[1] |
WAN J, CHEN B C, RAO J J. Occurrence and preventive strategies to control mycotoxins in cereal-based food[J]. Compr Rev Food Sci Food Saf, 2020, 19(3):928-953.
|
[2] |
TURNER P C, SNYDER J A. Development and limitations of exposure biomarkers to dietary contaminants mycotoxins[J]. Toxins (Basel), 2021, 13(5):314.
|
[3] |
DAI C S, XIAO X L, SUN F F, et al. T-2 toxin neurotoxicity:role of oxidative stress and mitochondrial dysfunction[J]. Arch Toxicol, 2019, 93(11):3041-3056.
|
[4] |
ADHIKARI M, NEGI B, KAUSHIK N, et al. T-2 mycotoxin:toxicological effects and decontamination strategies[J]. Oncotarget, 2017, 8(20):33933-33952.
|
[5] |
SCHUHMACHER-WOLZ U, HEINE K, SCHNEIDER K. Report on toxicity data on trichothecene mycotoxins HT-2 and T-2 toxins[J]. EFSA Supporting Publ, 2010, 7(7):65E.
|
[6] |
KUCA K, DOHNAL V, JEZKOVA A, et al. Metabolic pathways of T-2 toxin[J]. Curr Drug Metab, 2008, 9(1):77-82.
|
[7] |
NICHOLSON P, CHANDLER E, DRAEGER R C, et al. Molecular tools to study epidemiology and toxicology of fusarium head blight of cereals[J]. Eur J Plant Pathol, 2003, 109(7):691-703.
|
[8] |
SUDAKIN D L. Trichothecenes in the environment:relevance to human health[J]. Toxicol Lett, 2003, 143(2):97-107.
|
[9] |
MEISSONNIER G M, LAFFITTE J, RAYMOND I, et al. Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs[J]. Toxicology, 2008, 247(1):46-54.
|
[10] |
KOLF-CLAUW M, SASSAHARA M, LUCIOLI J, et al. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants[J]. Arch Toxicol, 2013, 87(12):2233-2241.
|
[11] |
GALARZA-SEEBER R, LATORRE J D, BIELKE L R, et al. Leaky gut and mycotoxins:aflatoxin B1 does not increase gut permeability in broiler chickens[J]. Front Vet Sci, 2016, 3:10.
|
[12] |
WANG C L, WANG X D, HUANG Y X, et al. Effects of dietary T-2 toxin on gut health and gut microbiota composition of the juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Fish Shellfish Immunol, 2020, 106:574-582.
|
[13] |
LI A P, HAO W, GUAN S, et al. Mycotoxin contamination in feeds and feed materials in China in year 2020[J]. Front Vet Sci, 2022, 9:1016528.
|
[14] |
PONZIANI F R, PECERE S, GASBARRINI A, et al. Physiology and pathophysiology of liver lipid metabolism[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(8):1055-1067.
|
[15] |
王 吉, 王湘林, 肖海思, 等. 单宁的生物活性及其在畜禽生产中的应用[J]. 中国农业大学学报, 2022, 27(4):164-178.WANG J, WANG X L, XIAO H S, et al. Biological activity of tannin and its application in livestock and poultry production[J]. Journal of China Agricultural University, 2022, 27(4):164-178. (in Chinese)
|
[16] |
WANG J, XIAO H S, ZHU Y Y, et al. Tannic acid induces the mitochondrial pathway of apoptosis and S phase arrest in porcine intestinal IPEC-J2 cells[J]. Toxins (Basel), 2019, 11(7):397.
|
[17] |
王 吉, 张琳玉, 刘翔燕, 等. 单宁酸诱导猪肾细胞氧化损伤和凋亡[J]. 动物营养学报, 2020, 32(9):4327-4336.WANG J, ZHANG L Y, LIU X Y, et al. Tannic acid induces oxidative damage and apoptosis in pig kidney cells[J]. Chinese Journal of Animal Nutrition, 2020, 32(9):4327-4336. (in Chinese)
|
[18] |
YANG Y, LUO H H, SONG X, et al. Preparation of Galla chinensis oral solution as well as its stability, safety, and antidiarrheal activity evaluation[J]. Evid Based Complement Alternat Med, 2017, 2017:1851459.
|
[19] |
GIRARD M, THANNER S, PRADERVAND N, et al. Hydrolysable chestnut tannins for reduction of postweaning diarrhea:efficacy on an experimental ETEC F4 model[J]. PLoS One, 2018, 13(5):e0197878.
