畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 700-710.doi: 10.11843/j.issn.0366-6964.2025.02.021
梁恩堂1(), 李化轩1, 陈帅成1, 李果1, 孙格格1, 昝林森1,2,*(
)
收稿日期:
2024-09-02
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
昝林森
E-mail:942053665@qq.com;zanlinsen@163.com
作者简介:
梁恩堂(1999-),男,广东江门人,硕士生,主要从事牛精液冷冻保存研究,E-mail: 942053665@qq.com
基金资助:
LIANG Entang1(), LI Huaxuan1, CHEN Shuaicheng1, LI Guo1, SUN Gege1, ZAN Linsen1,2,*(
)
Received:
2024-09-02
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZAN Linsen
E-mail:942053665@qq.com;zanlinsen@163.com
摘要:
旨在研究在冷冻稀释液中添加染料木素(genistein,GEN)对牛精液冷冻保存效果的影响,为优化冷冻稀释液,提高冷冻-解冻后牛精液品质提供理论依据。本研究采集6头年龄3~5岁、体重(586±20) kg、健康状况良好的秦川种公牛的新鲜精液,将检测合格的精液混合后用含不同浓度GEN的冷冻稀释液稀释后冷冻保存;根据冷冻稀释液中GEN添加浓度的不同,本试验分为5个组,0 μg·mL-1 GEN组(对照组)、30 μg·mL-1 GEN组、60 μg·mL-1 GEN组、90 μg·mL-1 GEN组、120 μg·mL-1 GEN组,每组3个重复;解冻后利用牛全自动精子质量分析仪测定精子的运动性能,低渗肿胀检测法和花生凝集素荧光标记法检测精子顶体完整性和质膜完整性,试剂盒检测精子的线粒体膜电位(mitochondrial membrane potential,MMP)、抗氧化性能、丙二醛(malondialdehyde,MDA)含量和活性氧(reactive oxygen species,ROS)水平。结果,与对照组相比,30、60、90 μg·mL-1 GEN组的前向运动精子率显著提升(P < 0.05),30、60 μg·mL-1 GEN组的精子的顶体完整性显著提高(P < 0.05);60 μg·mL-1 GEN组的ROS水平显著低于其余组(P < 0.05);添加了GEN的各组与对照组相比,T-AOC和SOD含量均显著增加(P < 0.05),MDA含量在30、60、90 μg·mL-1 GEN组显著减少(P < 0.05),GSH-px含量在60、90 μg·mL-1 GEN组显著增加(P < 0.05),CAT含量在60、120 μg·mL-1 GEN组显著增加(P < 0.05);60 μg·mL-1 GEN组的MMP显著高于其余组(P < 0.05)。试验结果表明,冷冻稀释液中染料木素添加浓度为60 μg·mL-1时对牛精液具有最佳的冷冻保存效果。添加染料木素可以提高牛精液中精子的抗氧化性能,抑制精子的氧化应激,缓解精子顶体和线粒体等细胞结构受到的冻融损伤,增强解冻后精子的运动性能,从而达到改善冷冻-解冻后牛精液品质的效果。
中图分类号:
梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710.
LIANG Entang, LI Huaxuan, CHEN Shuaicheng, LI Guo, SUN Gege, ZAN Linsen. Effect of Genistein on Semen Cryopreservation of Bull[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 700-710.
表 1
染料木素对冷冻-解冻后牛精子运动性能的影响"
项目 Item | 染料木素浓度/(μg·mL-1)GEN | P-value | |||||||
0 | 30 | 60 | 90 | 120 | Treat | Linear | Quadratic | ||
活动精子率/% Motility | 57.20±2.76 | 60.40±0.40 | 63.37±0.52 | 58.83±1.20 | 57.87±1.67 | 0.05 | 0.96 | 0.02 | |
前向运动精子率/% Promotility | 31.33±1.81b | 44.57±1.42a | 48.17±0.47a | 43.50±2.26a | 40.87±4.34ab | < 0.01 | 0.04 | < 0.01 | |
前向运动精子平均速率/ (μm·s-1) Velocity | 33.33±1.76 | 38.00±0.58 | 39.00±0.58 | 38.33±0.88 | 36.67±1.86 | 0.26 | 0.11 | 0.01 |
1 | KUMAR D, PUNETHA M, DUA S, et al. Advancement in reproductive biotechnologies in livestock[M]//SOBTI R C, MUKESH M, SOBTI A. Genomic, Proteomics, and Biotechnology. Boca Raton: CRC Press, 2022: 215-230. |
2 |
LUCY M C , POHLER K G . North American perspectives for cattle production and reproduction for the next 20 years[J]. Theriogenology, 2025, 232, 109- 116.
