畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1813-1824.doi: 10.11843/j.issn.0366-6964.2025.04.029
吴秀菊(), 夏培(
), 罗懿豪, 罗劲炜, 薛梦迪, 柯炎杭, 李娟, 吕景智*(
)
收稿日期:
2024-07-04
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
吕景智
E-mail:2198145801@qq.com;513136840@qq.com;ljzzl-66@163.com
作者简介:
吴秀菊(1998-), 女, 侗族, 贵州榕江人, 硕士生, 主要从事动物营养与饲料科学研究, E-mail: 2198145801@qq.com吴秀菊和夏培为同等贡献作者
基金资助:
WU Xiuju(), XIA Pei(
), LUO Yihao, LUO Jinwei, XUE Mengdi, KE Yanhang, LI Juan, LÜ Jingzhi*(
)
Received:
2024-07-04
Online:
2025-04-23
Published:
2025-04-28
Contact:
LÜ Jingzhi
E-mail:2198145801@qq.com;513136840@qq.com;ljzzl-66@163.com
摘要:
旨在研究乳果糖(LAC)对肉兔生长性能、养分表观消化率、肉品质、血清生化及抗氧化指标的影响。将192只35日龄雄性伊拉肉兔随机分为4个处理,分别饲喂添加0%(对照组)、0.5%、1%和2% LAC的饲粮,预饲期7 d,正式期28 d。结果显示:1)与对照组相比,2%LAC处理可显著提高肉兔1-28 d的平均日增重(ADG)(P < 0.05),1%、2%LAC组的料重比(F/G)均显著降低(P < 0.05);2)相较于对照组,2%LAC处理显著提高了饲粮中干物质(DM)、粗脂肪(EE)、粗纤维(CF)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和钙(Ca)的表观消化率(P<0.05);3)与对照组相比,2%LAC处理可极显著升高血清葡萄糖(GLU)水平(P < 0.01),显著降低血清丙二醛(MDA)含量(P < 0.05);与2%LAC组相比,1%LAC处理显著提高了血清总蛋白(TP)和球蛋白(GLB)水平(P < 0.05);4)与对照组相比,2%LAC处理显著升高了背最长肌pH(P < 0.05),不同水平LAC处理均可极显著降低背最长肌饱和脂肪酸(SFA)含量(P < 0.01),显著升高背最长肌不饱和脂肪酸(UFA)和单不饱和脂肪酸(MUFA)含量(P < 0.05), 2% LAC处理组显著增加背最长肌多不饱和脂肪酸(PUFA)的含量(P < 0.05),1%和2% LAC处理均显著提高了背最长肌PUFA/SFA比值(P/S)(P < 0.05),2%LAC处理可显著升高肉兔腿肌PUFA含量和P/S(P < 0.05)。综上,饲粮中添加1%、2%LAC均可改善肉兔生长性能,提高抗氧化能力和肉品质。
中图分类号:
吴秀菊, 夏培, 罗懿豪, 罗劲炜, 薛梦迪, 柯炎杭, 李娟, 吕景智. 饲粮中添加乳果糖对肉兔生长性能、血清指标和肉品质的影响[J]. 畜牧兽医学报, 2025, 56(4): 1813-1824.
WU Xiuju, XIA Pei, LUO Yihao, LUO Jinwei, XUE Mengdi, KE Yanhang, LI Juan, LÜ Jingzhi. Effect of Dietary Lactulose Supplementation on Growth Performance, Serum Parameters and Meat Quality in Meat Rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1813-1824.
