畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 774-787.doi: 10.11843/j.issn.0366-6964.2025.02.027
吴佳辉(), 沈世彦(
), 邓锦波, 吴海阳, 任芷欣, 吴杨博, 黄娟, 黄浩滨, 潘伟雄, 赵锃珏, 何容肖, 孙崇军, 张玲华*(
)
收稿日期:
2024-03-22
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
张玲华
E-mail:1142620951@stu.scau.edu.cn;EnshWinter@163.com;lhzhang@scau.edu.cn
作者简介:
吴佳辉(1999-),男,广东普宁人,博士生,主要从事微生物与免疫研究,E-mail: 1142620951@stu.scau.edu.cn吴佳辉和沈世彦为同等贡献作者
基金资助:
WU Jiahui(), SHEN Shiyan(
), DENG Jinbo, WU Haiyang, REN Zhixin, WU Yangbo, HUANG Juan, HUANG Haobin, PAN Weixiong, ZHAO Zengjue, HE Rongxiao, SUN Chongjun, ZHANG Linghua*(
)
Received:
2024-03-22
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHANG Linghua
E-mail:1142620951@stu.scau.edu.cn;EnshWinter@163.com;lhzhang@scau.edu.cn
摘要:
禽流感是由禽流感病毒引起的高度传染性疾病,受到感染的雏禽死亡率高,给家禽健康和经济带来严重影响。尽管传统疫苗可以有效预防禽流感,但由于鸭类养殖方式多为散户散养,环境多变,在接种传统疫苗时存在操作繁琐和免疫应激强等问题。为了解决此难题,本研究旨在开发一种便捷且安全的雏鸭血凝素(hemagglutinin, HA)口服生物制剂。我们通过构建系列锚定序列(pgsA、BmpA、cA和M6)-GFP报告表达系统,可视化地评估了不同类型锚定序列对乳酸菌乳球表面展示系统的效果,成功筛选出BmpA和cA作为乳酸菌乳球中的高效锚定序列。比较优化密码子前后的HA在乳酸乳球菌的表达效果后,选取优化密码子的HA基因序列与BmpA、cA连接,构建乳酸菌表达质粒。然后把构建好的表达质粒转入基因组整合HA1基因的乳酸乳球菌中,从而得到诱导型分泌联合表面展示HA蛋白的重组乳酸乳球菌(NZB-HA1-pNZ8148-BmpA-HA1和NZB-HA1-pNZ8148-HA1-cA)。ELISA检测结果表明,与口服单一表达型的重组乳酸乳球菌相比,口服诱导型分泌-表面展示乳酸乳球菌能诱生雏鸭血清中更佳的HA特异性IgG水平。本研究成功构建了锚定序列-GFP乳酸菌筛选系统,利用其筛选出了适合乳酸乳球菌的高效锚定序列。并将HA蛋白通过分泌联合表面展示的方式在乳酸乳球菌进行复合表达,成功获得了对雏鸭具有良好HA免疫原性的口服生物制剂,为后续开发操作简便、安全的鸭禽流感口服疫苗提供可行的实践路径。
中图分类号:
吴佳辉, 沈世彦, 邓锦波, 吴海阳, 任芷欣, 吴杨博, 黄娟, 黄浩滨, 潘伟雄, 赵锃珏, 何容肖, 孙崇军, 张玲华. 诱导型表达H5N1亚型禽流感病毒HA蛋白的乳酸乳球菌的构建及其对鸭的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(2): 774-787.
WU Jiahui, SHEN Shiyan, DENG Jinbo, WU Haiyang, REN Zhixin, WU Yangbo, HUANG Juan, HUANG Haobin, PAN Weixiong, ZHAO Zengjue, HE Rongxiao, SUN Chongjun, ZHANG Linghua. Construction of Recombinant Lactococcus lactis Inducible Expressing HA Protein of H5N1 Subtype Avian Influenza Virus and Analysis of Its Immunogenicity in Ducks[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 774-787.
