畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2304-2312.doi: 10.11843/j.issn.0366-6964.2024.06.003
收稿日期:
2023-11-21
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
庞卫军
E-mail:fengm9095@nwafu.edu.cn;pwj1226@nwafu.edu.cn
作者简介:
冯铭(2001-),男,河南安阳人,硕士生,主要从事动物肌肉发育研究,E-mail:fengm9095@nwafu.edu.cn
基金资助:
Ming FENG(), Xudong YI, Weijun PANG*(
)
Received:
2023-11-21
Online:
2024-06-23
Published:
2024-06-28
Contact:
Weijun PANG
E-mail:fengm9095@nwafu.edu.cn;pwj1226@nwafu.edu.cn
摘要:
改善肉质是猪育种工作的重要目标之一。肉质性状受遗传、饲料营养和管理等多种因素的影响,新近研究提示肠道微生物也可能是其中一个关键因素。肠道微生物是一个复杂的系统,随着猪出生后与外界环境的接触,逐渐形成并完善,且在猪生长发育过程中具有重要作用。猪肠道微生物方向之前的研究主要集中在对宿主营养物质的消化吸收以及免疫系统的影响方面;近年来,出现了通过肠道微生物改善猪肉品质这一新领域的探究,主要聚焦肌纤维类型转换、肌内脂肪沉积含量和骨骼肌代谢这三方面。因此,本文在简要介绍肌肉发育和肌内脂肪沉积以及肠道微生物组成与作用的基础上,对肠道微生物调控肌纤维类型转换、肌内脂肪沉积和骨骼肌代谢改善肉质的研究进行了综述,旨在为进一步通过肠道微生物调控猪肉质的探索提供科学依据。
中图分类号:
冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312.
Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312.
表 1
肠道微生物影响猪肉质"
微生物 Microorganism | 作用 Function | 参考文献 Reference |
枯草芽孢杆菌Bacillus subtilis | 改善猪肉色,减少滴水损失 | [ |
乳酸杆菌Lactobacillus | 降低猪肉剪切力和硬度 | [ |
酵母菌、乳酸菌、枯草芽孢杆菌 Yeasts, lactic acid-producing bacteria, Bacillus subtilis | 降低猪肉的滴水损失和蒸煮损失,但对pH和剪切力没有影响 | [ |
酿酒酵母菌、干酪乳杆菌、植物乳杆菌 Saccharomyces cerevisiae, Lactobacillus casei, Lactobacillus plantarum | 提高猪肉滴水损失和剪切力 | [ |
植物乳杆菌、产朊假丝酵母、枯草芽孢杆菌 Lactobacillus plantarum, Candida utilis, Bacillus subtilis | 降低猪肉硬度 | [ |
酿酒酵母菌、罗伊氏乳杆菌、枯草芽孢杆菌 Saccharomyces cerevisiae, Lactobacillus reuteri, Bacillus subtilis | 降低猪肉剪切力和滴水损失,增加风味 | [ |
表 2
肠道微生物调控肌纤维类型和肌内脂肪沉积的作用及机制"
方法 Method | 作用 Function | 机制 Mechanism | 参考文献 Reference |
将荣昌猪的肠道微生物移植到无菌小鼠中 Transplantation of gut microorganisms from Rongchang pigs into germ-free mice | 慢肌纤维的比例增多而快肌纤维的比例减少 | 移植的肠道微生物使小鼠肌球蛋白重链7 (MyH7)基因表达水平升高,肌球蛋白重链4 (MyH4)基因表达水平降低 | [ |
将对照仔猪的肠道微生物移植到GF仔猪中 Transplantation of gut microorganisms from control piglets into GF piglets | GF仔猪肌肉中MyHC Ⅰ和ⅡA基因上调,MyHC ⅡB和ⅡX基因略有下降 | SCFAs含量不同导致PGC-1α表达量不同 | [ |
在日粮中补充植物乳杆菌 Supplementation of diets with Lactobacillus plantarum TWK10 | 运动能力增强且腓肠肌中I型肌纤维的比例显著增加 | 外来细菌的定植通过各类激素和细胞因子引起肌肉组织对能量的利用效率不同 | [ |
泰乐菌素处理仔猪 Administration of tylosin to piglet diets | 增加了背腰最长肌肌内脂肪的含量 | 增加了脂肪酸摄取和从头合成相关基因的表达,降低了与甘油三酯水解相关基因的表达 | [ |
将金华猪和长白猪肠道微生物分别移植到小鼠中 Transplantation of gut microorganisms from Jinhua and Landrace pigs into mice, respectively | 移植金华猪粪便的小鼠肌内脂肪较多 | SCFAs抑制了血管生成素样蛋白4 (ANGPTL4)的表达,缓解了对脂蛋白酯酶的抑制作用 | [ |
将莱芜猪肠道微生物移植到DLY猪中 Transplantation of gut microorganisms from Laiwu pigs into DLY pigs | 三元杂交猪肌内脂肪含量显著提高 | 增加了三元杂交猪肌肉中与脂质合成相关的基因和蛋白质的表达,例如CD36、DGAT2等 | [ |
1 | 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[J]. 中国统计, 2023, (3): 12- 29. |
National Bureau of Statistics . Statistical Bulletin of the People's Republic of China on national economic and social development for 2022[J]. China Statistics, 2023, (3): 12- 29. | |
2 |
MACKIE R I , SGHIR A , GASKINS H R . Developmental microbial ecology of the neonatal gastrointestinal tract[J]. Am J Clin Nutr, 1999, 69 (5): 1035S- 1045S.
