畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2243-2258.doi: 10.11843/j.issn.0366-6964.2025.05.023
何容肖(), 吴杨博(
), 张淑霞, 赵锃珏, 黄娟, 潘伟雄, 任芷欣, 黄浩滨, 吴佳辉, 吴海阳, 沈世彦, 孙崇军, 张玲华*(
)
收稿日期:
2024-05-28
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
张玲华
E-mail:1287912247@qq.com;wybhhxx@stu.scau.edu.cn;lhzhang@scau.edu.cn
作者简介:
何容肖(1997-),女,广东茂名人,博士生,主要从事微生物与免疫研究,E-mail:1287912247@qq.com何容肖和吴杨博为同等贡献作者
基金资助:
HE Rongxiao(), WU Yangbo(
), ZHANG Shuxia, ZHAO Zengjue, HUANG Juan, PAN Weixiong, REN Zhixin, HUANG Haobin, WU Jiahui, WU Haiyang, SHEN Shiyan, SUN Chongjun, ZHANG Linghua*(
)
Received:
2024-05-28
Online:
2025-05-23
Published:
2025-05-27
Contact:
ZHANG Linghua
E-mail:1287912247@qq.com;wybhhxx@stu.scau.edu.cn;lhzhang@scau.edu.cn
摘要:
猪表皮生长因子(pEGF)与三叶因子协同给药已被证明能有效促进猪的肠道增殖与修复。本研究旨在构建食品级重组乳酸乳球菌强组成型表达系统并将其用于融合表达pEGF以及对猪肠道有益生作用的鼠李糖乳杆菌衍生蛋白p40,以克服目前乳酸乳球菌重组表达中组成型表达量低的现状以及避免抗生素使用的问题,并初步探索一种更强效的猪肠道益生制剂。首先,通过金黄色葡萄球菌核酸酶报告系统,以常用乳酸乳球菌组成型启动子P32为对照,从乳酸乳球菌NZ9000组成型高表达蛋白质的启动子以及前人研究发现的乳酸乳球菌强组成型启动子中,可视化地筛选出乳酸乳球菌NZ9000的伸长因子Tu的启动子(P1)活性最强。进一步地,将pNZ8148的氯霉素抗性基因替换为乳链菌肽抗性基因,成功构建了具有良好的乳链菌肽耐受性且完全失去氯霉素抗性的食品级重组乳酸乳球菌强组成型表达系统NZ9000/pP1NR。同时,本研究利用该系统成功表达pEGF和融合蛋白pEGF-p40。细胞增殖试验结果显示,含有pEGF-p40的菌株培养上清更有效地促进猪小肠上皮细胞IPEC-J2的增殖。通过qRT-PCR检测了刺激后IPEC-J2细胞的SGLT-1、GLUT-2、SUC、EGFR和GLP2R,结果显示含有pEGF-p40的培养上清调节相关基因的表达情况不同于仅含有pEGF的培养上清。本研究构建了食品级重组乳酸乳球菌强组成型表达系统,成功表达了对猪肠道具有益生作用的pEGF-p40,为其他益生物质的安全生产提供借鉴,为开发一种强效的猪肠道益生制剂做了先行探究。
中图分类号:
何容肖, 吴杨博, 张淑霞, 赵锃珏, 黄娟, 潘伟雄, 任芷欣, 黄浩滨, 吴佳辉, 吴海阳, 沈世彦, 孙崇军, 张玲华. 食品级重组乳酸乳球菌强组成型分泌猪肠道益生的pEGF-p40[J]. 畜牧兽医学报, 2025, 56(5): 2243-2258.
HE Rongxiao, WU Yangbo, ZHANG Shuxia, ZHAO Zengjue, HUANG Juan, PAN Weixiong, REN Zhixin, HUANG Haobin, WU Jiahui, WU Haiyang, SHEN Shiyan, SUN Chongjun, ZHANG Linghua. Intestinal Beneficial pEGF-p40 Secreted by a Food-grade Recombinant Lactococcus lactis Strong Constitutive Expression System[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2243-2258.