表 1
基础日粮组成及营养水平(风干基础)"
项目 Item | 组别 Group | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | |
玉米 Corn | 24.00 | 24.00 | 23.45 | 23.95 |
豆粕 Soybean meal | 12.00 | 12.20 | 12.35 | 12.35 |
葵花粕 Sunflowerseed meal | 6.00 | 6.00 | 6.00 | 6.00 |
麦麸 Wheat bran | 19.30 | 18.60 | 18.50 | 17.00 |
苜蓿 Alfalfa | 20.30 | 20.30 | 20.30 | 20.30 |
统糠 Grain chaff | 7.50 | 7.50 | 7.50 | 7.50 |
米糠 Rice chaff | 9.00 | 9.00 | 9.00 | 9.00 |
乳果糖 Lactose | 0.00 | 0.50 | 1.00 | 2.00 |
磷酸氢钙 CaHPO4 | 1.20 | 1.20 | 1.20 | 1.20 |
食盐 NaCl | 0.50 | 0.50 | 0.50 | 0.50 |
预混料 Premix1 | 0.20 | 0.20 | 0.20 | 0.20 |
合计 Total | 100.00 | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels | ||||
消化能/(MJ·kg-1) DE | 10.24 | 10.23 | 10.21 | 10.12 |
粗蛋白 CP | 15.92 | 16.10 | 15.54 | 15.70 |
粗纤维 CF | 13.10 | 13.03 | 13.00 | 13.20 |
粗脂肪 EE | 3.52 | 3.61 | 3.67 | 4.02 |
钙 Ca | 1.14 | 1.19 | 1.14 | 1.20 |
磷 P | 0.66 | 0.65 | 0.65 | 0.62 |
赖氨酸 Lys | 0.751 | 0.752 | 0.754 | 0.747 |
蛋氨酸 Met | 0.088 | 0.090 | 0.090 | 0.096 |
表 2
LAC对肉兔生长性能的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
初始体重/kg IBW | 0.96±0.01 | 0.96±0.01 | 0.93±0.01 | 0.97±0.01 | 0.176 |
14 d平均体重/kg ABW | 1.63±0.02 | 1.78±0.04 | 1.69±0.05 | 1.70±0.02 | 0.126 |
28 d平均体重/kg ABW | 2.32±0.03 | 2.30±0.03 | 2.28±0.03 | 2.34±0.03 | 0.503 |
第1~14天 Days 1 to 14 | |||||
平均日采食量(g·d-1) ADFI | 94.55±2.12 | 95.13±3.06 | 88.66±1.55 | 95.65±3.06 | 0.209 |
平均日增重(g·d-1) ADG | 48.12±2.08 | 44.76±1.59 | 46.12±1.77 | 50.00±2.10 | 0.247 |
料重比 F/G | 2.10±0.07 | 1.94±0.05 | 1.90±0.07 | 1.92±0.06 | 0.129 |
第15~28天 Days 15 to 28 | |||||
平均日采食量(g·d-1) ADFI | 142.66±2.08ABab | 129.92±4.83Bb | 138.77±1.55ABab | 147.70±3.43Aa | 0.007 |
平均日增重(g·d-1) ADG | 48.16±1.41 | 48.15±1.07 | 48.94±1.08 | 48.21±0.65 | 0.944 |
料重比 F/G | 2.97±0.07 | 2.71±0.13 | 2.84±0.07 | 3.07±0.08 | 0.058 |
第1~28天 Days 1 to 28 | |||||
平均日采食量(g·d-1) ADFI | 121.61±1.81ABab | 115.64±2.22Bb | 118.09±2.13ABb | 126.61±1.86Aa | 0.006 |
平均日增重(g·d-1) ADG | 47.78±1.00b | 48.07±0.50b | 49.13±0.33ab | 51.02±0.63a | 0.010 |
料重比 F/G | 2.55±0.03a | 2.47±0.02ab | 2.40±0.04b | 2.41±0.03b | 0.012 |
表 3
LAC对肉兔的饲粮养分表现消化率的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
干物质 DM | 61.59±0.52b | 61.81±0.55ab | 61.27±0.38b | 63.45±0.32a | 0.014 |
粗灰分 Ash | 33.93±1.22 | 35.74±1.11 | 35.08±2.10 | 35.92±1.35 | 0.781 |
粗蛋白 CP | 71.97±0.67 | 72.26±0.71 | 72.73±0.92 | 74.46±0.43 | 0.089 |
粗脂肪 EE | 83.66±0.96b | 83.41±0.79b | 84.12±0.29ab | 86.39±0.49a | 0.023 |
