畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (1): 48-57.doi: 10.11843/j.issn.0366-6964.2023.01.005
袁铜, 黄靓, 杨琳, 王文策, 朱勇文*
收稿日期:
2022-03-25
出版日期:
2023-01-23
发布日期:
2023-01-17
通讯作者:
朱勇文,主要从事禽胚胎发育、禽饲料营养价值评定研究,E-mail:408034085@qq.com
作者简介:
袁铜(1997-),男,贵州盘州人,硕士生,主要从事动物营养与饲料科学研究,E-mail:yt2444366197@163.com
基金资助:
YUAN Tong, HUANG Liang, YANG Lin, WANG Wence, ZHU Yongwen*
Received:
2022-03-25
Online:
2023-01-23
Published:
2023-01-17
摘要: 线粒体是动物细胞生产能量的主要场所,可参与三磷酸腺苷的产生、细胞线粒体Ca2+稳态的维持,在调节动物机体能量代谢方面发挥重要的作用。目前,研究发现肠道微生物及其代谢产物可影响细胞线粒体代谢水平和功能,参与调节机体营养物质代谢周转速度,最终影响畜禽生长发育及饲料转化效率等。本文在总结线粒体生物学功能的基础上,重点阐述了肠道微生物及其代谢产物对线粒体功能的调节作用及影响因素,旨在为饲粮营养手段介导肠道微生物-宿主线粒体途径调节动物生长发育和肠道健康提供理论参考。
中图分类号:
袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57.
YUAN Tong, HUANG Liang, YANG Lin, WANG Wence, ZHU Yongwen. Regulation of Mitochondrial Function by Gut Microbiota and Their Metabolites in Animal[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 48-57.
[1] | ZHAO Q,ELSON C O.Adaptive immune education by gut microbiota antigens[J].Immunology,2018,154(1):28-37. |
[2] | SAHURI-ARISOYLU M,MOULD R R,SHINJYO N,et al.Acetate induces growth arrest in colon cancer cells through modulation of mitochondrial function[J].Front Nutr,2021,8:588466. |
[3] | SCHÖNFELD P,WOJTCZAK L.Short-and medium-chain fatty acids in energy metabolism:the cellular perspective[J].J Lipid Res,2016,57(6):943-954. |
[4] | GONZLEZ-BOSCH C,BOORMAN E,ZUNSZAIN P A,et al.Short-chain fatty acids as modulators of redox signaling in health and disease[J].Redox Biol,2021,47:102165. |
[5] | 陈永标.线粒体转录因子A对肝外胆汁淤积肝细胞mtDNA氧化损伤的保护作用及机制研究[D].重庆:第三军医大学,2012.CHEN Y B.Damage to mtDNA in liver injury of patients with extrahepatic cholestasis:the protective effects of mitochondrial transcription factor A[D].Chongqing:Third Military Medical University of Chinese P.L.A.,2012.(in Chinese) |
[6] | ROLO A P,PALMEIRA C M,WALLACE K B.Mitochondrially mediated synergistic cell killing by bile acids[J].Biochim Biophys Acta,2003,1637(1):127-132. |
[7] | HAN G,LEE D G.Indole propionic acid induced Ca2+-dependent apoptosis in Candida albicans[J].IUBMB Life,2022,74(3):235-244. |
[8] | SHANG Q H,LIU H S,WU D,et al.Source of fiber influences growth,immune responses,gut barrier function and microbiota in weaned piglets fed antibiotic-free diets[J].Anim Nutr,2021,7(2):315-325. |
[9] | BEAL M F.Mitochondrial dysfunction in neurodegenerative diseases[J].Biochim Biophys Acta-Bioenerg,1998,1366(1-2):211-223. |
[10] | DAVIS R E,WILLIAMS M.Mitochondrial function and dysfunction:an update[J].J Pharmacol Exp Ther,2012,342(3):598-607. |
[11] | YOSHIDA G J.Beyond the warburg effect:N-Myc contributes to metabolic reprogramming in cancer cells[J].Front Oncol,2020,10:791. |
[12] | SEAGER R,LEE L,HENLEY J M,et al.Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function[J].Neuronal Signal,2020,4(2):NS20200008. |
[13] | BROOKES P S,YOON Y,ROBOTHAM J L,et al.Calcium,ATP,and ROS:a mitochondrial love-hate triangle[J].Am J Physiol Cell Physiol,2004,287(4):C817-C833. |
[14] | MAILLOUX R J.An update on mitochondrial reactive oxygen species production[J].Antioxidants,2020,9(6):472. |
[15] | AZAD M A K,KIKUSATO M,ZULKIFLI I,et al.Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress[J].Br Poult Sci,2013,54(4):503-509. |
[16] | CHI Q R,HU X Y,LIU Z Y,et al.H2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway[J].Ecotoxicol Environ Saf,2021,222:112488. |