doi: 10.1093/ajcn/69.5.1035s |
3 |
MARTIN R A , VIGGARS M R , ESSER K A . Metabolism and exercise: the skeletal muscle clock takes centre stage[J]. Nat Rev Endocrinol, 2023, 19 (5): 272- 284.
doi: 10.1038/s41574-023-00805-8 |
4 |
WANG Y P , WANG J Y , HU H M , et al. Dynamic transcriptome profiles of postnatal porcine skeletal muscle growth and development[J]. BMC Genom Data, 2021, 22 (1): 32.
doi: 10.1186/s12863-021-00984-1 |
5 |
ST-PIERRE B , PEREZ PALENCIA J Y , SAMUEL R S . Impact of early weaning on development of the swine gut microbiome[J]. Microorganisms, 2023, 11 (7): 1753.
doi: 10.3390/microorganisms11071753 |
6 |
ISAACSON R , KIM H B . The intestinal microbiome of the pig[J]. Anim Health Res Rev, 2012, 13 (1): 100- 109.
doi: 10.1017/S1466252312000084 |
7 |
LUO Y H , REN W , SMIDT H , et al. Dynamic distribution of gut microbiota in pigs at different growth stages: composition and contribution[J]. Microbiol Spectr, 2022, 10 (3): e0068821.
doi: 10.1128/spectrum.00688-21 |
8 |
PLUSKE J R , TURPIN D L , KIM J C . Gastrointestinal tract (gut) health in the young pig[J]. Anim Nutr, 2018, 4 (2): 187- 196.
doi: 10.1016/j.aninu.2017.12.004 |
9 |
KRAUTKRAMER K A , FAN J , BÄCKHED F . Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19 (2): 77- 94.
doi: 10.1038/s41579-020-0438-4 |
10 | BUFFIE C G , PAMER E G . Microbiota-mediated colonization resistance against intestinal pathogens[J]. Nat Rev Microbiol, 2013, 13 (11): 790- 801. |
11 | 杨彤, 黄兴国, 尹杰, 等. 粪便微生物移植对猪肠道微生物和肠黏膜屏障功能影响的研究进展[J]. 动物营养学报, 2023, 35 (8): 4795- 4803. |
YANG T , HUANG X G , YIN J , et al. Research progress on effects of fecal microbiota transplantation on intestinal microbes and intestinal mucosal barrier function in pigs[J]. Chinese Journal of Animal Nutrition, 2023, 35 (8): 4795- 4803. | |
12 |
WESSELS A G . Influence of the gut microbiome on feed intake of farm animals[J]. Microorganisms, 2022, 10 (7): 1305.
doi: 10.3390/microorganisms10071305 |
13 |
BELDOWSKA A , BARSZCZ M , DUNISLAWSKA A . State of the art in research on the gut-liver and gut-brain axis in poultry[J]. J Animal Sci Biotechnol, 2023, 14 (1): 37.
doi: 10.1186/s40104-023-00853-0 |
14 |
BALASUBRAMANIAN B , LI T S , KIM I H . Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits[J]. R Bras Zootec, 2016, 45 (3): 93- 100.