粗纤维 CF | 4.00±0.73Bc | 7.16±0.85Bb | 4.82±0.42Bab | 13.75±0.44Aa | <0.001 |
中性洗涤纤维 NDF | 41.98±1.15Bb | 45.07±0.86Bb | 41.99±0.57Bb | 52.49±0.56Aa | <0.001 |
酸性洗涤纤维 ADF | 17.38±1.53ABb | 19.51±0.95ABab | 17.10±1.04Bb | 22.61±0.56Aa | 0.005 |
钙 Ca | 39.88±1.05Bb | 41.68±1.14Bb | 38.84±1.64Bb | 51.70±1.34Aa | <0.001 |
磷 P | 41.83±1.60 | 43.07±1.36 | 42.09±1.80 | 47.40±0.75 | 0.043 |
表 4
LAC对肉兔血清生化指标的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
谷草转氨酶/(U·L-1) AST | 45.83±6.90 | 41.17±6.11 | 48.50±6.76 | 57.83±4.92 | 0.311 |
碱性磷酸酶/(U·L-1) ALP | 162.50±10.09 | 158.50±15.79 | 185.33±13.74 | 163.00±10.09 | 0.448 |
总蛋白/(g·L-1) TP | 54.87±1.15ab | 53.30±0.89ab | 57.12±2.25a | 50.12±0.96b | 0.017 |
白蛋白/(g·L-1) ALB | 33.37±0.52 | 32.88±0.74 | 34.33±1.31 | 31.42±0.48 | 0.128 |
球蛋白/(g·L-1) GLB | 21.50±1.27ab | 20.42±0.33ab | 22.78±1.14a | 18.70±0.76b | 0.041 |
ALB/GLB | 1.57±0.09 | 1.63±0.05 | 1.52±0.06 | 1.68±0.07 | 0.356 |
葡萄糖/(mmol·L-1) GLU | 3.76±0.18bB | 4.49±0.55bAB | 4.41±0.31bB | 6.43±0.41aA | <0.001 |
胆固醇/(mmol·L-1) TC | 2.07±0.14 | 2.24±0.18 | 2.48±0.18 | 2.09±0.19 | 0.333 |
表 5
LAC对肉兔血清抗氧化指标的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
血清T-AOC /(U·mL-1) | 4.36±0.27 | 4.54±0.66 | 4.50±0.38 | 4.86±0.77 | 0.933 |
血清T-SOD /(U·mL-1) | 151.83±1.82 | 154.60±7.00 | 152.39±7.18 | 149.84±8.69 | 0.967 |
血清MDA /(mmol·mL-1) | 4.48±0.21a | 3.86±0.27ab | 3.71±0.27ab | 3.30±0.27b | 0.027 |
表 6
不同水平LAC处理对肉兔肌肉指标和常规养分的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
背最长肌 Longissimus dorsi | |||||
熟肉率/% Cooking rate | 65.29±0.86 | 66.22±0.49 | 68.35±1.18 | 67.49±0.66 | 0.067 |
失水率/% Water loss rate | 6.48±0.65 | 7.46±0.82 | 7.24±0.76 | 7.11±0.53 | 0.781 |
pH | 5.65±0.02b | 5.66±0.02ab | 5.70±0.01ab | 5.73±0.02a | 0.023 |
干物质/% DM | 24.73±0.42 | 25.21±0.18 | 25.13±0.22 | 25.41±0.31 | 0.444 |
粗灰分/% Ash | 1.27±0.02 | 1.29±0.02 | 1.31±0.02 | 1.33±0.01 | 0.057 |
粗蛋白/% CP | 21.50±0.11 | 21.11±0.73 | 21.16±0.09 | 21.17±0.23 | 0.194 |
粗脂肪/% EE | 1.18±0.01 | 1.18±0.01 | 1.18±0.01 | 1.18±0.01 | 0.984 |
腿肌/% Leg muscle | |||||
熟肉率/% Cooking rate | 71.50±22.52 | 71.02±1.31 | 69.96±0.94 | 71.49±1.25 | 0.885 |
失水率/% Water loss rate | 4.15±0.55ab | 4.78±0.50a | 2.69±0.23b | 3.38±0.63ab | 0.029 |
pH | 5.96±0.03 | 6.02±0.04 | 6.02±0.03 | 6.02±0.01 | 0.454 |
干物质/% DM | 25.57±0.18 | 25.36±0.19 | 25.82±0.16 | 25.38±0.20 | 0.268 |
粗灰分/% Ash | 1.29±0.02ABab | 1.26±0.02Bb | 1.36±0.01Aa | 1.30±0.01ABab | 0.001 |
粗蛋白/% CP | 20.95±0.11 | 20.90±0.06 | 20.78±0.05 | 20.78±0.08 | 0.384 |
