畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3526-3540.doi: 10.11843/j.issn.0366-6964.2024.08.025
收稿日期:
2023-09-28
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
娜仁花
E-mail:969119894@qq.com;nrh0123456@hotmail.com
作者简介:
娜梅拉(1998-),女,内蒙古赤峰人,博士生,主要从事动物环境与营养研究,E-mail: 969119894@qq.com
基金资助:
Meila NA(), Kenan LI, Haidong DU, Wenliang GUO, Renhua NA*(
)
Received:
2023-09-28
Online:
2024-08-23
Published:
2024-08-28
Contact:
Renhua NA
E-mail:969119894@qq.com;nrh0123456@hotmail.com
摘要:
本试验旨在采用高通量测序技术,测定内蒙古白绒山羊不同日龄时瘤胃及粪便真菌多样性的定植规律,为后续绒山羊早期营养调控相关研究提供数据依据。选取按照场区正常生产管理并饲养的10、30、50、150日龄体重分别为(4.99±0.13)、(7.71±0.52)、(13.83±0.18)、(20.60±0.81)kg的内蒙古白绒山羊母羔各3只(每只为1个重复,共12只),进行屠宰、取瘤胃液(R组)及粪便(F组)。采用特异性引物对ITS1F/ITS2R扩增瘤胃和粪便真菌ITS区,用Illumina Miseq PE300平台进行测序。结果表明:1)本试验24个样共获得1 636 055条优化序列(Clean tags),平均每个样含有(68 168±24 317)条,每条序列平均长度为(244±28)bp。2)随日龄的增加,瘤胃和粪便真菌总OTUs以及与后一个日龄共享的OTUs开始时稍有降低,但随后逐渐增加。10、30、50、150日龄时瘤胃和粪便共享的真菌OTUs分别占同日龄检测到的瘤胃和粪便OTU总数的34.22%、20.87%、27.63%和20.53%。3)随日龄的增加,瘤胃真菌群落Shannon、Simpson、Ace、Chao指数差异不显著(P>0.05),而50、150日龄时粪便中真菌Shannon和Simpson指数分别显著高于和低于10日龄组(P < 0.05)。50日龄时瘤胃中真菌Shannon和Simpson指数分别显著高于和低于粪便组(P < 0.05)。4)50日龄和150日龄瘤胃真菌菌群β多样性极显著聚为一类(P < 0.01),并与10日龄和30日龄瘤胃真菌菌群β多样性极显著分开(P < 0.01)。50日龄和150日龄粪便真菌群落β多样性分别极显著独立分布且与10日龄和30日龄粪便真菌群落β多样性分开(P < 0.01)。另外,150日龄瘤胃及粪便组内真菌群落β多样性相似度大于其他日龄组。5)当日龄为10、30、50、150 d时,在门水平上瘤胃及粪便真菌组成相似,均为子囊菌门(Ascomycota)、未分类的真菌(Unclassified_k_fungi)、新美鞭菌门(Neocallimastigomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota),其中子囊菌门占绝对优势。而在属水平上瘤胃及粪便真菌组成稍有差异。瘤胃中丰度最高的物种在10、50日龄时均为未分类的真菌,在30、150日龄时分别为荚孢腔菌属(Sporormiella)和酵母菌属(Saccharomyces)。粪便中丰度最高的物种10、50日龄时分别为未分类的真菌和新美鞭菌属(Neocallimastix),30、150日龄时分别为Cleistothelebolus和枝孢菌层(Cladosporium)。6)在门水平上的进一步LefSe分析发现,新美鞭菌门无论是在150日龄内蒙古白绒山羊瘤胃中还是在50日龄内蒙古白绒山羊粪便中均是显著富集的物种(P < 0.05);比较同日龄瘤胃和粪便真菌群落时,只有在150日龄瘤胃和粪便中分别显著富集了未分类的真菌和子囊菌门。7)基于FUNGuild功能预测,瘤胃真菌在羔羊10、50日龄时分别以未分类营养型(Unclassified)和病理营养型(Pathotroph)为主,30、150日龄时均以腐生营养型(Saprotroph)为主。粪便真菌在10、150日龄时均以病理-腐生-共生营养型(Pathotroph-Saprotroph-Symbiotroph)为主,30、50日龄时均以腐生营养型为主。由此可见,随着内蒙古白绒山羊羔羊的发育,瘤胃真菌群落逐渐有利于饲料中纤维的降解。幼龄时期瘤胃和粪便中还存在很多丰度较高且未分类的物种,其功能还未明确,因此还需要更深一步的研究。
中图分类号:
娜梅拉, 李科南, 杜海东, 郭文亮, 娜仁花. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55(8): 3526-3540.
