畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (4): 1423-1431.doi: 10.11843/j.issn.0366-6964.2024.04.008
刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞*, 栾新红*
收稿日期:
2023-07-07
出版日期:
2024-04-23
发布日期:
2024-04-26
通讯作者:
曹中赞,主要从事动物机能调控与临床兽医学研究,E-mail:caozhongzan@syau.edu.cn;栾新红,主要从事动物生理与生殖内分泌学研究,E-mail:xhluan@syau.edu.cn
作者简介:
刘思弟(1997-),女,辽宁丹东人,硕士生,主要从事动物代谢疾病防治研究,E-mail:2021240674@stu.syau.edu.cn
基金资助:
LIU Sidi, MA Ben, ZHENG Yan, QIU Yunqiao, YAO Zelong, CAO Zhongzan*, LUAN Xinhong*
Received:
2023-07-07
Online:
2024-04-23
Published:
2024-04-26
摘要: 肠道菌群的改变可能引起黏膜免疫应答失调,导致遗传易感宿主发生炎症性肠病(inflammation bowel disease,IBD)。目前治疗动物IBD的有效方法是通过微生物靶向疗法(包括抗生素、益生元、后生素和粪便微生物群移植)恢复肠道微生物群的正常免疫稳态。本文将讨论通过微生物靶向治疗促进肠道稳态免疫反应的基础,以及IBD发生发展过程中宿主-微生物相互作用的最新进展。考虑到肠道菌群失调是慢性炎症建立的一个关键特征,以期在不久的将来,微生物靶向疗法将适合设计新的具有成本效益的、生理学的、以动物为导向的IBD治疗策略,以个性化的方式应用。
中图分类号:
刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431.
LIU Sidi, MA Ben, ZHENG Yan, QIU Yunqiao, YAO Zelong, CAO Zhongzan, LUAN Xinhong. Research Progress in the Regulation of Intestinal Flora on Intestinal Mucosal Immunity and Inflammation in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1423-1431.
[1] GUAN Q D. A Comprehensive review and update on the pathogenesis of inflammatory bowel disease[J]. J Immunol Res, 2019, 2019:7247238. [2] NEURATH M F. Targeting immune cell circuits and trafficking in inflammatory bowel disease[J]. Nat Immunol, 2019, 20(8):970-979. [3] GRAHAM D B, XAVIER R J. Pathway paradigms revealed from the genetics of inflammatory bowel disease[J]. Nature, 2020, 578(7796):527-539. [4] SCHIRMER M, GARNER A, VLAMAKIS H, et al. Microbial genes and pathways in inflammatory bowel disease[J]. Nat Rev Microbiol, 2019, 17(8):497-511. [5] LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4):223-237. [6] MAO Q J, PAN H Q, ZHANG Y Y, et al. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease[J]. Bioact Mater, 2023, 19:251-267. [7] UPADHYAY K G, DESAI D C, ASHAVAID T F, et al. Microbiome and metabolome in inflammatory bowel disease[J]. J Gastroenterol Hepatol, 2023, 38(1):34-43. [8] AL BANDER Z, NITERT M D, MOUSA A, et al. The gut microbiota and inflammation:An overview[J]. Int J Environ Res Public Health, 2020, 17(20):7618. [9] GRÜNER N, ORTLEPP A L, MATTNER J. Pivotal role of intestinal microbiota and intraluminal metabolites for the maintenance of gut-bone physiology[J]. Int J Mol Sci, 2023, 24(6):5161. [10] XAVIER R J, PODOLSKY D K. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152):427-434. [11] MCCOLE D F. IBD candidate genes and intestinal barrier regulation[J]. Inflamm Bowel Dis, 2014, 20(10):1829-1849. [12] SUZUKI M, NAGAISHI T, YAMAZAKI M, et al. Myosin light chain kinase expression induced via tumor necrosis factor receptor 2 signaling in the epithelial cells regulates the development of colitis-associated carcinogenesis[J]. PLoS One, 2014, 9(2):e88369. [13] OSHIMA S, NAKAMURA T, NAMIKI S, et al. Interferon regulatory factor 1(IRF-1) and IRF-2 distinctively up-regulate gene expression and production of interleukin-7 in human intestinal epithelial cells[J]. Mol Cell Biol, 2004, 24(14):6298-6310. [14] ZHOU T Y, XU W Z, WANG Q Q, et al. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease:A review of microbe and immune mechanism associations[J]. Front Cell Infect Microbiol, 2023, 13:1132420. [15] LANGRISH C L, CHEN Y, BLUMENSCHEIN W M, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2):233-240. [16] PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903):907-912. [17] IVANOV I I, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3):485-498. [18] NIZZOLI G, BURRELLO C, CRIBIÙ F M, et al. Pathogenicity of in vivo generated intestinal Th17 lymphocytes is IFNγ dependent[J]. J Crohns Colitis, 2018, 12(8):981-992. [19] VERNERO M, ASTEGIANO M, RIBALDONE D G. New onset of inflammatory bowel disease in three patients undergoing IL-17A inhibitor secukinumab:A case series[J]. Am J Gastroenterol, 2019, 114(1):179-180. [20] FRIES W, BELVEDERE A, CAPPELLO M, et al. Inflammatory bowel disease onset during secukinumab treatment:Real concern or just an expression of dysregulated immune response?[J]. Clin Drug Investig, 2019, 39(8):799-803. [21] MONCADA R R, MORÓN J M V, MANRIQUE H P. The onset of ulcerative colitis during treatment with secukinumab:can anti-IL-17A be a trigger for inflammatory bowel disease?[J]. Rev Esp Enferm Dig, 2019, 111(9):720-721. [22] YAMADA A, ARAKAKI R, SAITO M, et al. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease[J]. World J Gastroenterol, 2016, 22(7):2195-2205. [23] SELLON R K, TONKONOGY S, SCHULTZ M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice[J]. Infect Immun, 1998, 66(11):5224-5231. [24] ATARASHI K, TANOUE T, SHIMA T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341. [25] MOMOSE Y, MARUYAMA A, IWASAKI T, et al. 16S rRNA gene sequence-based analysis of clostridia related to conversion of germfree mice to the normal state[J]. J Appl Microbiol, 2009, 107(6):2088-2097. [26] ALAMEDDINE J, GODEFROY E, PAPARGYRIS L, et al. Faecalibacterium prausnitzii skews human dc to prime IL10-Producing T Cells through TLR2/6/JNK signaling and IL-10, IL-27, CD39, and IDO-1 induction[J]. Front Immunol, 2019, 10:143. [27] HU G. Multiomics analysis to reveal the transcriptional and microbial regulation of salmonella enteritidis infection in chicken cecum[D]. Tai'an:Shandong Agricultural University, 2023. (in Chinese) 胡耿. 多组学联合分析鸡盲肠对肠炎沙门氏菌感染的转录和微生物调控作用[D]. 泰安:山东农业大学, 2023. [28] GUO M W, ZHANG H B, LIAO X P, et al. Progress in the regulation of ILC3 on intestinal mucosal immunity[J]. Chinese Journal of Animal Science, 2021, 57(5):65-69. (in Chinese) 郭美薇, 张海波, 廖晓鹏, 等. 三型固有淋巴细胞对动物肠黏膜免疫的调节作用研究进展[J]. 中国畜牧杂志, 2021, 57(5):65-69. [29] GEREMIA A, ARANCIBIA-CÁRCAMO C V, FLEMING M P P, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease[J]. J Exp Med, 2011, 208(6):1127-1133. [30] HAN L, WANG X M, DI S, et al. Innate lymphoid cells:A link between the nervous system and microbiota in intestinal networks[J]. Mediators Inflamm, 2019, 2019:1978094. [31] SONNENBERG G F, MONTICELLI L A, ELLOSO M M, et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut[J]. Immunity, 2011, 34(1):122-134. [32] HART A L, AL-HASSI H O, RIGBY R J, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases[J]. Gastroenterology, 2005, 129(1):50-65. [33] BRINKMANN V, REICHARD U, GOOSMANN C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663):1532-1535. [34] GUPTA S, KAPLAN M J. The role of neutrophils and NETosis in autoimmune and renal diseases[J]. Nat Rev Nephrol, 2016, 12(7):402-413. [35] DINALLO V, MARAFINI I, DI FUSCO D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6):772-784. [36] GRINGHUIS S I, WEVERS B A, KAPTEIN T M, et al. Selective C-Rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2[J]. PLoS Pathog, 2011, 7(1):e1001259. [37] BAI X D, LIU X H, TONG Q Y. Intestinal colonization with Candida albicans and mucosal immunity[J]. World J Gastroenterol, 2004, 10(14):2124-2126. [38] SHI S Q. Chicken Lactobacillus reuteri S5 resistant to salmonella enteritidis infection and its regulation on intestinal microflora[D]. Hefei:Anhui Agricultural University, 2020. (in Chinese) 石水琴. 