粗脂肪/% EE | 1.34±0.01 | 1.34±0.01 | 1.36±0.01 | 1.36±0.01 | 0.365 |
表 7
不同水平LAC处理对肉兔背最长肌脂肪酸含量的影响"
项目 Item | 组别 Group | P值 P-value | |||
对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
C6:0/% | 9.01±0.54 | 11.78±1.32 | 9.76±0.63 | 9.89±0.87 | 0.176 |
C14:0/% | 1.28±0.30b | 1.33±0.13ab | 1.91±0.18ab | 2.04±0.17a | 0.018 |
C15:0/% | 2.99±0.41Aa | 2.20±0.20ABab | 1.84±0.23ABb | 1.22±0.08Bb | <0.001 |
C16:0/% | 3.69±0.25Bb | 4.34±0.23Bb | 5.82±0.36Aa | 5.57±0.20Aa | <0.001 |
C17:0/% | 1.83±0.38 | 2.71±0.13 | 2.37±0.50 | 1.77±0.19 | 0.159 |
C18:0/% | 3.74±0.40b | 4.80±0.14ab | 5.09±0.44a | 4.53±0.17ab | 0.032 |
C20:0/% | 17.86±0.89ABa | 19.67±0.79Aa | 14.82±1.93ABab | 12.18±1.26Bb | 0.001 |
C14:1/% | 1.27±0.32 | 1.23±0.15 | 1.82±0.20 | 1.90±0.19 | 0.079 |
C16:1/% | 1.04±0.09b | 1.05±0.09b | 1.47±0.15a | 1.30±0.06ab | 0.014 |
C18:1n9t/% | 5.30±0.47Bb | 4.82±0.40Bb | 7.37±0.53Aa | 7.53±0.28Aa | <0.001 |
C18:1n9c/% | 0.60±0.22 | 1.11±0.19 | 1.07±0.20 | 0.38±0.17 | 0.116 |
C18:2n6t/% | 5.01±0.48Bb | 5.63±0.47Bb | 8.42±0.62Aa | 9.48±0.49Aa | <0.001 |
C18:2n6c/% | 1.08±0.23 | 1.38±0.74 | 1.11±0.24 | 0.81±0.10 | 0.173 |
C18:3n3/% | 0.58±0.27a | 0.40±0.02ab | 0.34±0.02ab | 0.29±0.03b | 0.026 |
C18:3n6/% | 0.25±0.10 | 0.12±0.03 | 0.24±0.04 | 0.24±0.01 | 0.386 |
C20:1n9/% | 2.48±0.19Aa | 2.08±0.10ABab | 1.67±0.19BCbc | 1.27±0.12Cc | <0.001 |
C20:3n3/% | 1.67±0.21Aa | 0.37±0.05Bb | 0.40±0.06Bb | 0.26±0.04Bb | <0.001 |
C20:5n3/% | 0.73±0.17 | 0.56±0.05 | 0.68±0.08 | 0.60±0.04 | 0.632 |
C22:2n6/% | 7.67±1.55 | 9.69±0.29 | 8.98±0.77 | 9.15±0.52 | 0.461 |
C22:6n3/% | 1.53±0.17Aa | 1.27±0.09ABab | 1.04±0.09ABb | 1.00±0.07Bb | 0.005 |
饱和脂肪酸/% SFA | 63.83±2.77Aa | 53.95±1.27Bb | 49.85±1.52Bb | 49.63±0.63Bb | <0.001 |
不饱和脂肪酸/% UFA | 36.17±2.77Bb | 46.05±1.27Aa | 50.15±1.52Aa | 50.37±0.63Aa | <0.001 |
单不饱和脂肪酸/% MUFA | 18.06±1.72Bb | 26.44±1.01Aa | 28.68±1.55Aa | 28.30±0.71Aa | <0.001 |
多不饱和脂肪酸/% PUFA | 18.11±1.71b | 19.61±0.59ab | 21.47±0.54ab | 22.08±0.51a | 0.027 |
多不饱和脂肪酸/饱和脂肪酸P/S | 0.30±0.05Bb | 0.37±0.02ABab | 0.43±0.02Aa | 0.45±0.01Aa | 0.001 |
表 8
不同水平LAC处理对肉兔腿肌脂肪酸含量的影响"
项目 Item | 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | P值 P-value |
C6:0/% | 9.29±1.23a | 5.42±0.42ab | 4.60±0.37b | 7.12±1.46ab | 0.017 |
C14:0/% | 2.19±0.25 | 1.70±0.12 | 1.60±0.21 | 2.09±0.18 | 0.155 |
C15:0/% | 1.63±0.16 | 1.95±0.21 | 2.32±0.20 | 1.89±0.12 | 0.069 |
C16:0/% | 5.83±0.89Bb | 6.85±0.18ABb | 7.14±0.20ABab | 8.20±0.66Aa | <0.001 |
C17:0/% | 2.26±0.12Bb | 3.27±0.48ABab | 4.23±0.24Aa | 2.57±0.26Bb | <0.001 |
