畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1019-1026.doi: 10.11843/j.issn.0366-6964.2025.03.005
丁莹莹(), 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅*(
)
收稿日期:
2024-04-25
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
王帅
E-mail:dingyingying4405@163.com;wangshuai@caas.cn
作者简介:
丁莹莹(1993-),女,辽宁营口人,博士生,主要从事兽医寄生虫学研究,E-mail: dingyingying4405@163.com
基金资助:
DING Yingying(), ZHANG Jiayun, TANG Longxuan, ZHANG Shaohua, GUO Xiaola, PU Lixia, MOU Wenjie, WANG Shuai*(
)
Received:
2024-04-25
Online:
2025-03-23
Published:
2025-04-02
Contact:
WANG Shuai
E-mail:dingyingying4405@163.com;wangshuai@caas.cn
摘要:
肠道干细胞(intestinal stem cells, ISCs)在维持肠道稳态中起重要作用。已有研究表明,肠道共生生物(如微生物和寄生虫及其代谢产物)对宿主的干细胞调节至关重要,可通过直接或间接作用影响肠道干细胞的更新分化。本文重点阐述了肠道菌群和蠕虫及其代谢产物对ISCs的影响,并侧重总结了相关的细菌、代谢产物等对ISCs增殖分化的研究进展,旨在为未来肠道损伤治疗提供新的思路。
中图分类号:
丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026.
DING Yingying, ZHANG Jiayun, TANG Longxuan, ZHANG Shaohua, GUO Xiaola, PU Lixia, MOU Wenjie, WANG Shuai. Research Progress on the Regulatory Mechanisms of Intestinal Commensal Organisms on Intestinal Stem Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1019-1026.
1 |
STAPPENBECK T S , WONG M H , SAAM J R , et al. Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium[J]. Curr Opin Cell Biol, 1998, 10 (6): 702- 709.
doi: 10.1016/S0955-0674(98)80110-5 |
2 |
YAO C S , GOU X W , TIAN C X , et al. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites[J]. J Genet Genomics, 2023, 50 (10): 735- 746.
doi: 10.1016/j.jgg.2022.12.002 |
3 |
MA N , GUO P T , ZHANG J , et al. Nutrients mediate intestinal bacteria-mucosal immune crosstalk[J]. Front Immunol, 2018, 9, 5.
doi: 10.3389/fimmu.2018.00005 |
4 |
GRICE E A , SEGRE J A . The human microbiome: our second genome[J]. Annu Rev Genomics Hum Genet, 2012, 13, 151- 170.
doi: 10.1146/annurev-genom-090711-163814 |
5 |
VON MOLTKE J , JI M , LIANG H E , et al. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit[J]. Nature, 2016, 529 (7585): 221- 225.
doi: 10.1038/nature16161 |
6 |
KARO-ATAR D , OULADAN S , JAVKAR T , et al. Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity[J]. J Exp Med, 2022, 219 (9): e20212311.
doi: 10.1084/jem.20212311 |
7 |
YOUSEFI M , LI L H , LENGNER C J . Hierarchy and plasticity in the intestinal stem cell compartment[J]. Trends Cell Biol, 2017, 27 (10): 753- 764.
doi: 10.1016/j.tcb.2017.06.006 |
8 |
LI L H , CLEVERS H . Coexistence of quiescent and active adult stem cells in mammals[J]. Science, 2010, 327 (5965): 542- 545.
doi: 10.1126/science.1180794 |
9 |
ROTHENBERG M E , NUSSE Y , KALISKY T , et al. Identification of a cKit+colonic crypt base secretory cell that supports Lgr5+stem cells in mice[J]. Gastroenterology, 2012, 142 (5): 1195- 1205. e6.
doi: 10.1053/j.gastro.2012.02.006 |
10 |
AYYAZ A , KUMAR S , SANGIORGI B , et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell[J]. Nature, 2019, 569 (7754): 121- 125.
doi: 10.1038/s41586-019-1154-y |
11 |
LEY R E , LOZUPONE C A , HAMADY M , et al. Worlds within worlds: evolution of the vertebrate gut microbiota[J]. Nat Rev Microbiol, 2008, 6 (10): 776- 788.
doi: 10.1038/nrmicro1978 |
12 | HOOPER L V . Epithelial cell contributions to intestinal immunity[J]. Adv Immunol, 2015, 126, 129- 172. |
13 |
DOMINGUEZ-BELLO M G , GODOY-VITORINO F , KNIGHT R , et al. Role of the microbiome in human development[J]. Gut, 2019, 68 (6): 1108- 1114.
doi: 10.1136/gutjnl-2018-317503 |
14 |
SKELLY A N , SATO Y , KEARNEY S , et al. Mining the microbiota for microbial and metabolite-based immunotherapies[J]. Nat Rev Immunol, 2019, 19 (5): 305- 323.