鸡罗伊氏乳杆菌S5抗肠炎沙门氏菌感染及其对肠道菌群微生态的调控作用研究[D]. 合肥:安徽农业大学, 2020. [39] QIU P, ISHIMOTO T, FU L F, et al. The gut microbiota in inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12:733992. [40] ZHANG Y C, SI X M, YANG L, et al. Association between intestinal microbiota and inflammatory bowel disease[J]. Animal Model Exp Med, 2022, 5(4):311-322. [41] CAVIGLIA G P, ROSSO C, STALLA F, et al. On-treatment decrease of serum interleukin-6 as a predictor of clinical response to biologic therapy in patients with inflammatory bowel diseases[J]. J Clin Med, 2020, 9(3):800. [42] RIBALDONE D G, CAVIGLIA G P, ABDULLE A, et al. Adalimumab therapy improves intestinal dysbiosis in crohn's disease[J]. J Clin Med, 2019, 8(10):1646. [43] DIGBY-BELL J L, ATREYA R, MONTELEONE G, et al. Interrogating host immunity to predict treatment response in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 17(1):9-20. [44] SCALDAFERRI F, GERARDI V, LOPETUSO L R, et al. Gut microbial flora, prebiotics, and probiotics in IBD:their current usage and utility[J]. Biomed Res Int, 2013, 2013:435268. [45] SWIDSINSKI A, WEBER J, LOENING-BAUCKE V, et al. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease[J]. J Clin Microbiol, 2005, 43(7):3380-3389. [46] GARRIDO-MESA N, CAMUESCO D, ARRIBAS B, et al. The intestinal anti-inflammatory effect of minocycline in experimental colitis involves both its immunomodulatory and antimicrobial properties[J]. Pharmacol Res, 2011, 63(4):308-319. [47] FIORUCCI S, DISTRUTTI E, MENCARELLI A, et al. Inhibition of intestinal bacterial translocation with rifaximin modulates lamina propria monocytic cells reactivity and protects against inflammation in a rodent model of colitis[J]. Digestion, 2002, 66(4):246-256. [48] SARTOR R B. Review article:The potential mechanisms of action of rifaximin in the management of inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2016, 43 Suppl 1:27-36. [49] MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4):247-265. [50] BURRELLO C, GARAVAGLIA F, CRIBIÙ F M, et al. Short-term Oral Antibiotics treatment promotes inflammatory activation of colonic invariant natural killer t and conventional CD4+ T cells[J]. Front Med (Lausanne), 2018, 5:21. [51] WIEËRS G, BELKHIR L, ENAUD R, et al. How probiotics affect the microbiota[J]. Front Cell Infect Microbiol, 2020, 9:454. [52] MARKOWIAK P, ŚLIŻEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients, 2017, 9(9):1021. [53] ZHOU J, LI M Y, CHEN Q F, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022, 13(1):3432. [54] BERMUDEZ-BRITO M, BORGHUIS T, DANIEL C, et al. L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches[J]. Sci Rep, 2018, 8(1):1785. [55] LIM S M, JANG H M, JANG S E, et al. Lactobacillus fermentum IM12 attenuates inflammation in mice by inhibiting NF-κB-STAT3 signalling pathway[J]. Benef Microbes, 2017, 8(3):407-419. [56] ZHAI Q X, SHEN X D, CEN S, et al. Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice[J]. Food Funct, 2020, 11(1):221-235. [57] JANG S E, JEONG J J, KIM J K, et al. Simultaneous amelioratation of colitis and liver injury in mice by bifidobacterium longum LC67 and Lactobacillus plantarum LC27[J]. Sci Rep, 2018, 8(1):7500. [58] ZHOU L Y, LIU D Y, XIE Y, et al. Bifidobacterium infantis induces protective colonic PD-L1 and Foxp3 regulatory T cells in an acute murine experimental model of inflammatory bowel disease[J]. Gut Liver, 2019, 13(4):430-439. [59] STEIMLE A, MENZ S, BENDER A, et al. Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains[J]. PLoS Biol, 2019, 17(6):e3000334. [60] RODRÍGUEZ-NOGALES A, ALGIERI F, GARRIDO-MESA J, et al. The administration of Escherichia coli nissle 1917 ameliorates development of DSS-induced colitis in mice[J]. Front Pharmacol, 2018, 9:468. [61] BYNDLOSS M X, OLSAN E E, RIVERA-CHÁVEZ F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351):570-575. [62] FU Y Z, JIAO S, ZHANG N F. Research progress of acidogenic mechanism of butyrate-producing bacteria and its regulation on intestinal health[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12):4148-4158. (in Chinese) 付域泽, 焦帅, 张乃锋. 产丁酸菌的产酸机制及其在调控肠道健康中的作用研究进展[J]. 畜牧兽医学报, 2022, 53(12):4148-4158. [63] TAKAHASHI K, NISHIDA A, FUJIMOTO T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in crohn's disease[J]. Digestion, 2016, 93(1):59-65. [64] KUMARI R, AHUJA V, PAUL J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India[J]. World J Gastroenterol, 2013, 19(22):3404-3414. [65] SILVEIRA A L M, FERREIRA A V M, DE OLIVEIRA M C, et al. Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS-induced colitis in mice[J]. Eur J Nutr, 2017, 56(1):179-191. [66] LLEWELLYN S R, BRITTON G J, CONTIJOCH E J, et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice[J]. Gastroenterology, 2018, 154(4):1037-1046.e2. [67] ISHISONO K, MANO T, YABE T, et al. Dietary fiber pectin ameliorates experimental colitis in a neutral sugar side chain-dependent manner[J]. Front Immunol, 2019, 10:2979. [68] GRABINGER T, GARZON J F G, HAUSMANN M, et al. Alleviation of intestinal inflammation by oral supplementation with 2-fucosyllactose in mice[J]. Front Microbiol, 2019, 10:1385. [69] KANWAL S, JOSEPH T P, OWUSU L, et al. A polysaccharide isolated from Dictyophora indusiata promotes recovery from antibiotic-driven intestinal dysbiosis and improves gut epithelial barrier function in a mouse model[J]. Nutrients, 2018, 10(8):1003. [70] KANWAL S, JOSEPH T P, ALIYA S, et al. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways[J]. J Funct Foods, 2020, 64:103641. [71] LI R Q, KIM M H, SANDHU A K, et al. Muscadine grape (Vitis rotundifolia) or wine phytochemicals reduce intestinal inflammation in mice with dextran sulfate sodium-induced colitis[J]. J Agric Food Chem, 2017, 65(4):769-776. [72] LI R Q, WANG G P, WHITLOCK J A, et al. Muscadine grapes (Vitis rotundifolia) and dealcoholized muscadine wine alleviated symptoms of colitis and protected against dysbiosis in mice exposed to dextran sulfate sodium[J]. J Funct Foods, 2020, 65:103746. [73] PANDEY K R, NAIK S R, VAKIL B V. Probiotics, prebiotics and synbiotics-A review[J]. J Food Sci Technol, 2015, 52(12):7577-7587. [74] YE T, MA C, ZHU Q, et al. Effects of dietary supplementation with probiotics and synbiotics on immune function and antioxidant capacity of pregnant-lactating sows[J]. Chinese Journal of Animal Nutrition, 2023, 35(1):168-175. (in Chinese) 叶婷, 马翠, 祝倩, 等. 饲粮添加益生菌和合生元对妊娠-哺乳期母猪免疫功能与抗氧化能力的影响[J]. 动物营养学报, 2023, 35(1):168-175. [75] MAO A P, SUN H R, ZHANG H H, et al. Research progress of probiotics, prebiotics, synbiotics and intestinal health in canine and feline[J]. Chinese Journal of Animal Nutrition, 2022, 34(4):2140-2147. (in Chinese) 毛爱鹏, 孙皓然, 张海华, 等. 益生菌、益生元、合生元与犬猫肠道健康的研究进展[J]. 