C18:0/% | 5.29±0.05Bb | 6.91±0.47Aa | 7.78±0.13Aa | 6.88±0.39Aa | <0.001 |
C20:0/% | 10.88±0.98a | 9.81±0.26ab | 9.61±0.65ab | 6.59±1.39b | 0.024 |
C14:1/% | 1.80±0.28 | 1.23±0.10 | 1.13±0.23 | 1.44±0.18 | 0.159 |
C16:1/% | 1.50±0.10ABab | 1.28±0.19Bb | 2.03±0.13Aa | 1.44±0.08ABb | 0.007 |
C18:1n9t/% | 6.70±0.18Bb | 6.87±0.32Bb | 7.07±0.42Bb | 9.99±0.84Aa | <0.001 |
C18:1n9c/% | 0.62±0.14 | 0.53±0.16 | 0.76±0.19 | 0.93±0.10 | 0.374 |
C18:2n6t/% | 10.40±0.38Bb | 12.10±0.39ABab | 12.60±0.61ABab | 15.06±1.58Aa | 0.005 |
C18:3n3/% | 0.78±0.36 | 0.96±0.53 | 1.15±0.32 | 1.41±0.23 | 0.663 |
C18:3n6/% | 0.37±0.05 | 0.51±0.13 | 0.71±0.18 | 0.56±0.06 | 0.175 |
C20:1n9/% | 1.39±0.07Bbc | 1.62±0.13ABab | 1.97±0.12Aa | 1.10±0.12Bc | <0.001 |
C20:3n3/% | 0.40±0.06ABb | 0.53±0.04ABb | 0.62±0.04Aa | 0.34±0.06Bb | 0.005 |
C20:5n3/% | 0.70±0.04 | 0.92±0.06 | 0.91±0.04 | 0.92±0.08 | 0.02 |
C22:2n6/% | 10.61±0.97 | 10.59±0.36 | 8.90±0.44 | 10.04±0.25 | 0.27 |
C22:6n3/% | 1.45±0.31 | 1.89±0.32 | 1.77±0.22 | 1.48±0.29 | 0.649 |
饱和脂肪酸/% SFA | 51.93±1.55 | 48.94±0.56 | 48.38±0.60 | 46.85±1.76 | 0.059 |
不饱和脂肪酸/% UFA | 48.07±1.55 | 51.06±0.56 | 51.62±0.60 | 53.15±1.76 | 0.059 |
单不饱和脂肪酸/% MUFA | 22.64±0.78 | 22.47±0.36 | 23.67±0.51 | 22.38±0.65 | 0.506 |
多不饱和脂肪酸/% PUFA | 25.44±0.96Bb | 28.59±0.49ABab | 27.95±0.79ABab | 30.77±1.29Aa | 0.004 |
多不饱和脂肪酸/饱和脂肪酸P/S | 0.50±0.03Bb | 0.59±0.02ABab | 0.58±0.02ABab | 0.67±0.05Aa | 0.01 |
1 | 王慧, 赵程澄, 陈苑, 等. 不同时期伊高乐肉兔与美系獭兔肉质性状的比较与分析[J]. 中国畜牧杂志, 2024, 60 (7): 113- 118. |
WANG H , ZHAO C C , CHEN Y , et al. Comparison and analysis of meat quality traits of Igaole meat rabbits and American otter rabbits in different periods[J]. Chinese Journal of Animal Science, 2024, 60 (7): 113- 118. | |
2 |
LI S , ZENG W , LI R , et al. Rabbit meat production and processing in China[J]. Meat Sci, 2018, 145, 320- 328.
doi: 10.1016/j.meatsci.2018.06.037 |
3 |
RUSZKOWSKI J , WITKOWSKI J M . Lactulose: Patient-and dose-dependent prebiotic properties in humans[J]. Anaerobe, 2019, 59, 100- 106.
doi: 10.1016/j.anaerobe.2019.06.002 |
4 |
KARAKAN T , TUOHY K M , JANSSEN-VAN SOLINGEN G . Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption[J]. Front Nutr, 2021, 8, 672925.
doi: 10.3389/fnut.2021.672925 |
5 |
PAN W Y , CAI S N , LATOUR J M , et al. External use of Mirabilite combined with lactulose improves postoperative gastrointestinal mobility among older patients undergoing abdominal surgery[J]. J Adv Nurs, 2021, 77 (2): 755- 762.