doi: 10.1590/S1806-92902016000300002 |
15 |
ZHU Q , SONG M T , AZAD M A K , et al. Probiotics and synbiotics addition to Bama Mini-Pigs' diet improve carcass traits and meat quality by altering plasma metabolites and related gene expression of offspring[J]. Front Vet Sci, 2022, 9, 779745.
doi: 10.3389/fvets.2022.779745 |
16 |
SUO C , YIN Y S , WANG X N , et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Vet Res, 2012, 8, 89.
doi: 10.1186/1746-6148-8-89 |
17 | DUAN H T , LU L Z , ZHANG L , et al. Effects of lactobacillus lactis supplementation on growth performance, hematological parameters, meat quality and intestinal flora in growing-finishing pigs[J]. Animals (Basel), 2023, 13 (7): 1247. |
18 | LIU T Y , SU B C , WANG J L , et al. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs[J]. J Northeast Agric Univ (Engl Ed), 2013, 20 (4): 57- 63. |
19 | RYBARCZYK A , BOGUSŁAWSKA-WĄ S E , PILARCZYK B . Carcass and pork quality and gut environment of pigs fed a diet supplemented with the bokashi probiotic[J]. Animals (Basel), 2021, 11 (12): 3590. |
20 |
TANG X P , LIU X G , ZHANG K . Effects of microbial fermented feed on serum biochemical profile, carcass traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs[J]. Front Vet Sci, 2021, 8, 744630.
doi: 10.3389/fvets.2021.744630 |
21 | YANG X , JIANG Z , QIU Y , et al. 447 Effects of probiotic solid-state fermented complete feed on growth performance and pork quality of finishing pigs[J]. J Anim Sci, 2018, 96 (S3): 232. |
22 |
周敏, 汪凯歌, 张濂, 等. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53 (9): 2845- 2857.
doi: 10.11843/j.issn.0366-6964.2022.09.003 |
ZHOU M , WANG K G , ZHANG L , et al. Advances in Microbiota-Gut-Muscle axis regulating skeletal muscle metabolism and function[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 2845- 2857.
doi: 10.11843/j.issn.0366-6964.2022.09.003 |
|
23 |
LEFEVRE C , BINDELS L B . Role of the gut microbiome in skeletal muscle physiology and pathophysiology[J]. Curr Osteoporos Rep, 2022, 20 (6): 422- 432.
doi: 10.1007/s11914-022-00752-9 |
24 | SAWANO S , MIZUNOYA W . History and development of staining methods for skeletal muscle fiber types[J]. Histol Histopathol, 2022, 37 (6): 493- 503. |
25 | LISTRAT A , LEBRET B , LOUVEAU I , et al. How muscle structure and composition influence meat and flesh quality[J]. Sci World J, 2016, 2016, 3182746. |
26 |
LEMASTER M N , WARNER R D , CHAUHAN S S , et al. Meta-regression analysis of relationships between fibre type and meat quality in beef and pork-focus on pork[J]. Foods, 2023, 12 (11): 2215.
doi: 10.3390/foods12112215 |
27 |
MATARNEH S K , SILVA S L , GERRARD D E . New insights in muscle biology that alter meat quality[J]. Annu Rev Anim Biosci, 2021, 9, 355- 377.
doi: 10.1146/annurev-animal-021419-083902 |
28 |
JEONG D W , CHOI Y M , LEE S H , et al. Correlations of trained panel sensory values of cooked pork with fatty acid composition, muscle fiber type, and pork quality characteristics in Berkshire pigs[J]. Meat Sci, 2010, 86 (3): 607- 615.
doi: 10.1016/j.meatsci.2010.04.011 |
29 |
YAN H L , DIAO H , XIAO Y , et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Sci Rep, 2016, 6, 31786.
doi: 10.1038/srep31786 |
30 |
QI R L , SUN J , QIU X Y , et al. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets[J]. Sci Rep, 2021, 11 (1): 11237.
doi: 10.1038/s41598-021-90881-5 |
31 |
CHEN Y M , WEI L , CHIU Y S , et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8 (4): 205.
doi: 10.3390/nu8040205 |
32 | LIU T , BAI Y P , WANG C L , et al. Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of sunit lamb[J]. Animals (Basel), 2023, 13 (4): 762. |
33 |
YAN H L , YU B , DEGROOTE J , et al. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets[J]. BMC Vet Res, 2020, 16 (1): 392.