Meila NA, Kenan LI, Haidong DU, Wenliang GUO, Renhua NA. Study on the Differences of Fungal Diversity in Rumen and Feces of Inner Mongolia Cashmere Goats at Different Ages[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3526-3540.
表 1
不同日龄瘤胃及粪便真菌菌群α多样性指数"
项目 Item | 组别 Group | 试验日期 Experiment date | P值 P-value | |||
10日龄 10-day-old | 30日龄 30-day-old | 50日龄 50-day-old | 150日龄 150-day-old | |||
Shannon | R | 2.61±0.61 | 2.88±1.26 | 3.81±0.14A | 3.36±0.18 | 0.397 3 |
F | 2.03±0.69b | 2.53±0.2ab | 3.37±0.17aB | 3.17±0.24a | 0.031 3 | |
P值 P-value | 0.4197 | 0.7177 | 0.0462 | 0.425 | ||
Simpson | R | 0.29±0.17 | 0.25±0.28 | 0.04±0.01B | 0.09±0.03 | 0.414 1 |
F | 0.38±0.18a | 0.21±0.04ab | 0.08±0.02bA | 0.10±0.01b | 0.048 5 | |
P值 P-value | 0.634 6 | 0.833 3 | 0.037 7 | 0.637 3 | ||
Ace | R | 323.52±63.84 | 144.54±41.2 | 194.77±53.85 | 231.6±72.26 | 0.079 2 |
F | 194.56±153.53 | 103.68±4.85 | 123.31±30.95 | 249.45±78.12 | 0.379 1 | |
P值 P-value | 0.334 3 | 0.236 1 | 0.179 1 | 0.824 2 | ||
Chao | R | 334.09±60.31 | 145.37±39.66 | 197.79±53.88 | 230.31±70.86 | 0.056 3 |
F | 192.54±151.38 | 102.12±5.94 | 123±31.01 | 251.02±78.7 | 0.361 4 | |
P值 P-value | 0.286 6 | 0.201 9 | 0.164 1 | 0.795 8 | ||
Coverage | R | 99.87±0.04b | 99.97±0.00a | 99.97±0.01aB | 99.95±0.03a | 0.015 3 |
F | 99.95±0.06 | 99.98±0.01 | 99.99±0.00A | 99.94±0.05 | 0.449 7 | |
P值 P-value | 0.183 9 | 0.319 0 | 0.034 3 | 0.827 9 |
表 2
不同日龄瘤胃和粪便真菌菌群丰度(门水平)"
项目 Item | 组别 Group | 试验日期 Experiment date | P值 P-value | |||
10日龄 10-day-old | 30日龄 30-day-old | 50日龄 50-day-old | 150日龄 150-day-old | |||
子囊菌门 Ascomycota | R | 33.31±18.01b | 88.82±6.18a | 65.57±12.77a | 67.84±9.81a | 0.013 9 |
未分类的真菌 | 32.49±40.66 | 4.64±2.28 | 11.03±7.21 | 5.18±3.78 | 0.530 3 | |
Unclassified_k_Fungi | ||||||
新美鞭菌门 | 1.62±2.26b | 0.35±0.49b | 18.10±5.90a | 20.38±11.49a | 0.027 6 | |
Neocallimastigomycota | ||||||
被孢霉门 | 25.77±1.88a | 0.09±2.63b | 0.00±0.42b | 0.07±0.69b | 0.052 8 | |
Mortierellomycota | ||||||
担子菌门 | 3.68±18.25 | 4.86±0.13 | 5.22±0.00 | 6.43±0.10 | 0.473 3 | |
Basidiomycota | ||||||
其他 Others | 3.12±3.93 | 1.24±0.86 | 0.08±0.07 | 0.10±0.01 | 0.437 5 | |
子囊菌门 Ascomycota | F | 61.03±36.50 | 74.38±21.45 | 63.85±15.47 | 85.80±1.67 | 0.693 4 |
未分类的真菌 | 31.41±40.38 | 3.26±1.19 | 6.83±6.52 | 0.26±0.04 | 0.453 8 | |
Unclassified_k_Fungi | ||||||
担子菌门 | 1.66±0.83 | 21.24±23.29 | 4.67±0.38 | 7.26±2.29 | 0.405 9 | |