doi: 10.1111/jan.14640 |
6 |
SAHNEY A , WADHAWAN M . Encephalopathy in cirrhosis: Prevention and panagement[J]. J Clin Exp Hepatol, 2022, 12 (3): 927- 936.
doi: 10.1016/j.jceh.2021.12.007 |
7 |
ZHENG W , ZHAO Z , YANG Y , et al. The synbiotic mixture of lactulose and Bacillus coagulans protects intestinal barrier dysfunction and apoptosis in weaned piglets challenged with lipopolysaccharide[J]. J Anim Sci Biotechnol, 2023, 14 (1): 80.
doi: 10.1186/s40104-023-00882-9 |
8 |
HIRAISHI K , ZHAO F , KURAHARA L H , et al. Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis[J]. Nutrients, 2022, 14 (3): 649.
doi: 10.3390/nu14030649 |
9 | VOEVODINA Y A, NOVIKOVA T V, SHEVCHUK V B, et al. Changes in calf productivity and resistance as a result of using the lactulose-based feed additive[C]//BIO Web of Conferences. EDP Sciences, 2020, 17: 00170. |
10 |
MADRESEH S , GHAISARI H R , HOSSEINZADEH S . Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues[J]. Probiotics Antimicrob Proteins, 2019, 11, 1257- 1263.
doi: 10.1007/s12602-018-9487-7 |
11 | 蒋守群. 饲粮添加不同水平乳果糖对肉鸡生长性能、养分消化率、肉品质、相对器官重和排泄物菌群结构的影响[J]. 广东饲料, 2016, 25 (7): 51. |
JIANG S Q . Effects of different levels of lactulose on growth performance, nutrient digestibility, meat quality, relative organ weight and excrement microbiota structure of broilers[J]. Guangdong Feed, 2016, 25 (7): 51. | |
12 |
HOSSAIN M M , PARK J W , KIM I H . δ-Aminolevulinic acid, and lactulose supplements in weaned piglets diet: Effects on performance, fecal microbiota, and in-vitro noxious gas emissions[J]. Livest Sci, 2016, 183, 84- 91.
doi: 10.1016/j.livsci.2015.11.021 |
13 |
GUEVARRA R B , KIM E S , CHO J H , et al. Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing Escherichia coli[J]. Front Vet Sci, 2023, 9, 1101869.
doi: 10.3389/fvets.2022.1101869 |
14 |
ELKOMY H S , KOSHICH I I , MAHMOUD S F , et al. Use of lactulose as a prebiotic in laying hens: its effect on growth, egg production, egg quality, blood biochemistry, digestive enzymes, gene expression and intestinal morphology[J]. BMC Vet Res, 2023, 19 (1): 207.
doi: 10.1186/s12917-023-03741-x |
15 |
ZHANG Z , CHEN X , ZHAO J T , et al. Effects of a lactulose-rich diet on fecal microbiome and metabolome in pregnant mice[J]. J Agric Food Chem, 2019, 67 (27): 7674- 7683.
doi: 10.1021/acs.jafc.9b01479 |
16 |
KAMPHUES J , TABELING R , STUKE O , et al. Investigations on potential dietetic effects of lactulose in pigs[J]. Livest Sci, 2007, 109 (1-3): 93- 95.
doi: 10.1016/j.livsci.2007.01.089 |
17 |
赵祖艳, 杨运南, 刘日亮, 等. 乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能、养分表观消化率和血液指标的影响[J]. 动物营养学报, 2021, 33 (7): 3735- 3744.
doi: 10.3969/j.issn.1006-267x.2021.07.016 |
ZHAO Z Y , YANG Y N , LIU R L , et al. Effects of synbiotic containing lactulose and Bacillus coagulans synbiotics on growth performance, nutrient apparent digestibilities and blood indexes in weaned piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33 (7): 3735- 3744.
doi: 10.3969/j.issn.1006-267x.2021.07.016 |
|
18 |
ZHAO P Y , LI H L , MOHAMMADI M , et al. Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers[J]. Poult Sci, 2016, 95 (1): 84- 89.
doi: 10.3382/ps/pev324 |
19 |
BEYNEN A C , KAPPERT H J , YU S . Dietary lactulose decreases apparent nitrogen absorption and increases apparent calcium and magnesium absorption in healthy dogs[J]. J Anim Physiol Anim Nutr (Berl), 2001, 85 (3-4): 67- 72.