doi: 10.1038/s41577-019-0144-5 |
15 | ABRAMS G D , BAUER H , SPRINZ H . Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice[J]. Lab Invest, 1963, 12, 355- 364. |
16 |
ABO H , CHASSAING B , HARUSATO A , et al. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration[J]. Nat Commun, 2020, 11 (1): 513.
doi: 10.1038/s41467-019-14258-z |
17 |
KUNDU P , BLACHER E , ELINAV E , et al. Our gut microbiome: the evolving inner self[J]. Cell, 2017, 171 (7): 1481- 1493.
doi: 10.1016/j.cell.2017.11.024 |
18 | NAITO T , MULET C , DE CASTRO C , et al. Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance[J]. mBio, 2017, 8 (5): e01680- 17. |
19 |
HOU Q H , YE L L , LIU H F , et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Differ, 2018, 25 (9): 1657- 1670.
doi: 10.1038/s41418-018-0070-2 |
20 | KIM S , SHIN Y C , KIM T Y , et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development[J]. Gut Microbes, 2021, 13 (1): 1- 20. |
21 |
MIGUEL-ALIAGA I , JASPER H , LEMAITRE B . Anatomy and physiology of the digestive tract of Drosophila melanogaster[J]. Genetics, 2018, 210 (2): 357- 396.
doi: 10.1534/genetics.118.300224 |
22 | PECK B C E , SHANAHAN M T , SINGH A P , et al. Gut microbial influences on the mammalian intestinal stem cell niche[J]. Stem Cells Int, 2017, 2017, 5604727. |
23 |
MCHARDY I H , GOUDARZI M , TONG M M , et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships[J]. Microbiome, 2013, 1 (1): 17.
doi: 10.1186/2049-2618-1-17 |
24 | AKHTAR M , CHEN Y , MA Z Y , et al. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation[J]. Anim Nutr, 2021, 8, 350- 360. |
25 |
KARO-ATAR D , GREGORIEFF A , KING I L . Dangerous liaisons: how helminths manipulate the intestinal epithelium[J]. Trends Parasitol, 2023, 39 (6): 414- 422.
doi: 10.1016/j.pt.2023.03.012 |
26 |
KAIKO G E , RYU S H , KOUES O I , et al. The colonic crypt protects stem cells from microbiota-derived metabolites[J]. Cell, 2016, 165 (7): 1708- 1720.
doi: 10.1016/j.cell.2016.05.018 |
27 |
WANG X Y , CAI Z L , WANG Q L , et al. Bacteroides methylmalonyl-CoA mutase produces propionate that promotes intestinal goblet cell differentiation and homeostasis[J]. Cell Host Microbe, 2024, 32 (1): 63- 78. e7.
doi: 10.1016/j.chom.2023.11.005 |
28 |
DUAN C H , WU J H , WANG Z , et al. Fucose promotes intestinal stem cell-mediated intestinal epithelial development through promoting Akkermansia-related propanoate metabolism[J]. Gut Microbes, 2023, 15 (1): 2233149.
doi: 10.1080/19490976.2023.2233149 |
29 |
ZHU P P , LU T K , WU J Y , et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons[J]. Cell Res, 2022, 32 (6): 555- 569.
doi: 10.1038/s41422-022-00645-7 |
30 |
LI S T , LU C W , DIEM E C , et al. Acetyl-CoA-carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+intestinal stem cell function[J]. Nat Commun, 2022, 13 (1): 3998.
doi: 10.1038/s41467-022-31725-2 |
31 |
CHEN L , VASOYA R P , TOKE N H , et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice[J]. Gastroenterology, 2020, 158 (4): 985- 999. e9.
doi: 10.1053/j.gastro.2019.11.031 |
32 |
SCHNEIDER K M , ALBERS S , TRAUTWEIN C . Role of bile acids in the gut-liver axis[J]. J Hepatol, 2018, 68 (5): 1083- 1085.
doi: 10.1016/j.jhep.2017.11.025 |
33 |
ZENG H W , UMAR S , RUST B , et al. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer[J]. Int J Mol Sci, 2019, 20 (5): 1214.
doi: 10.3390/ijms20051214 |
34 |
LIN S , WANG S T , WANG P , et al. Bile acids and their receptors in regulation of gut health and diseases[J]. Prog Lipid Res, 2023, 89, 101210.
doi: 10.1016/j.plipres.2022.101210 |
35 |
KOZONI V , TSIOULIAS G , SHIFF S , et al. The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen[J]. Carcinogenesis, 2000, 21 (5): 999- 1005.
doi: 10.1093/carcin/21.5.999 |
36 |
SORRENTINO G , PERINO A , YILDIZ E , et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159 (3): 956- 968. e8.