[17] | LI L Q.The relevance of mammalian peroxiredoxins to the gametogenesis,embryogenesis,and pregnancy outcomes[J].Reprod Sci,2017,24(6):812-817. |
[18] | COLLINS S M,SURETTE M,BERCIK P.The interplay between the intestinal microbiota and the brain[J].Nat Rev Microbiol,2012,10(11):735-742. |
[19] | SAIHARA K,KAMIKUBO R,IKEMOTO K,et al.Pyrroloquinoline Quinone,a redox-active o-Quinone,stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway[J].Biochemistry,2017,56(50):6615-6625. |
[20] | JACOUTON E,MACH N,CADIOU J,et al.Lactobacillus rhamnosus CNCMI-4317 modulates Fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice[J].PLoS One,2015,10(10):e0138880. |
[21] | SAINT-GEORGES-CHAUMET Y,EDEAS M.Microbiota-mitochondria inter-talk:consequence for microbiota-host interaction[J].Pathog Dis,2016,74(1):ftv096. |
[22] | 陈福,何邵平,田科雄,等.短链脂肪酸的生理功能及其在畜禽生产中的应用[J].动物营养学报,2019,31(7):3039-3048.CHEN F,HE S P,TIAN K X,et al.Physiological function of short-chain fatty acids and their application in livestock and poultry production[J].Chinese Journal of Animal Nutrition,2019,31(7):3039-3048.(in Chinese) |
[23] | 朱翠,王少磊,蒋宗勇,等.仔猪肠道微生物代谢产物及益生菌的调控作用[J].动物营养学报,2019,31(4):1478-1484.ZHU C,WANG S L,JIANG Z Y,et al.Intestinal microbial metabolites and probiotic regulation in piglets[J].Chinese Journal of Animal Nutrition,2019,31(4):1478-1484.(in Chinese) |
[24] | LANTIER L,FENTZ J,MOUNIER R,et al.AMPK controls exercise endurance,mitochondrial oxidative capacity,and skeletal muscle integrity[J].FASEB J,2014,28(7):3211-3224. |
[25] | MOLLICA M P,RASO G M,CAVALIERE G,et al.Butyrate regulates liver mitochondrial function,efficiency,and dynamics in insulin-resistant obese mice[J].Diabetes,2017,66(5):1405-1418. |
[26] | DONOHOE D R,GARGE N,ZHANG X X,et al.The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J].Cell Metab,2011,13(5):517-526. |
[27] | AKBAR M A,TEWATIA B S,KUMAR S.Effect of dietary supplementation of salts of organic acids on gut morphology and meat quality of broilers[J].Indian J Anim Res,2018,52(12):1727-1731. |
[28] | WU Y Q,WANG Y L,YIN D F,et al.Effect of supplementation of nicotinamide and sodium butyrate on the growth performance,liver mitochondrial function and gut microbiota of broilers at high stocking density[J].Food Funct,2019,10(11):7081-7090. |
[29] | NIE Y F,HU J,YAN X H.Cross-talk between bile acids and intestinal microbiota in host metabolism and health[J].J Zhejiang Univ Sci B,2015,16(6):436-446. |
[30] | THOMAS C,GIOIELLO A,NORIEGA L,et al.TGR5-mediated bile acid sensing controls glucose homeostasis[J].Cell Metab,2009,10(3):167-177. |
[31] | 刘敬盛,杨玉芝,王君荣,等.胆汁酸的营养特性及其在家禽生产中应用的研究进展[J].中国畜牧兽医,2010,37(1):13-16.LIU J S,YANG Y Z,WANG J R,et al.Nutritive peculiarity of bile acid and its application in poultry production[J].China Animal Husbandry & Veterinary Medicine,2010,37(1):13-16.(in Chinese) |
[32] | RYAN K K,KOHLI R,GUTIERREZ-AGUILAR R,et al.Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats[J].Endocrinology,2013,154(1):9-15. |
[33] | RADAK Z,ZHAO Z F,KOLTAI E,et al.Oxygen consumption and usage during physical exercise:the balance between oxidative stress and ROS-dependent adaptive signaling[J].Antioxid Redox Sign,2013,18(10):1208-1246. |
[34] | HOOD D A,UGUCCIONI G,VAINSHTEIN A,et al.Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle:implications for health and disease[J].Compr Physiol,2011,1(3):1119-1134. |
[35] | 陆伦根,曾民德.胆汁酸对线粒体的毒性作用[J].肝脏,2008,13(4):343-346.LU L G,ZENG M D.Toxicity of bile acid on mitochondrial[J].Chinese Hepatology,2008,13(4):343-346.(in Chinese) |