表 1
本试验使用的菌株和质粒"
名称 Names | 特征 Characteristics | 来源 Reference or source |
质粒Plasmids | ||
pNZ8148 | 乳酸菌表达质粒 | 本实验室保存 |
pUC-pgsA | 锚定序列 | 本实验室保存 |
pUC-BmpA | 锚定序列 | 本实验室保存 |
pUC-GW-cA-M6 | 锚定序列 | 本实验室保存 |
pUC19-GFP | 本实验室保存 | |
pUC57-HA0 | 带有信号肽序列SPUsp45 | 苏州金唯智生物科技有限公司合成 |
pUC57-HA1 | HA乳酸菌偏好性密码子优化 | 苏州金唯智生物科技有限公司合成 |
pJW4.1n | 乳酸菌基因组敲入质粒 | 陆军军医大学王竞老师惠赠[ |
菌株Strains | ||
大肠杆菌DH5α | 本实验室保存 | |
大肠杆菌MC1061 | 本实验室保存 | |
乳酸乳球菌NZB | LacZ基因整合到基因组 | 陆军军医大学王竞老师惠赠[ |
表 2
本研究所用的引物序列"
名称 | 引物序列(5′→3′) |
Name | Primer sequences |
SP F | ATGAAAAAAAAGATTATCTCAGCTATTTT |
SP R | CAATGCAAATTTGATCAGCGTAAACACCTGA |
HA0 F | ATAAGGAGGCACTCAAAATGAAAAAAAAGATTATCTC |
HA0 R | CATATTAAATATTCTCCTCTTAAATGCAAATTCTGCATT |
HA1 F | TCAGGTGTTTACGCTGATCAAATTTGCATTGGCTA |
HA1 R | CATATTAAATATTCTCCTCTAAATACAAATTCTACATTG |
SP-HA-Xho I F | CCGCTCGAGCGGATGAAAAAAAAG |
HA-Xba I R | GCTCTAGAGCTTAAATGCAAATTCTGC |
Pz F | AAGTCGCGTGGCGCGCCAGTCTTATAACTATACTGACAATA |
Ter R | GAAATGATAGGCGCGCCATAAGCAAAAGGCAGCTGAT |
pgsA F | ATGAAAAAAGAACTGAGCTTTCATGAAAAGCTGC |
pgsA R | TGAACCACCACCACCGGAT |
GFP-CM F | ATGAAAAAAAAGATTATCTCAGCTATTTTAA |
GFP-CM R | TTATTTTATTCGTAGATACTGACCAATTAAAATAGTATCGC |
8148 F | CCTGCCCCGTTAGTTGAAGAAGG |
8148 R | GCTTTATCAACTGCTGCTTTTTGGCT |
BmpA-HA1(1)F | AAATAAATTATAAGGAGGCACTCACATGAAAAAACGCGTAATCGCAGTTAG |
BmpA-HA1(1)R | AAATTTGATCTGAACCACCACCACCGGAT |
BmpA-HA1(2)F | TGGTGGTTCAGATCAAATTTGCATTGGCTACCATGC |
BmpA-HA1(2)R | GTTTTCTAATTTTGGTTCAAAGAATTAAATACAAATTCTACATTGTAATGATCCATTTG |
HA1-cA(1)F | ATAAATTATAAGGAGGCACTCACATGAAAAAAAAGATTATCTCAGCTATTTTAATGTCT |
HA1-cA(1)R | CTCCTCCTCCAATACAAATTCTACATTGTAATGATCCATTTGAACACATC |
HA1-cA(2)F | AATTTGTATTGGAGGAGGAGGATCCGGTGGT |
HA1-cA(2)R | GGTTTTCTAATTTTGGTTCAAAGAATTATTTTATTCGTAGATACTGACCAATTAAAATA |
SPHA1-8148 F | TAAATTATAAGGAGGCACTCACATGAAAAAAAAGATTATCTCAGCTATTTTAATGTCTA |
SPHA1-8148 R | GTTTTCTAATTTTGGTTCAAAGAATTAAATACAAATTCTACATTGTAATGATCCATTTG |
SP-GFP F | GTTTACGCTCGTAAAGGCGAAGAGCTGTTCAC |
Nco I-pgsA F | AAATAAATTATAAGGAGGCACTCACATGAAAAAAGAACTGAGCTTTCATGAAAAGCT |
Nco I-BmpA F | AAATAAATTATAAGGAGGCACTCACATGAAAAAACGCGTAATCGCAGTTAG |
图 7
诱导型分泌联合表面展示HA的乳酸乳球菌表达的Western blot检测 1~3.分别为NZB-HA1-pNZ8148-BmpA-HA1、NZB-HA1-pNZ8148-HA1-cA和NZB-pNZ8148-HA1沉淀;4~8. NZB-HA1-pNZ8148-BmpA-HA1、NZB-HA1-pNZ8148-HA1-cA、NZB-pNZ8148-HA、NZB-pNZ8148-BmpA-HA1和NZB-pNZ8148-HA1-cA上清;9. NZB-pNZ8148-HA1沉淀;10. NZB-pNZ8148-BmpA-HA1细胞膜组分;11. NZB-pNZ8148-HA1-cA细胞膜组分"