|
[20] |
WU J, LI J Y, LIU Y W, et al. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice[J]. Environ Pollut, 2021, 287:117557.
|
[21] |
KATZ J P, PERREAULT N, GOLDSTEIN B G, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon[J]. Development, 2002, 129(11):2619-2628.
|
[22] |
杨松巍, 王 亮, 李虎进, 等. IL-18通过下调KLF4阻碍杯状细胞发育加剧小鼠溃疡性结肠炎[J]. 重庆医科大学学报, 2020, 45(9):1327-1331.YANG S W, WANG L, LI H J, et al. IL-18 aggravated ulcerative colitis by inhibiting the development of goblet cells through KLF4 in mice[J]. Journal of Chongqing Medical University, 2020, 45(9):1327-1331. (in Chinese)
|
[23] |
CHOI J, LIU G C, GOO D, et al. Effects of tannic acid supplementation on growth performance, gut health, and meat production and quality of broiler chickens raised in floor pens for 42 days[J]. Front Physiol, 2022, 13:1082009.
|
[24] |
BALDA M S, MATTER K. Tight junctions at a glance[J]. J Cell Sci, 2008, 121(Pt 22):3677-3682.
|
[25] |
ZHOU Y, NI X Q, DUAN L, et al. Lactobacillus plantarum BSGP201683 improves the intestinal barrier of giant panda microbiota-associated mouse infected by enterotoxigenic Escherichia coli K88[J]. Probiotics Antimicrob Proteins, 2021, 13(3):664-676.
|
[26] |
FELDMAN G J, MULLIN J M, RYAN M P. Occludin:structure, function and regulation[J]. Adv Drug Deliv Rev, 2005, 57(6):883-917.
|
[27] |
JIANG Y D, SONG J, XU Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway[J]. Life Sci, 2021, 275:119254.
|
[28] |
SONG Y Y, LUO Y, YU B, et al. Tannic acid extracted from gallnut prevents post-weaning diarrhea and improves intestinal health of weaned piglets[J]. Anim Nutr, 2021, 7(4):1078-1086.
|
[29] |
YU J, SONG Y Y, YU B, et al. Tannic acid prevents post-weaning diarrhea by improving intestinal barrier integrity and function in weaned piglets[J]. J Anim Sci Biotechnol, 2020, 11:87.
|
[30] |
XU T T, MA X, ZHOU X C, et al. Coated tannin supplementation improves growth performance, nutrients digestibility, and intestinal function in weaned piglets[J]. J Anim Sci, 2022, 100(5):skac088.
|
[31] |
LIU X M, MAO B Y, GU J Y, et al. Blautia-a new functional genus with potential probiotic properties?[J]. Gut Microbes, 2021, 13(1):1875796.
|
[32] |
DOS SANTOS CRUZ B C, DA CONCEIÇÃO L L, DE OLIVEIRA MENDES T A, et al. Use of the synbiotic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus Saccharimonas in a colitis-associated carcinogenesis model[J]. Food Res Int, 2020, 137:109721.
|
[33] |
DAHL W J, RIVERO MENDOZA D, LAMBERT J M. Diet, nutrients and the microbiome[J]. Prog Mol Biol Transl Sci, 2020, 171:237-263.
|
[34] |
HIIPPALA K, BARRETO G, BURRELLO C, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro[J]. Front Microbiol, 2020, 11:575455.
|
[35] |
JIN J J, GAO L M, ZOU X L, et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts[J]. Circ Res, 2022, 131(6):492-506.
|
[36] |
KUSHKEVYCH I, DORDEVIĆ D, KOLLÁR P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis[J]. Open Life Sci, 2018, 13(1):481-488.
|
[37] |
ZHANG Y, PAN H B, YE X Q, et al. Proanthocyanidins from Chinese bayberry leaves reduce obesity and associated metabolic disorders in high-fat diet-induced obese mice through a combination of AMPK activation and an alteration in gut microbiota[J]. Food Funct, 2022, 13(4):2295-2305.
|
[38] |
CHEN H L, XING X, ZHANG B, et al. Higher mucosal type II immunity is associated with increased gut microbiota diversity in BALB/c mice after Trichinella spiralis infection[J]. Mol Immunol, 2021, 138:87-98.
|
[39] |
DONG F, XIAO F F, LI X L, et al. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice[J]. J Transl Med, 2022, 20(1):33.
|
[40] |
BAI X W, WEI H, LIU W X, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites[J]. Gut, 2022, 71(12):2439-2450.
|