doi: 10.1186/s12917-020-02592-0 |
34 |
DAVIE J R . Inhibition of histone deacetylase activity by butyrate[J]. J Nutr, 2003, 133 (7): 2485S- 2493S.
doi: 10.1093/jn/133.7.2485S |
35 |
WALSH M E , BHATTACHARYA A , SATARANATARAJAN K , et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging[J]. Aging Cell, 2015, 14 (6): 957- 970.
doi: 10.1111/acel.12387 |
36 |
LIN J D , WU H , TARR P T , et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres[J]. Nature, 2002, 418 (6899): 797- 801.
doi: 10.1038/nature00904 |
37 |
ABRIGO J , OLGUÍN H , GUTIERREZ D , et al. Bile acids induce alterations in mitochondrial function in skeletal muscle fibers[J]. Antioxidants (Basel), 2022, 11 (9): 1706.
doi: 10.3390/antiox11091706 |
38 | HOCQUETTE J F , GONDRET F , BAÉZA E , et al. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers[J]. Animals (Basel), 2010, 4 (2): 303- 319. |
39 | 徐秋良, 吴运香, 张长兴, 等. 畜禽肉嫩度及其影响因素[J]. 家畜生态学报, 2010, 31 (6): 100- 103. |
XU Q L , WU Y X , ZHANG C X , et al. Animal meat tenderness and its influencing factors[J]. Acta Ecologae Animalis Domastici, 2010, 31 (6): 100- 103. | |
40 | LEI L F , WANG Z B , LI J Z , et al. Comparative microbial profiles of colonic digesta between Ningxiang Pig and Large White Pig[J]. Animals (Basel), 2021, 11 (7): 1862. |
41 |
TANG S , XIN Y , MA Y L , et al. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract[J]. Front Microbiol, 2020, 11, 586776.
doi: 10.3389/fmicb.2020.586776 |
42 |
FANG S M , XIONG X W , SU Y , et al. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen[J]. BMC Microbiol, 2017, 17 (1): 162.
doi: 10.1186/s12866-017-1055-x |
43 |
CHEN C Y , FANG S M , WEI H , et al. Prevotella copri increases fat accumulation in pigs fed with formula diets[J]. Microbiome, 2021, 9 (1): 175.
doi: 10.1186/s40168-021-01110-0 |
44 |
WU C F , LYU W , HONG Q H , et al. Gut microbiota influence lipid metabolism of skeletal muscle in pigs[J]. Front Nutr, 2021, 8, 675445.
doi: 10.3389/fnut.2021.675445 |
45 |
XIE C L , TENG J Y , WANG X K , et al. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes[J]. Anim Nutr, 2022, 9, 84- 99.
doi: 10.1016/j.aninu.2021.10.010 |
46 | LI J , LIU J Q , ZHANG S , et al. The effect of rearing conditions on carcass traits, meat quality and the compositions of fatty acid and amino acid of LTL in Heigai Pigs[J]. Animals (Basel), 2021, 12 (1): 14. |
47 |
QI K K , MEN X M , WU J , et al. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity[J]. BMC Microbiol, 2019, 19 (1): 181.
doi: 10.1186/s12866-019-1556-x |
48 | 侯改凤, 李瑞, 刘明, 等. 德氏乳杆菌对育肥猪胴体性状及肉品质的影响[J]. 动物营养学报, 2016, 28 (6): 1814- 1822. |
HOU G F , LI R , LIU M , et al. Effects of Lactobacillus delbrueckii on carcass traits and meat quality of fattening pigs[J]. Chinese Journal of Animal Nutrition, 2016, 28 (6): 1814- 1822. | |
49 |
TIAN Z M , CUI Y Y , LU H J , et al. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs[J]. Meat Sci, 2021, 171, 108234.
doi: 10.1016/j.meatsci.2020.108234 |
50 | DINH T T N , TO K V , SCHILLING M W . Fatty acid composition of meat animals as flavor precursors[J]. Meat Muscle Biol, 2021, 5 (1): 34. |
51 | SCHUMACHER M , DELCURTO-WYFFELS H , THOMSON J , et al. Fat deposition and fat effects on meat quality-a review[J]. Animals (Basel), 2022, 12 (12): 1550. |
52 |
WOOD JD , ENSER M , FISHER AV , et al. Fat deposition, fatty acid composition and meat quality: A review[J]. Meat Sci, 2008, 78 (4): 343- 358.