表 1
本研究所使用的质粒"
质粒名称 Plasmids | 用途 Applications | 来源 Sources |
pDM19-T | T载体 T vector | 购自宝日医生物技术(北京)有限公司 Purchased from Takara Biomedical Technology (Beijing) Co., Ltd. |
pNZ8148 | 乳酸乳球菌表达载体 Expression vector for L. lactis | 本实验室保存 Stored by the writer’s lab |
pMG36e | 乳酸乳球菌表达载体 Expression vector for L. lactis | 本实验室保存 Stored by the writer’s lab |
pDM19-T-SP-nuc | nuc基因的T载体 T vector containing nuc gene | 本研究构建 Constucted by the current study |
pNZ8148-SP-nuc | 启动子PnisA控制下的nuc基因报告载体 Vecter with nuc reporter under control of PnisA | |
pNZ8148Δ(PnisA)-P1-SP-nuc | 启动子P1控制下的nuc基因报告载体 Vecter with nuc reporter under control of P1 | |
pNZ8148Δ(PnisA)-P2-SP-nuc | 启动子P2控制下的nuc基因报告载体 Vecter with nuc reporter under control of P2 | |
pNZ8148Δ(PnisA)-P3-SP-nuc | 启动子P3控制下的nuc基因报告载体 Vecter with nuc reporter under control of P3 | |
pNZ8148Δ(PnisA)-P4-SP-nuc | 启动子P4控制下的nuc基因报告载体 Vecter with nuc reporter under control of P4 | |
pNZ8148Δ(PnisA)-P5-SP-nuc | 启动子P5控制下的nuc基因报告载体 Vecter with nuc reporter under control of P5 | |
pNZ8148Δ(PnisA)-P8-SP-nuc | 启动子P8控制下的nuc基因报告载体 Vecter with nuc reporter under control of P8 | |
pNZ8148Δ(PnisA)-SP-nuc | 启动子P32控制下的nuc基因报告载体 Vecter with nuc reporter under control of P32 | |
pNZ8148Δ(PnisA)-P1 | 启动子P1控制下的表达载体 Expression vector under control of P1 | |
pNZ8148Δ(PnisA)-P1-nsr | 插入nsr基因的表达载体 Expression vector with nsr insertion | |
pP1NR | 删除CmR基因的表达载体 Expression vector with CmR deletion | |
pP1NR-pEGF | pEGF的表达载体 Expression vector for pEGF | |
pP1NR-pEGF-p40 | pEGF-p40的表达载体 Expression vector for pEGF-p40 |
表 2
qRT-PCR检测所使用的引物"
基因 Gene | 引物序列(5′→3′) Primer sequences | 参考序列 References |
β-actin | F: CACGCCATCCTGCGTCTGGA | XM_021086047.1 |
R: AGCACCGTGTTGGCGTAGAG | ||
EGFR | F: GCCTTAGCCGTCTTATCCAA | NM_214007.1 |
R: TGGGCACAGATGACTTTGGT | ||
SGLT-1 | F: CCACTTTCCCTATAAAACCTCAC | NM_001164021.1 |
R: CTCCATCAAACTTCCATCCTCAG | ||
GLUT2 | F: TTGCCTTGGATGAGTTATGTGA | NM_001097417.1 |
R: GCGTGGTCCTTGACTGAAAA | ||
SUC | F: TGGCCATCCAGTCATGCC | XM_047755123.1 |
R: CCACCACTCTGCTGTGGA | ||
GLP2R | F: CCCTGCTGTTTCTGGTTTCC | NM_001246266.1 |
R: GGCAGGGAACAGAAACGTTT |
1 |
XU S , WANG D , ZHANG P , et al. Oral administration of Lactococcus lactis-expressed recombinant porcine epidermal growth factor stimulates the development and promotes the health of small intestines in early-weaned piglets[J]. J Appl Microbiol, 2015, 119 (1): 225- 235.
doi: 10.1111/jam.12833 |
2 |
ZENG F H , HARRIS R C . Epidermal growth factor, from gene organization to bedside[J]. Semin Cell Dev Biol, 2014, 28, 2- 11.