Basidiomycota | ||||||
新美鞭菌门 | 0.00±0.00b | 0.04±0.04b | 24.46±10.96a | 6.43±1.55b | 0.006 7 | |
Neocallimastigomycota | ||||||
被孢霉门 | 5.29±7.44 | 0.10±0.14 | 0.14±0.20 | 0.06±0.04 | 0.452 9 | |
Mortierellomycota | ||||||
其他 Others | 0.61±0.60 | 0.97±1.30 | 0.04±0.06 | 0.18±0.12 | 0.580 9 |
表 3
不同日龄瘤胃和粪便真菌菌群丰度(属水平)"
项目 Item | 组别 Group | 试验日期 Experiment date | P值 P-value | |||
10日龄 10-day-old | 30日龄 30-day-old | 50日龄 50-day-old | 150日龄 150-day-old | |||
未分类的真菌 | R | 32.49±40.66 | 4.64±2.28 | 11.03±7.21 | 5.18±3.78 | 0.530 3 |
Unclassified_k_Fungi | ||||||
荚孢腔菌属 | 2.95±2.77 | 36.71±31.64 | 0.20±0.04 | 0.17±0.16 | 0.131 0 | |
Sporormiella | ||||||
被孢霉菌属 | 25.77±18.25a | 0.09±0.13b | 0.00±0.00b | 0.07±0.10b | 0.052 8 | |
Mortierella | ||||||
酵母菌属 | 0.00±0.00b | 0.00±0.01b | 0.64±0.31b | 24.58±5.68a | < 0.000 1 | |
Saccharomyces | ||||||
壳二孢属 Ascochyta | 0.20±0.17c | 2.31±1.27c | 10.71±1.26a | 6.72±0.76b | < 0.000 1 | |
Lectera | 1.32±1.67 | 3.15±4.15 | 6.00±2.39 | 3.88±1.62 | 0.420 6 | |
枝孢菌属 | 0.53±0.42 | 2.99±3.52 | 4.41±2.36 | 6.29±3.18 | 0.250 4 | |
Cladosporium | ||||||
曲霉菌属 Aspergillus | 6.51±1.28 | 3.70±2.60 | 1.00±0.99 | 2.30±1.89 | 0.072 0 | |
新美鞭菌属 | 0.00±0.00 | 0.03±0.04 | 6.09±3.75 | 5.95±4.56 | 0.111 7 | |
Neocallimastix | ||||||
梨囊鞭菌属 Piromyces | 0.01±0.01 | 0.04±0.06 | 4.52±1.79 | 6.49±5.28 | 0.113 2 | |
其他 Others | 30.20±18.42 | 46.33±21.05 | 55.39±7.34 | 38.37±6.41 | 0.417 8 | |
未分类的真菌 | F | 31.41±40.38 | 3.26±1.19 | 6.83±6.52 | 0.26±0.04 | 0.453 8 |
Unclassified_k_Fungi | ||||||
枝孢菌属 | 0.94±0.62c | 1.42±0.23c | 8.18±2.65b | 23.09±3.34a | < 0.000 1 | |
Cladosporium | ||||||
无茎真菌属 Acaulium | 25.02±32.09 | 0.42±0.47 | 0.00±0.00 | 0.03±0.04 | 0.369 7 | |
曲霉菌属 Aspergillus | 8.72±4.17 | 7.57±4.19 | 6.14±3.44 | 0.66±0.17 | 0.168 3 | |
Cleistothelebolus | 0.00±0.00 | 21.85±19.97 | 0.03±0.04 | 0.00±0.00 | 0.144 2 | |
新美鞭菌属 | 0.00±0.00b | 0.01±0.01b | 20.87±14.75a | 0.01±0.01b | 0.051 8 | |
Neocallimastix | ||||||
荚孢腔菌属 | 0.46±0.65 | 18.03±15.82 | 0.68±0.31 | 0.8±0.46 | 0.142 3 | |
Sporormiella | ||||||
青霉菌属 Penicillium | 0.25±0.23b | 0.53±0.57b | 0.53±0.39b | 14.71±5.39a | 0.001 6 | |
Tausonia | 0.00±0.00 | 12.52±17.7 | 0.00±0.00 | 0.02±0.03 | 0.441 6 | |
闭小囊菌属 Kernia | 9.05±12.40 | 2.17±1.37 | 0.14±0.20 | 0.01±0.01 | 0.469 6 | |
其他 Others | 24.16±16.27b | 32.22±10.59ab | 56.59±12.89a | 60.39±2.78a | 0.036 7 |