[36] | JEAN-LOUIS S,AKARE S,ALI M A,et al.Deoxycholic acid induces intracellular signaling through membrane perturbations[J].J Biol Chem,2006,281(21):14948-14960. |
[37] | RIVOIRA M A,MARCHIONATTI A M,CENTENO V A,et al.Sodium deoxycholate inhibits chick duodenal calcium absorption through oxidative stress and apoptosis[J].Comp Biochem Physiol A Mol Integr Physiol,2012,162(4):397-405. |
[38] | XAVIER J M,MORGADO A L,RODRIGUES C M P,et al.Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling[J].Cell Cycle,2014,13(22):3576-3589. |
[39] | KIM S A,JANG E H,YOUNG M J,et al.Propionic acid induces mitochondrial dysfunction and affects gene expression for mitochondria biogenesis and neuronal differentiation in SH-SY5Y cell line[J].NeuroToxicology,2019,75:116-122. |
[40] | FRYE R E,ROSE S,CHACKO J,et al.Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines[J].Transl Psychiatry,2016,6(10):e927. |
[41] | MACFABE D F,CAIN D P,RODRIGUEZ-CAPOTE K,et al.Neurobiological effects of intraventricular propionic acid in rats:Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders[J].Behav Brain Res,2007,176(1):149-169. |
[42] | RAMIS M R,ESTEBAN S,MIRALLES A,et al.Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress:a review[J].Curr Med Chem,2015,22(22):2690-2711. |
[43] | PAUPE V,PRUDENT J,DASSA E P,et al.CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter[J].Cell Metab,2015,21(1):109-116. |
[44] | PAUPE V,PRUDENT J.New insights into the role of mitochondrial calcium homeostasis in cell migration[J].Biochem Biophys Res Commun,2018,500(1):75-86. |
[45] | KENT-DENNIS C,PENNER G B.Effects of a proinflammatory response on metabolic function of cultured,primary ruminal epithelial cells[J].J Dairy Sci,2021,104(1):1002-1017. |
[46] | GOMMERS L M M,VAN DER WIJST J,BOS C,et al.Colonic expression of calcium transporter TRPV6 is regulated by dietary sodium butyrate[J].Pflugers Arch,2022,474(3):293-302. |
[47] | HE H Y,HENDERSON A C,DU Y L,et al.Two-enzyme pathway links L-arginine to nitric oxide in n-nitroso biosynthesis[J].J Am Chem Soc,2019,141(9):4026-4033. |
[48] | HERBERG L J,ROSE I C,DE BELLEROCHE J S,et al.Ornithine decarboxylase induction and polyamine synthesis in the kindling of seizures:the effect of α-difluoromethylornithine[J].Epilepsy Res,1992,11(1):3-7. |
[49] | WANG J Y.Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function[J].Inflammo Pharmacology,2005,13(1-3):91-101. |
[50] | 胡骁飞,魏凤仙,呙于明.脂多糖(LPS)刺激对肉仔鸡生产性能及肌肉品质影响[J].中国农业大学学报,2011,16(1):60-65.HU X F,WEI F X,GUO Y M.Effect of lipopolysaccharide (LPS) challenge on performance and meat quality of broiler chickens[J].Journal of China Agricultural University,2011,16(1):60-65.(in Chinese) |
[51] | 冯京海,张敏红,郑姗姗,等.日循环高温对肉鸡线粒体活性氧产生量、钙泵活性及胸肌品质的影响[J].畜牧兽医学报,2006,37(12):1304-1311.FENG J H,ZHANG M H,ZHENG S S,et al.The effect of cyclic high temperature on mitochondrial ROS production,Ca2+-ATPase activity and breast meat quality of broilers[J].Acta Veterinaria et Zootechnica Sinica,2006,37(12):1304-1311.(in Chinese) |
[52] | FAN P X,LIU P,SONG P X,et al.Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model[J].Sci Rep,2017,7(1):43412. |
[53] | LIU R L,HE J W,JI X,et al.A moderate reduction of dietary crude protein provide comparable growth performance and improve metabolism via changing intestinal microbiota in Sushan nursery pigs[J].Animals,2021,11(4):1166. |