1 |
WU X X , XIAO L L , LI L J . Research progress on human infection with avian influenza H7N9[J]. Front Med, 2020, 14 (1): 8- 20.
doi: 10.1007/s11684-020-0739-z |
2 |
WIGGINS J , NGUYEN N , WEI W Z , et al. Lactic acid bacterial surface display of scytovirin inhibitors for anti-ebolavirus infection[J]. Front Microbiol, 2023, 14, 1269869.
doi: 10.3389/fmicb.2023.1269869 |
3 |
ZUO C , DING R C , WU X W , et al. Thioester-assisted sortase-A-mediated ligation[J]. Angew Chem Int Ed Engl, 2022, 61 (28): e202201887.
doi: 10.1002/anie.202201887 |
4 |
SONG A A L , IN L L A , LIM S H E , et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16 (1): 55.
doi: 10.1186/s12934-017-0669-x |
5 |
NGUYEN H M , PHAM M L , STELZER E M , et al. Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum[J]. Microb Cell Fact, 2019, 18 (1): 76.
doi: 10.1186/s12934-019-1124-y |
6 |
CAO T , LV J , ZHANG L , et al. Selective enrichment and quantification of N-terminal glycine peptides via sortase A mediated ligation[J]. Anal Chem, 2018, 90 (24): 14303- 14308.
doi: 10.1021/acs.analchem.8b03562 |
7 |
CHEN Z J , LIN J Z , MA C J , et al. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon[J]. Appl Microbiol Biotechnol, 2014, 98 (13): 5977- 5989.
doi: 10.1007/s00253-014-5649-z |
8 |
GARBACZ K . Anticancer activity of lactic acid bacteria[J]. Semin Cancer Biol, 2022, 86, 356- 366.
doi: 10.1016/j.semcancer.2021.12.013 |
9 |
DE FILIPPIS F , PASOLLI E , ERCOLINI D . The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health[J]. FEMS Microbiol Rev, 2020, 44 (4): 454- 489.
doi: 10.1093/femsre/fuaa015 |
10 |
LINARES D M , KOK J , POOLMAN B . Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies[J]. J Bacteriol, 2010, 192 (21): 5806- 5812.
doi: 10.1128/JB.00533-10 |
11 |
冯瑜菲, 胡清泉, 张力国, 等. 表达猪圆环病毒3型Cap蛋白重组乳酸乳球菌的构建及免疫原性分析[J]. 中国预防兽医学报, 2022, 44 (11): 1201- 1207.
doi: 10.3969/j.issn.1008-0589.202203054 |
FENG Y F , HU Q Q , ZHANG L G , et al. Construction and immunogenicity evaluation of recombinant Lactococcus lactis expressing the Cap protein of porcine circovirus virus type 3[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (11): 1201- 1207.