doi: 10.1016/j.semcdb.2014.01.011 |
3 |
ZHANG P , HOLOWATYJ A N , ROY T , et al. An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling[J]. Dev Cell, 2019, 49 (4): 574- 589.
doi: 10.1016/j.devcel.2019.03.029 |
4 |
SHAHRAJABIAN M H , SUN W L . Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods[J]. Mini Rev Med Chem, 2024, 24 (4): 453- 477.
doi: 10.2174/1389557523666230816090054 |
5 |
BEDFORD A , LI Z , LI M , et al. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma[J]. J Anim Sci, 2012, 90 (suppl_4): 4- 6.
doi: 10.2527/jas.53973 |
6 |
BEDFORD A , HUYNH E , FU M L , et al. Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product[J]. J Biotechnol, 2014, 173, 47- 52.
doi: 10.1016/j.jbiotec.2014.01.012 |
7 |
WANG D Y , XU S Y , LIN Y , et al. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets[J]. BMC Vet Res, 2014, 10, 171.
doi: 10.1186/s12917-014-0171-1 |
8 |
WANG S J , GUO C H , ZHOU L , et al. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets[J]. Br J Nutr, 2016, 115 (9): 1509- 1520.
doi: 10.1017/S0007114516000738 |
9 |
HUYNH E , LI J L . Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing[J]. Appl Microbiol Biotechnol, 2015, 99, 4667- 4677.
doi: 10.1007/s00253-015-6542-0 |
10 |
YANG Y Q , LIN Z Y , LIN Q Y , et al. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective[J]. Cell Death Dis, 2022, 13 (1): 62.
doi: 10.1038/s41419-022-04504-6 |
11 |
KAUR H , ALI S A , SHORT S P , et al. Identification of a functional peptide of a probiotic bacterium-derived protein for the sustained effect on preventing colitis[J]. Gut Microbes, 2023, 15 (2): 2264456.
doi: 10.1080/19490976.2023.2264456 |
12 |
GUO M J , ZHANG C Y , ZHANG C C , et al. Lacticaseibacillus rhamnosus reduces the pathogenicity of Escherichia coli in chickens[J]. Front Microbiol, 2021, 12, 664604.
doi: 10.3389/fmicb.2021.664604 |
13 |
BÄUERL C , ABITAYEVA G , SOSA-CARRILLO S , et al. P40 and P75 are singular functional muramidases present in the Lactobacillus casei /paracasei/rhamnosus taxon[J]. Front Microbiol, 2019, 10, 1420.
doi: 10.3389/fmicb.2019.01420 |
14 | 张攀, 许蒙蒙, 林燕, 等. 重组乳酸乳球菌表达外源产物在养猪生产中的潜在应用[J]. 动物营养学报, 2015, 27 (12): 3677- 3682. |
ZHANG P , XU M M , LIN Y , et al. Potential application of expression of exogenous products by recombinant Lactococcus lactis in pig production[J]. Chinese Journal of Animal Nutrition, 2015, 27 (12): 3677- 3682. | |
15 | 高莹, 李淼, 孙元, 等. 乳酸乳球菌表达系统的发展现状与前景展望[J]. 微生物学报, 2022, 62 (3): 895- 905. |
GAO Y , LI M , SUN Y , et al. Development and prospects of Lactococcus lactis expression system[J]. Acta Microbiologica Sinica, 2022, 62 (3): 895- 905. | |
16 | 王慧, 劳晓, 黄琳琳, 等. 乳酸乳球菌表达系统及其启动子的研究进展[J]. 食品科学, 2022, 43 (11): 330- 336. |
WANG H , LAO X , HUANG L L , et al. Progress in research on Lactococcus lactis expression systems and their promoter regulatory elements[J]. Food Science, 2022, 43 (11): 330- 336. | |
17 |
DUONG T , MILLER M J , BARRANGOU R , et al. Construction of vectors for inducible and constitutive gene expression in Lactobacillus[J]. Microb Biotechnol, 2011, 4 (3): 357- 367.
doi: 10.1111/j.1751-7915.2010.00200.x |
18 |
ZHU D L , LIU F L , XU H J , et al. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8[J]. FEMS Microbiol Lett, 2015, 362 (16): fnv107.