[54] | POLLOCK J,GLENDINNING L,SMITH L A,et al.Temporal and nutritional effects on the weaner pig ileal microbiota[J].Anim Microbiome,2021,3(1):58. |
[55] | IJAZ M U,AHMAD M I,HUSSAIN M,et al.Meat protein in high-fat diet induces adipogensis and dyslipidemia by altering gut microbiota and endocannabinoid dysregulation in the adipose tissue of mice[J].J Agric Food Chem,2020,68(13):3933-3946. |
[56] | REGMI P R,METZLER-ZEBELI B U,GÄNZLE M G,et al.Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs[J].J Nutr,2011,141(7):1273-1280. |
[57] | JIANG X Y,LU N S,XUE Y,et al.Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows[J].Gen Comp Endocrinol,2019,277:141-147. |
[58] | ZEITZ J O,NEUFELD K,POTTHAST C,et al.Effects of dietary supplementation of the lignocelluloses FibreCell and OptiCell on performance,expression of inflammation-related genes and the gut microbiome of broilers[J].Poult Sci,2019,98(1):287-297. |
[59] | RÖHE I,METZGER F,VAHJEN W,et al.Effect of feeding different levels of lignocellulose on performance,nutrient digestibility,excreta dry matter,and intestinal microbiota in slow growing broilers[J].Poult Sci,2020,99(10):5018-5026. |
[60] | YANG C,DENG Q C,XU J Q,et al.Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats[J].Food Res Int,2019,116:1202-1211. |
[61] | WU J,IBTISHAM F,NIU Y F,et al.Curcumin inhibits heat-induced oxidative stress by activating the MAPK-Nrf2/ARE signaling pathway in chicken fibroblasts cells[J].J Therm Biol,2019,79:112-119. |
[62] | GAN Z D,WEI W Y,LI Y,et al.Curcumin and resveratrol regulate intestinal bacteria and alleviate intestinal inflammation in weaned piglets[J].Molecules,2019,24(7):1220. |
[63] | IQBAL M,PUMFORD N R,TANG Z X,et al.Compromised liver mitochondrial function and complex activity in low feed efficient broilers are associated with higher oxidative stress and differential protein expression[J].Poult Sci,2005,84(6):933-941. |
[64] | OJANO-DIRAIN C,IQBAL M,WING T,et al.Glutathione and respiratory chain complex activity in duodenal mitochondria of broilers with low and high feed efficiency[J].Poult Sci,2005,84(5):782-788. |
[65] | SHARIFABADI H R,ZAMIRI M J,ROWGHANI E,et al.Relationship between the activity of mitochondrial respiratory chain complexes and feed efficiency in fat-tailed Ghezel lambs[J].J Anim Sci,2012,90(6):1807-1815. |
[66] | VINCENT A,LOUVEAU I,GONDRET F,et al.Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle[J].J Anim Sci,2015,93(6):2745-2758. |
[67] | LIU J,STEWART S N,ROBINSON K,et al.Linkage between the intestinal microbiota and residual feed intake in broiler chickens[J].J Anim Sci Biotechnol,2021,12(1):22. |
[68] | TAN Z,YANG T,WANG Y,et al.Metagenomic analysis of cecal microbiome identified microbiota and functional capacities associated with feed efficiency in landrace finishing pigs[J].Front Microbiol,2017,8:1546. |
[69] | WANG Z X,HE Y Z,WANG C D,et al.Variations in microbial diversity and metabolite profiles of female landrace finishing pigs with distinct feed efficiency[J].Front Vet Sci,2021,8:702931. |
[70] | LIU Y,ZHENG Z J,YU L H,et al.Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments[J].Sci Rep,2019,9(1):3453. |
[71] | GU Y G,XIAO X,PAN R R,et al.Lactobacillus plantarum dy-1 fermented barley extraction activates white adipocyte browning in high-fat diet-induced obese rats[J].J Food Biochem,2021,45(4):e13680. |
[72] | NOVAIS A K,DESCHÊNE K,MARTEL-KENNES Y,et al.Weaning differentially affects mitochondrial function,oxidative stress,inflammation and apoptosis in normal and low birth weight piglets[J].PLoS One,2021,16(2):e0247188. |