doi: 10.1016/j.theriogenology.2024.11.006 |
3 |
UPADHYAY V R , RAMESH V , DEWRY R K , et al. Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function[J]. Theriogenology, 2022, 187, 82- 94.
doi: 10.1016/j.theriogenology.2022.04.024 |
4 |
LI Y , KALO D , ZERON Y , et al. Progressive motility- a potential predictive parameter for semen fertilization capacity in bovines[J]. Zygote, 2016, 24 (1): 70- 82.
doi: 10.1017/S0967199414000720 |
5 |
SIEME H , OLDENHOF H , WOLKERS W F . Mode of action of cryoprotectants for sperm preservation[J]. Anim Reprod Sci, 2016, 169, 2- 5.
doi: 10.1016/j.anireprosci.2016.02.004 |
6 |
VIANA SILVA J R , AGUIAR BARROSO P A , NASCIMENTO D R , et al. Benefits and challenges of nanomaterials in assisted reproductive technologies[J]. Mol Reprod Dev, 2021, 88 (11): 707- 717.
doi: 10.1002/mrd.23536 |
7 |
FALCHI L , KHALIL W A , HASSAN M , et al. Perspectives of nanotechnology in male fertility and sperm function[J]. Int J Vet Sci Med, 2018, 6 (2): 265- 269.
doi: 10.1016/j.ijvsm.2018.09.001 |
8 | HASHEM N M , GONZALEZ-BULNES A . State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals[J]. Animals (Basel), 2020, 10 (5): 840. |
9 |
KOWALCZYK A . The role of the natural antioxidant mechanism in sperm cells[J]. Reprod Sci, 2022, 29 (5): 1387- 1394.
doi: 10.1007/s43032-021-00795-w |
10 |
ZANDIYEH S , KALANTARI H , FAKHRI A , et al. A review of recent developments in the application of nanostructures for sperm cryopreservation[J]. Cryobiology, 2024, 115, 104890.
doi: 10.1016/j.cryobiol.2024.104890 |
11 | 周豪, 陈涛, 吴爱悯. 氧化应激对线粒体功能及椎间盘细胞的影响[J]. 四川大学学报: 医学版, 2024, 55 (2): 249- 255. |
ZHOU H , CHEN T , WU A M . Effects of oxidative stress on mitochondrial functions and intervertebral disc cells[J]. Journal of Sichuan University: Medical Sciences, 2024, 55 (2): 249- 255. | |
12 |
GIBB Z , GRIFFIN R A , AITKEN R J , et al. Functions and effects of reactive oxygen species in male fertility[J]. Anim Reprod Sci, 2020, 220, 106456.
doi: 10.1016/j.anireprosci.2020.106456 |
13 |
KOPPERS A J , DE IULIIS G N , FINNIE J M , et al. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa[J]. J Clin Endocrinol Metab, 2008, 93 (8): 3199- 3207.
doi: 10.1210/jc.2007-2616 |
14 | GUALTIERI R , KALTHUR G , BARBATO V , et al. Sperm oxidative stress during in vitro manipulation and its effects on sperm function and embryo development[J]. Antioxidants (Basel), 2021, 10 (7): 1025. |
15 | 刘鹤洁, 吉木斯, 谢望为, 等. 活性氧对精子氧化损伤及获能影响的研究进展[J]. 黑龙江畜牧兽医, 2023, (24): 31-34, 56. |
LIU H J , JI M S , XIE W W , et al. Research progress on the effects of reactive oxygen species on oxidative damage and capacitation of sperm[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (24): 31-34, 56. | |
16 |
SENGUPTA P , PINGGERA G M , CALOGERO A E , et al. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: lessons for busy clinicians[J]. Reprod Med Biol, 2024, 23 (1): e12598.
doi: 10.1002/rmb2.12598 |
17 |
SAPANIDOU V , TAITZOGLOU I , TSAKMAKIDIS I , et al. Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization[J]. Theriogenology, 2015, 84 (8): 1273- 1282.
doi: 10.1016/j.theriogenology.2015.07.005 |
18 |
GHALENO L R , VALOJERDI M R , JANZAMIN E , et al. Evaluation of conventional semen parameters, intracellular reactive oxygen species, DNA fragmentation and dysfunction of mitochondrial membrane potential after semen preparation techniques: a flow cytometric study[J]. Arch Gynecol Obstet, 2014, 289 (1): 173- 180.