doi: 10.1093/femsle/fnv107 |
19 |
SILVA W M , SOUSA C S , OLIVEIRA L C , et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics[J]. Microb Biotechnol, 2019, 12 (2): 265- 274.
doi: 10.1111/1751-7915.13305 |
20 | KLEIN E Y , VAN BOECKEL T P , MARTINEZ E M , et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proc Natl Acad Sci U S A, 2018, 115 (15): E3463- E3470. |
21 | KUMAR S B , ARNIPALLI S R , ZIOUZENKOVA O . Antibiotics in food chain: The consequences for antibiotic resistance[J]. Antibiotics(Basel), 2020, 9 (10): 688. |
22 | 郭婷婷, 孔文涛. 乳酸乳球菌nisin抗性基因的克隆及作为筛选标记的研究[J]. 山东大学学报(理学版), 2008, 43 (7): 78- 82. |
GUO T T , KONG W T . Cloning of a nisin resistance gene from Lactococcus lactis and its application in food-grade selection marker[J]. Journal of Shandong University(Natural Science), 2008, 43 (7): 78- 82. | |
23 | 梁琰, 崔欣, 王哲, 等. 乳酸菌食品级表达载体的研究与应用[J]. 微生物学通报, 2021, 48 (3): 906- 915. |
LIANG Y , CUI X , WANG Z , et al. Research and application of food-grade expression vectors of lactic acid bacteria[J]. Microbiology China, 2021, 48 (3): 906- 915. | |
24 |
IBRAHEIM H K , FAYEZ R A , JASIM A S , et al. Role of nuc gene in Staphylococcus aureus to phagocytic activity in different cattle infections[J]. Open Vet J, 2023, 13 (8): 1021- 1026.
doi: 10.5455/OVJ.2023.v13.i8.8 |
25 |
FEITO J , ARAÚJO C , ARBULU S , et al. Design of Lactococcus lactis strains producing garvicin A and/or garvicin Q, either alone or together with nisin A or nisin Z and high antimicrobial activity against Lactococcus garvieae[J]. Foods, 2023, 12 (5): 1063.
doi: 10.3390/foods12051063 |
26 |
ALIAS N A R , SONG A A L , ALITHEEN N B , et al. Optimization of signal peptide via site-directed mutagenesis for enhanced secretion of heterologous proteins in Lactococcus lactis[J]. Int J Mol Sci, 2022, 23 (17): 10044.
doi: 10.3390/ijms231710044 |
27 | GROTE A , HILLER K , SCHEER M , et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host[J]. Nucleic Acids Res, 2005, 33 (suppl_2): W526- W531. |
28 | HOOVER D . Using DNAWorks in designing oligonucleotides for PCR-based gene synthesis[J]. Methods Mol Biol, 2012, 852, 215- 223. |
29 |
CLAES I J J , SCHOOFS G , REGULSKI K , et al. Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG[J]. PLoS One, 2012, 7 (2): e31588.
doi: 10.1371/journal.pone.0031588 |
30 |
CHEN X Y , ZARO J L , SHEN W C . Fusion protein linkers: property, design and functionality[J]. Adv Drug Deliv Rev, 2013, 65 (10): 1357- 1369.
doi: 10.1016/j.addr.2012.09.039 |
31 |
VILLATORO-HERNANDEZ J , LOERA-ARIAS M J , GAMEZ-ESCOBEDO A , et al. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis[J]. Microb Cell Fact, 2008, 7, 22.
doi: 10.1186/1475-2859-7-22 |
32 |
JIANG S Y , LIU S Q , ZHAO C J , et al. Developing protocols of tricine-SDS-PAGE for separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system[J]. Int J Electrochem Sci, 2016, 11 (1): 640- 649.
doi: 10.1016/S1452-3981(23)15870-6 |
33 |
PAN W X , ZHAO Z J , WU J H , et al. LACpG10-HL functions effectively in antibiotic-free and healthy husbandry by improving the innate immunity[J]. Int J Mol Sci, 2022, 23 (19): 11466.
doi: 10.3390/ijms231911466 |
34 |
MA M P , ZHAO Z T , LIANG Q Y , et al. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway[J]. Appl Microbiol Biotechnol, 2021, 105 (14-15): 5973- 5991.