doi: 10.1053/j.gastro.2020.05.067 |
37 |
SONG M , YANG Q , ZHANG F L , et al. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria[J]. FASEB J, 2020, 34 (5): 7103- 7117.
doi: 10.1096/fj.201903244R |
38 |
MARKANDEY M , BAJAJ A , ILOTT N E , et al. Gut microbiota: sculptors of the intestinal stem cell niche in health and inflammatory bowel disease[J]. Gut Microbes, 2021, 13 (1): 1990827.
doi: 10.1080/19490976.2021.1990827 |
39 |
FAN H C , WU J Q , YANG K P , et al. Dietary regulation of intestinal stem cells in health and disease[J]. Int J Food Sci Nutr, 2023, 74 (7): 730- 745.
doi: 10.1080/09637486.2023.2262780 |
40 |
ALVARADO D M , CHEN B S , ITICOVICI M , et al. Epithelial indoleamine 2, 3-dioxygenase 1 modulates aryl hydrocarbon receptor and notch signaling to increase differentiation of secretory cells and alter mucus-associated microbiota[J]. Gastroenterology, 2019, 157 (4): 1093- 1108. e11.
doi: 10.1053/j.gastro.2019.07.013 |
41 |
KAWAJIRI K , KOBAYASHI Y , OHTAKE F , et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands[J]. Proc Natl Acad Sci U S A, 2009, 106 (32): 13481- 13486.
doi: 10.1073/pnas.0902132106 |
42 |
SAHU A , GOPALAKRISHNAN L , GAUR N , et al. The 5-hydroxytryptamine signaling map: an overview of serotonin-serotonin receptor mediated signaling network[J]. J Cell Commun Signal, 2018, 12 (4): 731- 735.
doi: 10.1007/s12079-018-0482-2 |
43 |
GUTKNECHT L , KRIEGEBAUM C , WAIDER J , et al. Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice[J]. Eur Neuropsychopharmacol, 2009, 19 (4): 266- 282.
doi: 10.1016/j.euroneuro.2008.12.005 |
44 |
MOOSSAVI S , ZHANG H Y , SUN J , et al. Host-microbiota interaction and intestinal stem cells in chronic inflammation and colorectal cancer[J]. Expert Rev Clin Immunol, 2013, 9 (5): 409- 422.
doi: 10.1586/eci.13.27 |
45 |
FUKATA M , VAMADEVAN A S , ABREU M T . Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders[J]. Semin Immunol, 2009, 21 (4): 242- 253.
doi: 10.1016/j.smim.2009.06.005 |
46 |
BANSAL K , TRINATH J , CHAKRAVORTTY D , et al. Pathogen-specific TLR2 protein activation programs macrophages to induce Wnt-β-catenin signaling[J]. J Biol Chem, 2011, 286 (42): 37032- 37044.
doi: 10.1074/jbc.M111.260414 |
47 |
HEDAYAT M , TAKEDA K , REZAEI N . Prophylactic and therapeutic implications of toll-like receptor ligands[J]. Med Res Rev, 2012, 32 (2): 294- 325.
doi: 10.1002/med.20214 |
48 |
YI H , PATEL A K , SODHI C P , et al. Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the Wnt signaling pathway and photoreceptor apoptosis[J]. PLoS One, 2012, 7 (5): e36560.
doi: 10.1371/journal.pone.0036560 |
49 |
BURGUEÑO J F , ABREU M T . Epithelial toll-like receptors and their role in gut homeostasis and disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (5): 263- 278.
doi: 10.1038/s41575-019-0261-4 |
50 |
NIGRO G , ROSSI R , COMMERE P H , et al. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration[J]. Cell Host Microbe, 2014, 15 (6): 792- 798.
doi: 10.1016/j.chom.2014.05.003 |
51 |
BAE Y S , CHOI M K , LEE W J . Dual oxidase in mucosal immunity and host-microbe homeostasis[J]. Trends Immunol, 2010, 31 (7): 278- 287.
doi: 10.1016/j.it.2010.05.003 |
52 |
NATH A , CHAKRABARTI P , SEN S , et al. Reactive oxygen species in modulating intestinal stem cell dynamics and function[J]. Stem Cell Rev Rep, 2022, 18 (7): 2328- 2350.
doi: 10.1007/s12015-022-10377-1 |
53 |
VAN DER POST S , BIRCHENOUGH G M H , HELD J M . NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation[J]. Cell Rep, 2021, 35 (1): 108949.
doi: 10.1016/j.celrep.2021.108949 |
54 |
REEDY A R , LUO L P , NEISH A S , et al. Commensal microbiota-induced redox signaling activates proliferative signals in the intestinal stem cell microenvironment[J]. Development, 2019, 146 (3): dev171520.