表 4
不同日龄瘤胃和粪便真菌FUNGuild功能预测丰度"
项目 Item | 组别 Group | 试验日期 Experiment date | P值 P-value | |||
10日龄 10-day-old | 30日龄 30-day-old | 50日龄 50-day-old | 150日龄 150-day-old | |||
腐生营养型 | R | 21.33±9.02 | 60.82±25.64 | 18.89±3.05 | 35.13±5.92 | 0.058 8 |
Saprotroph | ||||||
未分类营养型 | 37.74±37.36 | 10.87±5.81 | 15.71±6.33 | 9.39±3.96 | 0.468 5 | |
Unclassified | ||||||
腐生-共生营养型 | 28.06±19.72 | 2.12±1.69 | 13.15±6.88 | 13.17±9.83 | 0.244 8 | |
Saprotroph-Symbiotroph | ||||||
病理营养型 Pathotroph | 3.97±2.65b | 9.71±6.99ab | 19.66±5.05a | 15.26±2.43a | 0.045 5 | |
病理-腐生-共生营养型 | 7.32±4.92 | 10.91±8.47 | 14.03±4.91 | 13.21±4.47 | 0.683 6 | |
Pathotroph-Saprotroph-Symbiotroph | ||||||
病理-腐生营养型 | 1.44±1.35b | 5.37±3.14b | 13.09±3.71a | 6.41±0.49b | 0.011 2 | |
Pathotroph-Saprotroph | ||||||
共生营养型 | 0.09±0.11 | 0.16±0.23 | 5.13±1.31 | 7.28±5.20 | 0.063 9 | |
Symbiotroph | ||||||
病理-共生营养型 | 0.05±0.04 | 0.03±0.03 | 0.35±0.48 | 0.16±0.21 | 0.625 9 | |
Pathotroph-Symbiotroph | ||||||
腐生营养型 | F | 22.15±18.7 | 58.69±26.5 | 28.33±7.92 | 34.52±9.10 | 0.241 8 |
Saprotroph | ||||||
病理-腐生-共生营养型 | 33.31±30.75 | 5.68±2.17 | 12.83±4.19 | 43.59±6.82 | 0.138 6 | |
Pathotroph-Saprotroph-Symbiotroph | ||||||
未分类营养型 | 32.79±39.86 | 23.93±21.6 | 11.75±6.93 | 4.33±1.60 | 0.628 5 | |
Unclassified | ||||||
腐生-共生营养型 | 5.54±7.28 | 2.52±2.68 | 23.78±13.40 | 5.41±2.24 | 0.088 8 | |
Saprotroph-Symbiotroph | ||||||
病理营养型 Pathotroph | 5.86±7.83 | 4.43±2.96 | 12.47±2.55 | 2.99±1.32 | 0.226 3 | |
病理-腐生营养型 | 0.34±0.32b | 3.32±3.85ab | 8.51±2.57a | 7.73±1.03a | 0.027 3 | |
Pathotroph-Saprotroph | ||||||
共生营养型 | 0.00±0.00 | 0.38±0.53 | 2.32±2.12 | 1.36±1.57 | 0.370 3 | |
Symbiotroph | ||||||
病理-共生营养型 | 0.00±0.01 | 1.04±1.47 | 0.00±0.00 | 0.04±0.03 | 0.451 9 | |
Pathotroph-Symbiotroph | ||||||
腐生-病理-共生营养型 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.03±0.04 | 0.441 1 | |
Saprotroph-Pathotroph-Symbiotroph |
1 | PUNIYA A K, SINGH R, KAMRA D N. Rumen microbiology: from evolution to revolution[M]. New Delhi: Springer, 2015. |
2 |
马秀花, 温红瑞, 马步仓, 等. 甘露寡糖对饲喂荞麦秸秆饲粮滩羊瘤胃真菌菌群的影响[J]. 动物营养学报, 2022, 34 (4): 2514- 2523.
doi: 10.3969/j.issn.1006-267x.2022.04.046 |
MA X H , WEN H R , MA B C , et al. Effects of mannose-oligosaccharides on rumen fungal flora of Tan sheep fed buckwheat straw diet[J]. Chinese Journal of Animal Nutrition, 2022, 34 (4): 2514- 2523.