doi: 10.1007/s00253-021-11472-y |
35 | 余楠楠, 陈琛. Nisin抗菌肽在食品抗菌防腐中的应用[J]. 食品研究与开发, 2020, 41 (17): 198- 204. |
YU N N , CHEN C . Application of nisin antibacterial peptide in food preservation[J]. Food Research and Development, 2020, 41 (7): 198- 204. | |
36 |
SONG A A , IN L L A , LIM S H E , et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16, 55.
doi: 10.1186/s12934-017-0669-x |
37 |
DUARTE S O D , MONTEIRO G A . Plasmid replicons for the production of pharmaceutical-grade pDNA, proteins and antigens by Lactococcus lactis cell factories[J]. Int J Mol Sci, 2021, 22 (3): 1379.
doi: 10.3390/ijms22031379 |
38 | VAN TILBURG A Y , CAO H J , VAN DER MEULEN S B , et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories[J]. Curr Opin Biotechnol, 2019, 59, 1- 7. |
39 | 冯瑜菲, 胡清泉, 张力国, 等. 表达猪圆环病毒3型Cap蛋白重组乳酸乳球菌的构建及免疫原性分析[J]. 中国预防兽医学报, 2022, 44 (11): 1201- 1207. |
FENG Y F , HU Q Q , ZHANG L G , et al. Construction and immunogenicity evaluation of recombinant Lactococcus lactis expressing the Cap protein of porcine circovirus virus type 3[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (11): 1201- 1207. | |
40 |
BEDFORD A , CHEN T , HUYNH E , et al. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: Potential mechanisms involved[J]. J Biotechnol, 2015, 196-197, 9- 19.
doi: 10.1016/j.jbiotec.2015.01.007 |
41 |
DOMÍNGUEZ-DÍAZ C , AVILA-ARREZOLA K E , RODRÍGUEZ J A , et al. Recombinant p40 protein promotes expression of occludin in HaCaT keratinocytes: A Brief Communication[J]. Microorganisms, 2023, 11 (12): 2913.
doi: 10.3390/microorganisms11122913 |
[1] | 王馨怡, 姚军虎, 张霞, 张俊. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1006-1018. |
[2] | 吴佳辉, 沈世彦, 邓锦波, 吴海阳, 任芷欣, 吴杨博, 黄娟, 黄浩滨, 潘伟雄, 赵锃珏, 何容肖, 孙崇军, 张玲华. 诱导型表达H5N1亚型禽流感病毒HA蛋白的乳酸乳球菌的构建及其对鸭的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(2): 774-787. |
[3] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
[4] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[5] | 陈雨, 修子清, MGENIMusa, 施屹, 张俊秋, 蒋小雨, 吕景智, 孙雅望. 蒲公英与木通提取物对断奶仔兔生长性能、肠道健康和药物转运体基因相对表达量的影响[J]. 畜牧兽医学报, 2024, 55(8): 3725-3739. |
[6] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[7] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[8] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[9] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[10] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[11] | 罗菊, 毛嘉妮, 夏银钊, 杨震国. circRNAs对哺乳动物肠道屏障功能的调控作用[J]. 畜牧兽医学报, 2023, 54(11): 4439-4448. |
[12] | 常昊, 邱英武, 彭杰, 高琦, 宋泽布, 陈洋, 李薇, 林丽苗, 曹雪珍, 周庆丰, 张桂红, 李群辉, 郑泽中. 非洲猪瘟病毒基因Ⅰ型的双重实时荧光定量PCR检测方法建立[J]. 畜牧兽医学报, 2023, 54(10): 4428-4432. |
[13] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
[14] | 张德明, 黄嘉訸, 李劲树, 郑红梅, 王少英, 杨公社, 史新娥. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1334-1344. |
[15] | 张海玲, 廉士珍, 张东亮, 白雪, 章沙沙, 张蕾, 李伟, 刘方圆, 王菡, 胡博, 卢士英. 干扰素-ε研究进展[J]. 畜牧兽医学报, 2021, 52(11): 3023-3029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||