doi: 10.1046/j.1439-0396.2001.00301.x |
20 |
ADEBOLA O O , CORCORAN O , MORGAN W A . Prebiotics may alter bile salt hydrolase activity: Possible implications for cholesterol metabolism[J]. PharmaNutrition, 2020, 12, 100182.
doi: 10.1016/j.phanu.2020.100182 |
21 |
DA SILVA B P , MARTINO H S D , TAKO E . Plant origin prebiotics affect duodenal brush border membrane functionality and morphology, in vivo(Gallus Gallus)[J]. Food Funct, 2021, 12 (14): 6157- 6166.
doi: 10.1039/D1FO01159F |
22 |
CHOE H , KOBAYASHI N , ABE K , et al. Evaluation of serum albumin and globulin in combination with c-reactive protein improves serum diagnostic accuracy for low-grade periprosthetic joint infection[J]. J Arthroplasty, 2023, 38 (3): 555- 561.
doi: 10.1016/j.arth.2022.09.011 |
23 | KURMASHEVA S S, МOCOЛOB А А, ГОРЛОВ И Ф, et al. Influence of new lactulose-containing fodder additives on basic morpho-biochical indicators of blood and resistance of broiler chicken[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 848(1): 012066. |
24 |
HASHEM M A , HASSAN A E A , ABOU-ELNAGA H M M , et al. Modulatory effect of dietary probiotic and prebiotic supplementation on growth, immuno-biochemical alterations, DNA damage, and pathological changes in E. coli-infected broiler chicks[J]. Front Vet Sci, 2022, 9, 964738.
doi: 10.3389/fvets.2022.964738 |
25 | SONWANE S , INGOLE R , HEDAU M , et al. Ameliorative effect of Andrographis paniculata on hematobiochemical parameters in Escherichia coli induced broilers[J]. J Pharmacogn Phytochem, 2017, 6 (6): 1284- 1288. |
26 |
LIN E E , SCOTT-SOLOMON E , KURUVILLA R . Peripheral innervation in the regulation of glucose homeostasis[J]. Trends Neurosci, 2021, 44 (3): 189- 202.
doi: 10.1016/j.tins.2020.10.015 |
27 |
CUI S , GU J , LIU X , et al. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing[J]. J Sci Food Agric, 2021, 101 (13): 5721- 5729.
doi: 10.1002/jsfa.11181 |
28 |
LIM S H , CHOI C I . Potentials of raspberry ketone as a natural antioxidant[J]. Antioxidants, 2021, 10 (3): 482.
doi: 10.3390/antiox10030482 |
29 |
GAO H , QIN Y , ZENG J , et al. Dietary intervention with sialylated lactulose affects the immunomodulatory activities of mice[J]. J Dairy Sci, 2021, 104 (9): 9494- 9504.
doi: 10.3168/jds.2021-20327 |
30 | 计徐. 乳果糖和富氢水对采食镰刀菌污染玉米断奶仔猪肠道损伤保护作用的研究[D]. 南京: 南京农业大学, 2022. |
JI X. The protective effects of cactulose and hydrogen-rich water on the intestinal injury in weaned piglets fed Fusarium contaminated maize[D]. Nanjing: Nanjing Agricultural University, 2022. | |
31 |
AL SHAIMA G , ABD ELRAZIK N A . Cinnamaldehyde/lactulose combination therapy alleviates thioacetamide-induced hepatic encephalopathy via targeting P2X7R-mediated NLRP3 inflammasome signaling[J]. Life Sci, 2024, 344, 122559.
doi: 10.1016/j.lfs.2024.122559 |
32 |
VARVARA R A , VODNAR D C . Probiotic-driven advancement: exploring the intricacies of mineral absorption in the human body[J]. Food Chem X, 2024, 21, 101067.
doi: 10.1016/j.fochx.2023.101067 |
33 | MOHAMMADI GHEISAR M , NYACHOTI C M , HANCOCK J D , et al. Effects of lactulose on growth, carcass characteristics, faecal microbiota, and blood constituents in broilers[J]. Vet Med (Praha), 2016, 61 (2): 90- 96. |
34 |
TAVANIELLO S , MAIORANO G , STADNICKA K , et al. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route[J]. Poult Sci, 2018, 97 (8): 2979- 2987.
doi: 10.3382/ps/pey149 |
35 |
GRELA E R , ŚWITKIEWICZ M , FLOREK M , et al. Effect of Inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs[J]. Animals, 2021, 11 (8): 2438.