doi: 10.1007/s00404-013-2946-1 |
19 |
KOWALCZYK A . The role of the natural antioxidant mechanism in sperm cells[J]. Reprod Sci, 2022, 29 (5): 1387- 1394.
doi: 10.1007/s43032-021-00795-w |
20 |
QAMAR A Y , NAVEED M I , RAZA S , et al. Role of antioxidants in fertility preservation of sperm-A narrative review[J]. Anim Biosci, 2023, 36 (3): 385- 403.
doi: 10.5713/ab.22.0325 |
21 |
BALDI E , TAMBURRINO L , MURATORI M , et al. Adverse effects of in vitro manipulation of spermatozoa[J]. Anim Reprod Sci, 2020, 220, 106314.
doi: 10.1016/j.anireprosci.2020.106314 |
22 | PINTUS E , ROS-SANTAELLA J L . Impact of oxidative stress on male reproduction in domestic and wild animals[J]. Antioxidants (Basel), 2021, 10 (7): 1154. |
23 |
TIWARI S , DEWRY R K , SRIVASTAVA R , et al. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation[J]. Theriogenology, 2022, 179, 22- 31.
doi: 10.1016/j.theriogenology.2021.11.013 |
24 |
HEZAVEHEI M , SHARAFI M , KOUCHESFAHANI H M , et al. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches[J]. Reprod Biomed Online, 2018, 37 (3): 327- 339.
doi: 10.1016/j.rbmo.2018.05.012 |
25 | 甘麦邻, 杨琼, 李强, 等. 染料木素的作用机制及在畜牧生产中的应用研究[J]. 现代畜牧兽医, 2018, (1): 23- 30. |
GAN M L , YANG Q , LI Q , et al. The mechanism of genistein and its application in livestock production[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2018, (1): 23- 30. | |
26 |
TULI H S , TUORKEY M J , THAKRAL F , et al. Molecular mechanisms of action of genistein in cancer: recent advances[J]. Front Pharmacol, 2019, 10, 1336.
doi: 10.3389/fphar.2019.01336 |
27 |
GUELFI G , PASQUARIELLO R , ANIPCHENKO P , et al. The role of genistein in mammalian reproduction[J]. Molecules, 2023, 28 (21): 7436.
doi: 10.3390/molecules28217436 |
28 |
GUO J B , YANG G Q , HE Y Q , et al. Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism[J]. Cell Mol Neurobiol, 2021, 41 (2): 377- 393.
doi: 10.1007/s10571-020-01009-8 |
29 |
THOMSON L K , FLEMING S D , AITKEN R J , et al. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis[J]. Hum Reprod, 2009, 24 (9): 2061- 2070.
doi: 10.1093/humrep/dep214 |
30 |
SIERENS J , HARTLEY J A , CAMPBELL M J , et al. In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm[J]. Teratog Carcinog Mutagen, 2002, 22 (3): 227- 234.
doi: 10.1002/tcm.10015 |
31 |
SILVESTRE M A , VICENTE-FIEL S , RAGA E , et al. Effect of genistein added to bull semen after thawing on pronuclear and sperm quality[J]. Anim Reprod Sci, 2015, 163, 120- 127.
doi: 10.1016/j.anireprosci.2015.10.006 |
32 |
王萌, 杨超群, 吴斯林, 等. 番茄红素对秦川牛精液冷冻保存及鲜精品质影响[J]. 畜牧兽医学报, 2022, 53 (12): 4507- 4517.
doi: 10.11843/j.issn.0366-6964.2022.12.036 |
WANG M , YANG C Q , WU S L , et al. Impact of lycopene on semen cryopreservation and fresh semen quality of Qinchuan bull[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4507- 4517.
doi: 10.11843/j.issn.0366-6964.2022.12.036 |
|
33 |
HATAMOTO-ZERVOUDAKIS L K , DUARTE JÚNIOR M F , ZERVOUDAKIS J T , et al. Free gossypol supplementation frequency and reproductive toxicity in young bulls[J]. Theriogenology, 2018, 110, 153- 157.
doi: 10.1016/j.theriogenology.2018.01.003 |
34 |
ORGAL S , ZERON Y , ELIOR N , et al. Season-induced changes in bovine sperm motility following a freeze-thaw procedure[J]. J Reprod Dev, 2012, 58 (2): 212- 218.
doi: 10.1262/jrd.10-149N |
35 |
KÜÇÜK N , AKSOY M , UÇAN U , et al. Comparison of two different cryopreservation protocols for freezing goat semen[J]. Cryobiology, 2014, 68 (3): 327- 331.