[73] | LI Y,GUO Y,WEN Z S,et al.Weaning stress perturbs gut microbiome and its metabolic profile in piglets[J].Sci Rep,2018,8(1):18068. |
[74] | FU H,HE M Z,WU J Y,et al.Deep investigating the changes of gut microbiome and its correlation with the shifts of host serum metabolome around parturition in sows[J].Front Microbiol,2021,12:729039. |
[75] | QI K K,MEN X M,WU J,et al.Effects of growth stage and rearing pattern on pig gut microbiota[J].Curr Microbiol,2022,79(5):136. |
[76] | GOPHNA U,KONIKOFF T,NIELSEN H B.Oscillospira and related bacteria-From metagenomic species to metabolic features[J].Environ Microbiol,2017,19(3):835-841. |
[77] | ZHU C H,SONG W T,TAO Z Y,et al.Analysis of microbial diversity and composition in small intestine during different development times in ducks[J].Poult Sci,2020,99(2):1096-1106. |
[78] | MONNÉ M,CHAN K W,SLOTBOOM D J,et al.Functional expression of eukaryotic membrane proteins in Lactococcus lactis[J].Protein Sci,2005,14(12):3048-3056. |
[79] | XIN J E,ZENG D,WANG H S,et al.Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice[J].Appl Microbiol Biotechnol,2014,98(15):6817-6829. |
[80] | DUMITRESCU L,POPESCU-OLARU I,COZMA L,et al.Oxidative stress and the microbiota-gut-brain axis[J].Oxid Med Cell Longev,2018,2018:2406594. |
[81] | ORTEGA-HERNNDEZ A,MARTÍNEZ-MARTÍNEZ E,GÓMEZ-GORDO R,et al.The interaction between mitochondrial oxidative stress and gut microbiota in the cardiometabolic consequences in diet-induced obese rats[J].Antioxidants (Basel),2020,9(7):640. |
[82] | KONCZ P,SZANDA G,RAJKI A,et al.Reactive oxygen species,Ca2+ signaling and mitochondrial NAD(P)H level in adrenal glomerulosa cells[J].Cell Calcium,2006,40(4):347-357. |
[83] | LIM M Y,SONG E J,KANG K S,et al.Age-related compositional and functional changes in micro-pig gut microbiome[J].GeroScience,2019,41(6):935-944. |
[84] | AMIT-ROMACH E,SKLAN D,UNI Z.Microflora ecology of the chicken intestine using 16S ribosomal DNA primers[J].Poult Sci,2004,83(7):1093-1098. |
[85] | NURRAHMA B A,TSAO S P,WU C H,et al.Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism[J].Front Aging Neurosci,2021,13:668775. |
[1] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[2] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[3] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[4] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[5] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[6] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[7] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[8] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[9] | 陆梦琪, 杨文杰, 李萍, 余鹏, 董翎, 牛晓玉, 杨克礼, 邹维华, 宋卉. 基于16S rRNA测序分析PRRSV感染仔猪肺和肠道中微生物菌群的变化[J]. 畜牧兽医学报, 2023, 54(4): 1664-1678. |
[10] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
[11] | 袁岩聪, 何航, 刘安芳, 万堃, 章杰. 不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析[J]. 畜牧兽医学报, 2023, 54(3): 1124-1134. |
[12] | 罗菊, 毛嘉妮, 夏银钊, 杨震国. circRNAs对哺乳动物肠道屏障功能的调控作用[J]. 畜牧兽医学报, 2023, 54(11): 4439-4448. |
[13] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
[14] | 蔡绍莉, 徐皆欢, 何孟纤, 张德福, 孙玲伟, 张树山, 李婉君, 吴彩凤, 主性, 戴建军. 毛喉素对猪卵母细胞降脂及冷冻保护效果研究[J]. 畜牧兽医学报, 2023, 54(1): 178-188. |
[15] | 郭新羽, 沙玉柱, 蒲小宁, 吕卫兵, 刘秀, 胡江, 罗玉柱, 王继卿, 李少斌, 赵志东. 环境温度对动物肠道微生物菌群影响的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2858-2866. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||