doi: 10.1242/dev.171520 |
55 |
TURNBAUGH P J , LEY R E , MAHOWALD M A , et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444 (7122): 1027- 1031.
doi: 10.1038/nature05414 |
56 |
LEE Y S , KIM T Y , KIM Y , et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development[J]. Cell Host Microbe, 2018, 24 (6): 833- 846. e6.
doi: 10.1016/j.chom.2018.11.002 |
57 |
NAKAMURA A , KURIHARA S , TAKAHASHI D , et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon[J]. Nat Commun, 2021, 12 (1): 2105.
doi: 10.1038/s41467-021-22212-1 |
58 |
KING I L , LI Y . Host-parasite interactions promote disease tolerance to intestinal helminth infection[J]. Front Immunol, 2018, 9, 2128.
doi: 10.3389/fimmu.2018.02128 |
59 |
MORALES R A , RABAHI S , DIAZ O E , et al. Interleukin-10 regulates goblet cell numbers through notch signaling in the developing zebrafish intestine[J]. Mucosal Immunol, 2022, 15 (5): 940- 951.
doi: 10.1038/s41385-022-00546-3 |
60 |
TAKASHIMA S , MARTIN M L , JANSEN S A , et al. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage[J]. Sci Immunol, 2019, 4 (42): eaay8556.
doi: 10.1126/sciimmunol.aay8556 |
61 |
LIN X , GAUDINO S J , JANG K K , et al. IL-17RA-signaling in Lgr5+intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment[J]. Immunity, 2022, 55 (2): 237- 253. e8.
doi: 10.1016/j.immuni.2021.12.016 |
62 |
LINDEMANS C A , CALAFIORE M , MERTELSMANN A M , et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration[J]. Nature, 2015, 528 (7583): 560- 564.
doi: 10.1038/nature16460 |
63 |
JOURDAN P M , LAMBERTON P H L , FENWICK A , et al. Soil-transmitted helminth infections[J]. Lancet, 2018, 391 (10117): 252- 265.
doi: 10.1016/S0140-6736(17)31930-X |
64 |
COAKLEY G , HARRIS N L . The Intestinal epithelium at the forefront of host-helminth interactions[J]. Trends Parasitol, 2020, 36 (9): 761- 772.
doi: 10.1016/j.pt.2020.07.002 |
65 |
REYNOLDS L A , FINLAY B B , MAIZELS R M . Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity[J]. J Immunol, 2015, 195 (9): 4059- 4066.
doi: 10.4049/jimmunol.1501432 |
66 |
HAYAKAWA Y , WANG T C . The tuft Cell-ILC2 circuit integrates intestinal defense and homeostasis[J]. Cell, 2018, 174 (2): 251- 253.
doi: 10.1016/j.cell.2018.06.037 |
[1] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
[2] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[3] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[4] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
[5] | 杜红旭, 苏利娟, 何政科, 谭晓燕, 张旭, 马琪, 曹立亭, 陈红伟, 甘玲. 五味子多糖纳米硒的体外抗氧化和肠道菌群调节作用研究[J]. 畜牧兽医学报, 2024, 55(7): 3234-3245. |
[6] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[7] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[8] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[9] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[10] | 朱芳, 李璐璐, 赵红奕, 董娅荣, 姜悦才, 李登亮, 张天亮, 熊楠楠, 陈德坤, 马文涛, 赵慧英. 唾液乳杆菌对奶山羊隐性乳房炎的治疗效果分析[J]. 畜牧兽医学报, 2024, 55(12): 5706-5715. |
[11] | 杨作斌, 史晋成, 马紫薇, 陈如龙, 舒展, 李鑫, 王金泉, 钟旗, 马雪连, 姚刚. 粪菌移植治疗犊牛无特异病原性腹泻和细菌性腹泻的疗效及其肠道菌群变化[J]. 畜牧兽医学报, 2024, 55(10): 4720-4734. |
[12] | 黄江, 李闯, 崔月琦, 袁雪莹, 赵志诚, 刘宇, 周玉龙, 朱战波, 张泽财. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3466-3473. |
[13] | 谢旖, 邹郦睿, 陶冉, 刘莎, 王江萍, 文利新, 邬静, 王吉. 单宁酸对低剂量T-2毒素诱导小鼠结肠黏膜损伤与菌群失调的保护效应[J]. 畜牧兽医学报, 2023, 54(8): 3582-3594. |
[14] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[15] | 李蔚, 张强, 瞿嘉豪, 吴亚平, 胡若辰, 贾若艺, 郭如海, 马清义, 潘广林, 王兴龙. 大熊猫肠道菌群年龄演替规律分析[J]. 畜牧兽医学报, 2023, 54(6): 2619-2630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||