doi: 10.1016/j.meatsci.2007.07.019 |
53 |
LIN J M , NAOT D , WATSON M , et al. Skeletal actions of fasting-induced adipose factor (FIAF)[J]. Endocrinology, 2013, 154 (12): 4685- 4694.
doi: 10.1210/en.2013-1238 |
54 | CHANG H, KWON O, SHIN M S, et al. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J]. J Appl Physiol (1985), 2018, 125(3): 715-722. |
55 |
BÄCKHED F , DING H , WANG T , et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15718- 15723.
doi: 10.1073/pnas.0407076101 |
56 |
MA J , DUAN Y H , LI R , et al. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs[J]. Anim Nutr, 2022, 9, 345- 356.
doi: 10.1016/j.aninu.2021.10.012 |
57 |
JIAO A R , YU B , HE J , et al. Short chain fatty acids could prevent fat deposition in pigs via regulating related hormones and genes[J]. Food Funct, 2020, 11 (2): 1845- 1855.
doi: 10.1039/C9FO02585E |
58 |
JIAO A R , DIAO H , YU B , et al. Infusion of short chain fatty acids in the ileum improves the carcass traits, meat quality and lipid metabolism of growing pigs[J]. Anim Nutr, 2021, 7 (1): 94- 100.
doi: 10.1016/j.aninu.2020.05.009 |
59 |
ALIANI M , FARMER L J , KENNEDY J T , et al. Post-slaughter changes in ATP metabolites, reducing and phosphorylated sugars in chicken meat[J]. Meat Sci, 2013, 94 (1): 55- 62.
doi: 10.1016/j.meatsci.2012.11.032 |
60 |
MARUTA H , YOSHIMURA Y , ARAKI A , et al. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells[J]. PLoS One, 2016, 11 (6): e0158055.
doi: 10.1371/journal.pone.0158055 |
61 |
HAN J H , KIM I S , JUNG S H , et al. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41[J]. PLoS One, 2014, 9 (4): e95268.
doi: 10.1371/journal.pone.0095268 |
62 |
HOUGHTON M J , KERIMI A , MOULY V , et al. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J]. FASEB J, 2019, 33 (2): 1887- 1898.
doi: 10.1096/fj.201801209R |
63 |
CHOI Y , KWON Y , KIM D K , et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle[J]. Sci Rep, 2015, 5, 15878.
doi: 10.1038/srep15878 |
64 |
QIU Y X , YU J M , LI Y , et al. Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling[J]. Ann Med, 2021, 53 (1): 508- 522.
doi: 10.1080/07853890.2021.1900593 |
65 |
BINDELS L B , BECK R , SCHAKMAN O , et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7 (6): e37971.
doi: 10.1371/journal.pone.0037971 |
[1] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[2] | 谢兵红, 刘一帆, 薛夫光, 单艳菊, 屠云洁, 姬改革, 巨晓军, 束婧婷, 吴红翔. 缺氧对鸡成肌细胞肌纤维类型转化作用的机制探究[J]. 畜牧兽医学报, 2024, 55(6): 2397-2408. |
[3] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[4] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[5] | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55(4): 1592-1604. |
[6] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[7] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[8] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[9] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[10] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[11] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[12] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[13] | 胡颖, 周晓容, 黄金秀, 杨飞云, 李敬, 汤超华, 赵青余, 杨悠悠, 张凯, 张军民. 荣昌猪和三元杂交猪胴体性状、肉品质及风味物质差异研究[J]. 畜牧兽医学报, 2023, 54(5): 1877-1892. |
[14] | 员佳乐, 刘畅, 黄晓宇, 刘巧霞, 史明月, 李文霞, 牛瑾, 王首元, 高鹏飞, 郭晓红, 李步高, 路畅, 曹果清. miR-145-5p靶向IGF1R介导AKT通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54(5): 1893-1904. |
[15] | 曲比伍且, 李艳艳, 李鑫, 王永, 王友利, 刘伟, 朱江江, 林亚秋. 山羊APOA4基因抑制肌内脂肪细胞分化[J]. 畜牧兽医学报, 2023, 54(5): 1927-1938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||