动物营养学报, 2022, 34(4):2140-2147. [76] MOSCA F, GIANNÌ M L, RESCIGNO M. Can postbiotics represent a new strategy for NEC?[J]. Adv Exp Med Biol, 2019, 1125:37-45. [77] TSILINGIRI K, RESCIGNO M. Postbiotics:what else?[J]. Benef Microbes, 2013, 4(1):101-107. [78] REN Q, YANG B, ZHANG H, et al. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 ameliorate dextran sodium sulfate-induced colitis in mice[J]. J Agric Food Chem, 2020, 68(12):3758-3769. [79] ZHA Z Q, LV Y, TANG H L, et al. An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis[J]. Int J Biol Macromol, 2020, 156:1217-1233. [80] QURAISHI M N, SHAHEEN W, OO Y H, et al. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease[J]. Clin Exp Immunol, 2020, 199(1):24-38. [81] MAHMOUDI H, HOSSAINPOUR H. Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases:A review[J]. Saudi J Gastroenterol, 2023, 29(1):3-11. [82] QURAISHI M N, WIDLAK M, BHALA N, et al. Systematic review with meta-analysis:The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection[J]. Aliment Pharmacol Ther, 2017, 46(5):479-493. [83] BAKTASH A, TERVEER E M, ZWITTINK R D, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections[J]. Front Microbiol, 2018, 9:1242. [84] BURRELLO C, GIUFFRÈ M R, MACANDOG A D, et al. Fecal microbiota transplantation controls murine chronic intestinal inflammation by modulating immune cell functions and gut microbiota composition[J]. Cells, 2019, 8(6):517. [85] TANG W J, CHEN D W, YU B, et al. Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets[J]. Vet Res, 2020, 51(1):55. [86] HUANG J, LI C, CUI Y Q, et al. Study on the effect of gut microbiota disturbance on susceptibility to BVDV based on a mouse model[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8):3466-3473. (in Chinese) 黄江, 李闯, 崔月琦, 等. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8):3466-3473. [87] WANG Y, TENG X X, YANG N Z, et al. Preliminary report of the therapeutic effect of fecal microbiota transplantation on non-specific pathogenic diarrhea in suckling lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8):1878-1885. (in Chinese) 王燕, 滕晓晓, 杨柠芝, 等. 粪菌移植法治疗非特异病原性羔羊腹泻的效果初报[J]. 畜牧兽医学报, 2020, 51(8):1878-1885. [88] LEONARDI I, PARAMSOTHY S, DORON I, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis[J]. Cell Host Microbe, 2020, 27(5):823-829.e3. |
[1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[2] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[3] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[4] | 邓梏男, 张家祺, 保志鹏, 陈涛云, 喻琦胜, 丁露, 朱晨曦, 王怡, 任玉鹏, 贺超, 张斌. 猫疱疹病毒1型的检测及一株分离毒株的致病性[J]. 畜牧兽医学报, 2024, 55(5): 2253-2258. |
[5] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[6] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[7] | 罗承慧, 高江瑞, 陈俊威, 魏春洁, 韦双双, 裴业春. 尘螨诱导特应性皮炎小鼠模型和哮喘小鼠模型的构建[J]. 畜牧兽医学报, 2024, 55(3): 1257-1267. |
[8] | 武文英, 夏青, 胡萌婕, 赵逸轩, 王琛, 张宇豪, 郝成武, 贺笋, 郭爱珍, 陈建国, 陈颖钰. 牛支原体兔体攻毒模型的建立[J]. 畜牧兽医学报, 2024, 55(3): 1268-1277. |
[9] | 王娜娜, 李颀菡, 马媛, 金昊延, 胡亚美, 马云, 张令锴. TLR7和TLR8在家畜性控技术中的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 427-437. |
[10] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[11] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[12] | 范定坤, 张吉贤, 付域泽, 马涛, 毕研亮, 张乃锋. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
[13] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
[14] | 马淑娟, 徐祎洁, 何珂, 马瑞丰, 朱英. 反刍动物Toll样受体多基因家族的分子进化及表达模式分析[J]. 畜牧兽医学报, 2023, 54(9): 3722-3734. |
[15] | 胡湘云, 曹艳红, 吕玲燕, 刘征, 黄发才, 吴柱月, 肖正中. 纳米抗体及其在兽医领域的研究现状[J]. 畜牧兽医学报, 2023, 54(8): 3164-3172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||