doi: 10.3390/ani11082438 |
36 |
DONG S S , LI L Y , HAO F Y , et al. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts[J]. Poult Sci, 2024, 103 (2): 103287.
doi: 10.1016/j.psj.2023.103287 |
37 |
DA SILVA C I , SCHNEIDER C R , HYGINO B , et al. Performance, carcass characteristics, and meat quality of goat kids supplemented with inulin[J]. Livest Sci, 2022, 265, 105094.
doi: 10.1016/j.livsci.2022.105094 |
38 | LIANG Y P, JIAO D, DU X, et al. Effect of dietary Agriophyllum squarrosum on average daily gain, meat quality and muscle fatty acids in growing Tan lambs. [J]. Meat Sci, 2023, 201: 109195. |
39 |
WUNI R , NATHANIA E A , AYYAPPA A K , et al. Impact of lipid genetic risk score and saturated fatty acid intake on central oobesity in an Asian Indian population[J]. Nutrients, 2022, 14 (13): 2713.
doi: 10.3390/nu14132713 |
40 |
SHRAMKO V S , POLONSKAYA Y V , KASHTANOVA E V , et al. The short overview on the relevance of fatty acids for human cardiovascular disorders[J]. Biomolecules, 2020, 10 (8): 1127.
doi: 10.3390/biom10081127 |
41 | LEON-APARICIO D , SÁNCHEZ-SOLANO A , ARREOLA J , et al. Oleic acid blocks the calcium-activated chloride channel TMEM16A/ANO1[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (5): 159134. |
42 |
LEE D K , CHOI K H , OH J N , et al. Linoleic acid reduces apoptosis via NF-κB during the in vitro development of induced parthenogenic porcine embryos[J]. Theriogenology, 2022, 187, 173- 181.
doi: 10.1016/j.theriogenology.2022.05.003 |
43 |
AL-BAADANI H H , ALHOTAN R A , AZZAM M M , et al. Effects of Gum Arabic (Acacia senegal) powder on characteristics of carcass and breast meat quality parameters in male broiler chickens[J]. Foods, 2023, 12, 2526.
doi: 10.3390/foods12132526 |
44 | ODENWALD M A, LIN H Y, LEHMANN C, et al. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease[EB/OL]. Nat Microbiol, 2023, 8: 2033-2049(2023-10-16)[2024-07-04] https://doi.org/10.1038/s41564-023-01493-w. |
45 |
YANG C W , QIU M H , ZHANG Z R , et al. Galacto-oligosaccharides and xylo-oligosaccharides affect meat flavor by altering the cecal microbiome, metabolome, and transcriptome of chickens[J]. Poult Sci, 2022, 101 (11): 102122.
doi: 10.1016/j.psj.2022.102122 |
[1] | 朱云, 王钰明, 孙晓晓, 陈辉, 赵峰, 解竞静, 陈一凡, 萨仁娜. 低蛋白多元化饲粮添加玉米蛋白粉对白羽肉鸡生长性能和消化特性的影响[J]. 畜牧兽医学报, 2025, 56(4): 1802-1812. |
[2] | 张喜闻, 尹月, 李响, 王敏, 王永芳, 靳舒宁, 冯鑫辉, 赵玉蓉. 熊果酸对肉鸡胸肌肉品质和木质化鸡胸肉的影响[J]. 畜牧兽医学报, 2025, 56(2): 711-721. |
[3] | 张雨, 王琪茹, 师鑫潮, 郭子明, 何欣, 张铁, 赵兴华. 厚朴酚固体分散体对犊牛生长性能、血清抗氧化能力和肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(2): 943-952. |
[4] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
[5] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[6] | 陈雨, 修子清, MGENIMusa, 施屹, 张俊秋, 蒋小雨, 吕景智, 孙雅望. 蒲公英与木通提取物对断奶仔兔生长性能、肠道健康和药物转运体基因相对表达量的影响[J]. 畜牧兽医学报, 2024, 55(8): 3725-3739. |
[7] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
[8] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[9] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[10] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[11] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[12] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[13] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[14] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[15] | 吴江, 万发春, 刘磊, 沈维军, 兰欣怡, 王祚. 枯草芽孢杆菌制剂对肉牛生产性能、瘤胃发酵、血液生化及免疫指标的影响[J]. 畜牧兽医学报, 2024, 55(12): 5575-5589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||