.1093/ps/86.7.1356
|
26 |
CAO G , WANG H , YU Y , et al. Dietary bamboo leaf flavonoids improve quality and microstructure of broiler meat by changing untargeted metabolome[J]. J Anim Sci Biotechnol, 2023, 14 (1): 52.
doi: 10.1186/s40104-023-00840-5
|
27 |
TIMMERMANS R J , SARIS W H , VAN LOON L J . Insulin resistance: the role of intramuscular triglyceride and the importance of physical activity[J]. Ned Tijdschr Geneeskd, 2006, 150 (3): 122- 127.
|
28 |
ZARROUKI B , PILLON N J , KALBACHER E , et al. Cirsimarin, a potent antilipogenic flavonoid, decreases fat deposition in mice intra-abdominal adipose tissue[J]. Int J Obes (Lond), 2010, 34 (11): 1566- 1575.
doi: 10.1038/ijo.2010.85
|
29 |
CAO F L , ZHANG X H , YU W W , et al. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers[J]. Poult Sci, 2012, 91 (5): 1210- 1221.
doi: 10.3382/ps.2011-01886
|
30 |
MA J S , CHANG W H , LIU G H , et al. Effects of flavones of sea buckthorn fruits on growth performance, carcass quality, fat deposition and lipometabolism for broilers[J]. Poult Sci, 2015, 94 (11): 2641- 2649.
doi: 10.3382/ps/pev250
|
31 |
YANG S , LIAN G . ROS and diseases: role in metabolism and energy supply[J]. Mol Cell Biochem, 2020, 467 (1-2): 1- 12.
doi: 10.1007/s11010-019-03667-9
|
32 |
MOLONEY J N , COTTER T G . ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol, 2018, 80, 50- 64.
doi: 10.1016/j.semcdb.2017.05.023
|
33 |
PAPUC C , GORAN G V , PREDESCU C N , et al. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: a review[J]. Compr Rev Food Sci Food Saf, 2017, 16 (1): 96- 123.
doi: 10.1111/1541-4337.12241
|
34 |
HU Q , LIU Z , GUO Y , et al. Antioxidant capacity of flavonoids from Folium Artemisiae Argyi and the molecular mechanism in Caenorhabditis elegans[J]. J Ethnopharmacol, 2021, 279, 114398.
doi: 10.1016/j.jep.2021.114398
|
35 |
CHEN S , LI X , LIU X , et al. Investigation of chemical composition, antioxidant activity, and the effects of alfalfa flavonoids on growth performance[J]. Oxid Med Cell Longev, 2020, 2020, 8569237.
|
36 |
ÁLVAREZ S , ÁLVAREZ C , M HAMILL R , et al. Influence of meat sample geometry on dehydration dynamics during dry-aging of beef[J]. Meat Sci, 2023, 202, 109216.
|
37 |
FAUSTMAN C , SUN Q , MANCINI R , et al. Myoglobin and lipid oxidation interactions: mechanistic bases and control[J]. Meat Sci, 2010, 86 (1): 86- 94.
|
38 |
ZHOU Y , MAO S , ZHOU M . Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens[J]. Poult Sci, 2019, 98 (7): 2790- 2799.
|
39 |
BELLEZZA I , GIAMBANCO I , MINELLI A , et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865 (5): 721- 733.
|
40 |
ZHANG Q , LUO C , LI Z , et al. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity[J]. Ecotoxicol Environ Saf, 2024, 271, 115960.
|
41 |
BIAN Y , CHEN Y , WANG X , et al. Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3β and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer's disease[J]. J Adv Res, 2021, 34, 1- 12.
|
42 |
WANG X , TANG T , ZHAI M , et al. Ling-Gui-Zhu-Gan decoction protects H9c2 cells against H2O2-induced oxidative injury via regulation of the Nrf2/Keap1/HO-1 signaling pathway[J]. Evid Based Complement Alternat Med, 2020, 2020, 8860603.
|
43 |
ZHANG Q , LIU J , DUAN H , et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34, 43- 63.
|
44 |
YU Y , LI Z , CAO G , et al. Bamboo leaf flavonoids extracts alleviate oxidative stress in hepg2 cells via naturally modulating reactive oxygen species production and nrf2-mediated antioxidant defense responses[J]. J Food Sci, 2019, 84 (6): 1609- 1620.
|