doi: 10.3969/j.issn.1008-0589.202203054 |
|
12 | 亓秀晔, 刘乃芝, 程福亮, 等. 乳酸菌用作口服疫苗表达载体的应用研究进展[J]. 中国酿造, 2019, 38 (6): 18- 23. |
QI X Y , LIU N Z , CHENG F L , et al. Advances in the application of lactic acid bacteria as oral vaccine expression vector[J]. China Brewing, 2019, 38 (6): 18- 23. | |
13 |
VAN ZYL W F , DEANE S M , DICKS L M T . Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12 (1): 1831339.
doi: 10.1080/19490976.2020.1831339 |
14 |
REUBEN R C , ROY P C , SARKAR S L , et al. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties[J]. J Dairy Sci, 2020, 103 (2): 1223- 1237.
doi: 10.3168/jds.2019-17092 |
15 |
YIN S P , ZHU H B , SHEN M Y , et al. Surface display of heterologous β-galactosidase in food-grade recombinant Lactococcus lactis[J]. Curr Microbiol, 2018, 75 (10): 1362- 1371.
doi: 10.1007/s00284-018-1531-z |
16 | 冯梦蝶, 毛普加, 洪愉, 等. 乳酸乳球菌组成型表面展示载体的构建及鉴定[J]. 中国微生态学杂志, 2015, 27 (1): 1- 5. |
FENG M D , MAO P J , HONG Y , et al. Construction and identification of constitutive surface display vector on Lactococcus lactis[J]. Chinese Journal of Microecology, 2015, 27 (1): 1- 5. | |
17 |
LU Y F , YAN H X , DENG J Z , et al. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis[J]. Microb Cell Fact, 2017, 16 (1): 154.
doi: 10.1186/s12934-017-0770-1 |
18 |
QIN J Y , WANG X W , KONG J , et al. Construction of a food-grade cell surface display system for Lactobacillus casei[J]. Microbiol Res, 2014, 169 (9-10): 733- 740.
doi: 10.1016/j.micres.2014.02.001 |
19 |
LIU Z N , LIAO L Y , CHEN Q , et al. Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings[J]. Int J Biol Macromol, 2021, 171, 448- 456.
doi: 10.1016/j.ijbiomac.2020.12.222 |
20 |
BASAK S , KANG H J , LEE S H , et al. Influenza vaccine efficacy induced by orally administered recombinant baculoviruses[J]. PLoS One, 2020, 15 (5): e0233520.
doi: 10.1371/journal.pone.0233520 |
21 | 曾显营, 田国彬, 陈化兰. 中国H5/H7亚型禽流感疫苗研制和应用进展[J]. 中国科学: 生命科学, 2023, 53 (12): 1700- 1712. |
ZENG X Y , TIAN G B , CHEN H L . Progress in development and application of H5/H7 avian influenza vaccines in China[J]. Scientia Sinica Vitae, 2023, 53 (12): 1700- 1712. | |
22 |
TSAI C J , SAUNA Z E , KIMCHI-SARFATY C , et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima[J]. J Mol Biol, 2008, 383 (2): 281- 291.
doi: 10.1016/j.jmb.2008.08.012 |
23 |
STADLER M , FIRE A . Wobble base-pairing slows in vivo translation elongation in metazoans[J]. RNA, 2011, 17 (12): 2063- 2073.
doi: 10.1261/rna.02890211 |
24 |
QUAX T E F , CLAASSENS N J , SÖLL D , et al. Codon bias as a means to fine-tune gene expression[J]. Mol Cell, 2015, 59 (2): 149- 161.
doi: 10.1016/j.molcel.2015.05.035 |
25 | 王立辉. 高致病性禽流感流行特点及防控[J]. 北方牧业, 2023, (19): 36. |
WANG L H . Epidemiological characteristics and prevention and control of highly pathogenic avian influenza[J]. Beifang Muye, 2023, (19): 36. | |
26 |
ALQAZLAN N , ASTILL J , RAJ S , et al. Strategies for enhancing immunity against avian influenza virus in chickens: a review[J]. Avian Pathol, 2022, 51 (3): 211- 235.