doi: 10.1016/j.cryobiol.2014.04.009 |
36 |
GELBAYA T A , KYRGIOU M , TSOUMPOU I , et al. The use of estradiol for luteal phase support in in vitro fertilization/ intracytoplasmic sperm injection cycles: a systematic review and meta-analysis[J]. Fertil Steril, 2008, 90 (6): 2116- 2125.
doi: 10.1016/j.fertnstert.2007.10.053 |
37 |
BARDAWEEL S K , GUL M , ALZWEIRI M , et al. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body[J]. Eurasian J Med, 2018, 50 (3): 193- 201.
doi: 10.5152/eurasianjmed.2018.17397 |
38 |
ZHANG J X , WANG X L , VIKASH V , et al. ROS and ROS-mediated cellular signaling[J]. Oxid Med Cell Longev, 2016, 2016, 4350965.
doi: 10.1155/2016/4350965 |
39 |
PINI T , LEAHY T , DE GRAAF S P . Sublethal sperm freezing damage: manifestations and solutions[J]. Theriogenology, 2018, 118, 172- 181.
doi: 10.1016/j.theriogenology.2018.06.006 |
40 |
KUJOANA T C , SEHLABELA L D , MABELEBELE M , et al. The potential significance of antioxidants in livestock reproduction: sperm viability and cryopreservation[J]. Anim Reprod Sci, 2024, 267, 107512.
doi: 10.1016/j.anireprosci.2024.107512 |
41 |
PROCHOWSKA S , BONARSKA-KUJAWA D , BOBAK Ł , et al. Author Correction: fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa[J]. Sci Rep, 2024, 14 (1): 11109.
doi: 10.1038/s41598-024-62067-2 |
42 | COLLODEL G , MORETTI E , NOTO D , et al. Oxidation of polyunsaturated fatty acids as a promising area of research in infertility[J]. Antioxidants (Basel), 2022, 11 (5): 1002. |
43 |
PROCHOWSKA S , BONARSKA-KUJAWA D , BOBAK Ł , et al. Fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa[J]. Sci Rep, 2024, 14 (1): 10214.
doi: 10.1038/s41598-024-61006-5 |
44 |
KHOSRAVIZADEH Z , KHODAMORADI K , RASHIDI Z , et al. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring[J]. J Assist Reprod Genet, 2022, 39 (8): 1815- 1824.
doi: 10.1007/s10815-022-02545-6 |
45 | DREVET J R , AITKEN R J . Oxidation of sperm nucleus in mammals: a physiological necessity to some extent with adverse impacts on oocyte and offspring[J]. Antioxidants (Basel), 2020, 9 (2): 95. |
46 | ASADI N , BAHMANI M , KHERADMAND A , et al. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review[J]. J Clin Diagn Res, 2017, 11 (5): IE01- IE05. |
47 |
DIAS T R , MARTIN-HIDALGO D , SILVA B M , et al. Endogenous and exogenous antioxidants as a tool to ameliorate male infertility induced by reactive oxygen species[J]. Antioxid Redox Signal, 2020, 33 (11): 767- 785.
doi: 10.1089/ars.2019.7977 |
48 | NOWICKA-BAUER K , NIXON B . Molecular changes induced by oxidative stress that impair human sperm motility[J]. Antioxidants (Basel), 2020, 9 (2): 134. |
49 |
MATEO-OTERO Y , LLAVANERA M , TORRES-GARRIDO M , et al. Embryo development is impaired by sperm mitochondrial-derived ROS[J]. Biol Res, 2024, 57 (1): 5.
doi: 10.1186/s40659-024-00483-4 |
50 |
姜丽君, 宗云鹤, 李云雷, 等. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55 (3): 913- 923.
doi: 10.11843/j.issn.0366-6964.2024.03.006 |
JIANG L J , ZONG Y H , LI Y L , et al. Research progress of antioxidant application in poultry semen storage[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 913- 923.
doi: 10.11843/j.issn.0366-6964.2024.03.006 |
|
51 |
PANG Y W , SUN Y Q , JIANG X L , et al. Protective effects of melatonin on bovine sperm characteristics and subsequent in vitro embryo development[J]. Mol Reprod Dev, 2016, 83 (11): 993- 1002.
doi: 10.1002/mrd.22742 |
52 |
TVRDÁ E , KOVÁAČG IK A , TUŠIMOVÁ E , et al. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa[J]. J Environ Sci Health Part A, 2015, 50 (14): 1440- 1451.