doi: 10.1080/03079457.2022.2054309 |
27 |
ZHANG J , AN D , FAN Y H , et al. Effect of TMUV on immune organs of TMUV infected ducklings[J]. Vet Microbiol, 2021, 255, 109033.
doi: 10.1016/j.vetmic.2021.109033 |
28 | 杨姣姣, 郑宁晨, 张婷, 等. 表达量高、血凝活性好的H3N2流感病毒血凝素(HA)蛋白疫苗的筛选研究[J]. 现代生物医学进展, 2023, 23 (8): 1401-1404, 1429. |
YANG J J , ZHENG N C , ZHANG T , et al. Screening of hemagglutinin (HA) protein vaccine with high expression and good hemagglutination activity for H3N2 influenza virus[J]. Progress in Modern Biomedicine, 2023, 23 (8): 1401-1404, 1429. | |
29 | 花悦, 宋奇珊, 王东东, 等. H9N2禽流感病毒HA蛋白mRNA疫苗的构建表达及鉴定[J]. 中国兽医科学, 2024, 54 (5): 609- 614. |
HUA Y , SONG Q S , WANG D D , et al. Construction and expression and identification of H9N2 avian influenza virus HA protein mRNA vaccine[J]. Chinese Journal of Veterinary Science, 2024, 54 (5): 609- 614. | |
30 | 赵洪梅. H1N1型猪流感病毒血凝素HA1重组乳酸菌的制备和免疫保护效果研究[D]. 长春: 吉林农业大学, 2011: 1-61. |
ZHAO H M. Studies on protective efficacy of the recombinant Lactobacillus plantarum expressing HAl gene of H1N1 Swine influenza virus[D]. Changchun: Jilin Agricultural University, 2011: 1-61. (in Chinese) | |
31 | 李雨欣. 表达H9N2禽流感病毒HA2蛋白重组乳酸菌的构建与免疫效果研究[D]. 泰安: 山东农业大学, 2023: 1-68. |
LI Y X. Construction and immunization of recombinant lactic acid bacteria expressing HA2 protein of H9N2 avian influenza virus[D]. Tai'an: Shandong Agricultural University, 2023: 1-68. (in Chinese) | |
32 |
JIANG Y L , YANG G L , WANG Q , et al. Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB[J]. J Biotechnol, 2017, 259, 6- 14.
doi: 10.1016/j.jbiotec.2017.08.011 |
33 |
SIM AČG I AČG S , BERLEC A , STOPINŠEK S , et al. Engineered and wild-type L. lactis promote anti-inflammatory cytokine signalling in inflammatory bowel disease patient's mucosa[J]. World J Microbiol Biotechnol, 2019, 35 (3): 45.
doi: 10.1007/s11274-019-2615-z |
34 |
CRONIN M , MORRISSEY D , RAJENDRAN S , et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors[J]. Mol Ther, 2010, 18 (7): 1397- 1407.