doi: 10.1080/10934529.2015.1071153 |
53 |
HU T X , ZHU H B , SUN W J , et al. Sperm pretreatment with glutathione improves IVF embryos development through increasing the viability and antioxidative capacity of sex-sorted and unsorted bull semen[J]. J Integr Agric, 2016, 15 (10): 2326- 2335.
doi: 10.1016/S2095-3119(16)61402-8 |
54 |
SURICO D , ERCOLI A , FARRUGGIO S , et al. Modulation of oxidative stress by 17 β-estradiol and genistein in human hepatic cell lines in vitro[J]. Cell Physiol Biochem, 2017, 42 (3): 1051- 1062.
doi: 10.1159/000478752 |
55 |
LUO M , YANG Z Q , HUANG J C , et al. Genistein protects ovarian granulosa cells from oxidative stress via cAMP-PKA signaling[J]. Cell Biol Int, 2020, 44 (2): 433- 445.
doi: 10.1002/cbin.11244 |
56 | RIBAS-MAYNOU J , MATEO-OTERO Y , DELGADO-BERMÚDEZ A , et al. Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states: a systematic review[J]. Theriogenology, 2021, 173, 279- 294. |
[1] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[2] | 韩坤良, 兰伟, 胡新, 崔亚东, 孔祥峰. 复方中药超微粉对蛋鸡抗氧化性能及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(9): 3784-3792. |
[3] | 熊程坤, 张道亮, 杨悦, 丁红研, 赵杰, 李玉, 王希春, 冯士彬, 赵畅, 汤继顺, 吴金节. 芦丁对围产期湖羊瘤胃发酵、瘤胃菌群结构及抗氧化性能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2898-2909. |
[4] | 王萌, 杨超群, 吴斯林, 谭建兵, 杜鑫泽, 李振兴, 昝林森, 杨武才. 番茄红素对秦川牛精液冷冻保存及鲜精品质影响[J]. 畜牧兽医学报, 2022, 53(12): 4507-4517. |
[5] | 樊懿萱, 邓凯平, 澹台文静, 黄欣爱, 王锋, 陈明. 多不饱和脂肪酸日粮中添加酵母硒对湖羊脂肪酸组成和抗氧化的影响[J]. 畜牧兽医学报, 2018, 49(8): 1661-1673. |
[6] | 耿正颖, 史林鑫, 刘萍, 陆文清. 日粮中添加丁酸梭菌对断奶仔猪生长性能、抗氧化能力和免疫功能的影响[J]. 畜牧兽医学报, 2018, 49(8): 1651-1660. |
[7] | 权素玉,张源淑,卜登攀. 热应激造成奶牛乳腺上皮细胞损伤并影响乳合成相关载体的基因表达[J]. 畜牧兽医学报, 2016, 47(8): 1704-1713. |
[8] | 王守栋,房国锋,曾勇庆,陈伟,李川皓,王延东. F1代转CuZnSOD基因猪的制备与研究[J]. 畜牧兽医学报, 2016, 47(1): 16-24. |
[9] | 高亚可,陆凤花,吴柱连,马帆,刘晓华,杜姗姗,石德顺. 线粒体移植对水牛卵母细胞发育潜能的影响[J]. 畜牧兽医学报, 2015, 46(4): 583-591. |
[10] | 李文祥,吕林,朱勇文,张丽阳,罗绪刚. 饲粮锌对不同温度下肉种母鸡产蛋、种蛋孵化及血浆抗氧化性能的影响[J]. 畜牧兽医学报, 2015, 46(10): 1791-1805. |
[11] | 吴力专,罗佳捷,张彬,占今舜,李丽立. 金属硫蛋白对奶牛体外脾淋巴细胞凋亡/坏死及线粒体膜电位的影响[J]. 畜牧兽医学报, 2013, 44(9): 1475-1480. |
[12] | 赵娜,甄林青,胡启蒙,王亮亮,李新红. 超低温冷冻过程引起猪精子产生“似凋亡”变化[J]. 畜牧兽医学报, 2013, 44(11): 1766-1774. |
[13] | 毕明玉;李金龙;李术;陈蕾;张子威;唐洪鹏;徐世文. 线粒体凋亡途径在锰致鸡支持-生精细胞凋亡中的作用[J]. 畜牧兽医学报, 2010, 41(4): 500-504. |
[14] | 刘春龙;李忠秋;张帆;姜文博;徐岩;单安山. 大豆黄酮和染料木素对体外培养奶牛乳腺上皮细胞增殖及抗氧化水平的影响[J]. 畜牧兽医学报, 2008, 39(11): 1517-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||