doi: 10.1038/mt.2010.59 |
35 | 周建波, 胡莉萍, 黄河, 等. 重组羊奇异变形杆菌ompA乳酸乳球菌的构建及其在小鼠体内的定植规律检测[J]. 中国兽医学报, 2018, 38 (1): 142- 147. |
ZHOU J B , HU L P , HUANG H , et al. Construction of recombinant Lactococcus lactis-expressing sheep proteus mirabilis ompA and detection of its colonization in mice[J]. Chinese Journal of Veterinary Science, 2018, 38 (1): 142- 147. | |
36 | LEI H , SHENG Z N , DING Q , et al. Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B[J]. Clin Vaccine Immunol, 2011, 18 (7): 1046- 1051. |
37 | ZADRAVEC P , MAVRI AČG A , BOGOVI AČG MATIJAŠIĆ B , et al. Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis[J]. Protein Eng Des Sel, 2014, 27 (1): 21- 27. |
38 | WIECZOREK A S , MARTIN V J . Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis[J]. Microb Cell Fact, 2010, 9, 69. |
39 | FREDRIKSEN L , KLEIVELAND C R , OLSEN HULT L T , et al. Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes[J]. Appl Environ Microbiol, 2012, 78 (16): 5864- 5871. |
[1] | 廖焕程, 石正旺, 罗俊聪, 王婉莹, 冯露, 周静, 张帆, 石鑫泰, 田宏. O型口蹄疫Cathay拓扑型病毒单抗制备及双抗体夹心ELISA方法的初步建立[J]. 畜牧兽医学报, 2024, 55(9): 4012-4020. |
[2] | 赵康宁, 杨忠龙, 陈怡, 朱春成, 郭云飞, 印云聪, 秦涛, 陈素娟, 彭大新. 16株新型H3N3亚型禽流感病毒的遗传变异分析[J]. 畜牧兽医学报, 2024, 55(9): 4029-4040. |
[3] | 段慧慧, 任仕航, 张宏印, 于瑞, 刘忠虎, 杜向党, 商艳红. 猪链球菌SC124菌株中ICE_Prophage携带耐药基因的水平转移[J]. 畜牧兽医学报, 2024, 55(8): 3699-3705. |
[4] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[5] | 毛秋艳, 周淑宁, 刘朔, 彭程, 尹馨, 张雅馨, 周婉婷, 李金平, 侯广宇, 蒋文明, 宋厚辉, 刘华雷. H3亚型禽流感病毒荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(3): 1137-1146. |
[6] | 朱亚新, 关丽君, 张俊峰, 薛云, 赵战勤. 副猪格拉瑟菌的荚膜分型方法及原理研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5412-5422. |
[7] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
[8] | 陈杨, 孟林春, 郭梦娇, 张成成, 薄宗义, 楚电峰, 曹永忠, 吴艳涛, 张小荣. 检测鸡毒支原体抗体的间接ELISA方法和HI试验方法的建立及初步应用[J]. 畜牧兽医学报, 2023, 54(5): 2062-2072. |
[9] | 丁小伟, 何万领, 李晓丽, 丁美洁, 杨龙帮. 裂殖壶菌发酵物对蛋鸡生产性能、蛋品质及肠道菌群结构的影响[J]. 畜牧兽医学报, 2023, 54(3): 1135-1147. |
[10] | 周勇, 李知新, 鲁宏伟, 孙燕, 李甜, 杜凡姝, 蒲娟. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53(9): 3093-3106. |
[11] | 陈子轩, 张楠, 胡群, 全柯吉, 秦涛, 陈素娟, 彭大新, 刘秀梵. 我国H9N2亚型禽流感病毒血凝素蛋白145和153位抗原位点变异分析[J]. 畜牧兽医学报, 2022, 53(4): 1165-1172. |
[12] | 崔明仙, 王星博, 黄彦铭, 卞希一, 冯梦珂, 颜焰, 董伟仁, 周继勇. 3株H3N2亚型禽流感病毒的基因组特征与演化分析[J]. 畜牧兽医学报, 2022, 53(11): 4116-4122. |
[13] | 严雅瑶, 顾敏, 刘秀梵. HA蛋白位点变异影响H7N9亚型流感病毒特性的研究进展[J]. 畜牧兽医学报, 2021, 52(8): 2093-2106. |
[14] | 孙华鹏, 崔新鑫, 潘亮奇, 许丰祥, 李硕, 吴梅花, 朱旭辉, 于亚南, 李明亮, 刘杨, 瞿孝云, 廖明, 孙海亮. 中国H9N2亚型禽流感病毒的流行现状[J]. 畜牧兽医学报, 2021, 52(5): 1218-1229. |
[15] | 李静云, 连朋敬, 白玉, 奚柳青, 张子卉, 牛小飞, 杨俊琦, 乔健. H9N2亚型禽流感病毒感染对小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2021, 52(5): 1359-1368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||