doi: 10.3969/j.issn.1006-267x.2022.04.046 |
|
3 | 韦玥瑞, 张晓东, 李科南, 等. 日粮类型对内蒙古绒山羊瘤胃真菌多样性的影响[J]. 饲料研究, 2021, 44 (23): 6- 11. |
WEI Y R , ZHANG X D , LI K N , et al. The effect of diet types on rumen fungi diversity of Inner Mongolia cashmere goats[J]. Feed Research, 2021, 44 (23): 6- 11. | |
4 |
WILSON C A , WOOD T M . Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose[J]. Enzyme Microb Technol, 1992, 14 (4): 258- 264.
doi: 10.1016/0141-0229(92)90148-H |
5 |
HESS M , PAUL S S , PUNIYA A K , et al. Anaerobic fungi: past, present, and future[J]. Front Microbiol, 2020, 11, 584893.
doi: 10.3389/fmicb.2020.584893 |
6 | DOS SANTOS T A X , FERNANDES L M G , CARVALHO P P X , et al. Performance and microbiota of the digestive tract of Nellore calves supplemented with fungi isolated from bovine rumen[J]. Vet World, 2021, 14 (10): 2686- 2693. |
7 |
WEI Y Q , YANG H , WANG Z Y , et al. Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks[J]. AMB Express, 2022, 12 (1): 123.
doi: 10.1186/s13568-022-01462-2 |
8 |
WALLACE R J , JOBLIN K N . Proteolytic activity of a rumen anaerobic fungus[J]. FEMS Microbiol Lett, 1985, 29 (1-2): 19- 25.
doi: 10.1111/j.1574-6968.1985.tb00828.x |
9 |
WHEELER M L , LIMON J J , BAR A S , et al. Immunological consequences of intestinal fungal dysbiosis[J]. Cell Host Microbe, 2016, 19 (6): 865- 873.
doi: 10.1016/j.chom.2016.05.003 |
10 |
LAM S , BAI X W , SHKOPOROV A N , et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation[J]. Lancet Gastroenterol Hepatol, 2022, 7 (5): 472- 484.
doi: 10.1016/S2468-1253(21)00303-4 |
11 | 刘佳, 陈月, 肖惠文, 等. 肠道真菌研究进展[J]. 菌物学报, 2023, 42 (1): 26- 37. |
LIU J , CHEN Y , XIAO H W , et al. Research progress of gut mycobiota[J]. Mycosystema, 2023, 42 (1): 26- 37. | |
12 |
ANGEL S K , WICKLOW D T . Relationships between coprophilous fungi and fecal substrates in a Colorado grassland[J]. Mycologia, 1975, 67 (1): 63- 74.
doi: 10.1080/00275514.1975.12019722 |
13 | 占今舜, 杨群, 胡耀, 等. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响[J]. 草业学报, 2020, 29 (7): 122- 130. |
ZHAN J S , YANG Q , HU Y , et al. Effects of dietary concentration: roughage ratio on rumen fermentation and flora population structure in Hu sheep[J]. Acta Prataculturae Sinica, 2020, 29 (7): 122- 130. | |
14 | 郭旭, 张科, 陈玉林, 等. 幼龄反刍动物瘤胃微生物的定植过程与调控措施[J]. 中国畜牧兽医, 2021, 48 (3): 882- 892. |
GUO X , ZHANG K , CHEN Y L , et al. The colonization process and regulation measures of rumen microorganisms in young ruminants[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (3): 882- 892. | |
15 |
王佳堃, 杨斌, 黄开朗. 幼龄反刍动物消化道微生物演替与消化道发育及其调控[J]. 动物营养学报, 2020, 32 (10): 4697- 4707.
doi: 10.3969/j.issn.1006-267x.2020.10.021 |
WANG J K , YANG B , HUANG K L . Regulation of microbial succession and gastrointestinal development in young ruminants[J]. Chinese Journal of Animal Nutrition, 2020, 32 (10): 4697- 4707.
doi: 10.3969/j.issn.1006-267x.2020.10.021 |
|
16 |
宋明明, 党丹岐, 赵佳楠, 等. 幼龄反刍动物胃肠道免疫系统发育及其调控的研究进展[J]. 动物营养学报, 2023, 35 (11): 6905- 6913.
doi: 10.12418/CJAN2023.629 |
SONG M M , DANG D Q , ZHAO J N , et al. Research progress in development and regulation of gastrointestinal immune system in young ruminants[J]. Chinese Journal of Animal Nutrition, 2023, 35 (11): 6905- 6913.
doi: 10.12418/CJAN2023.629 |
|
17 | 赵旭, 凌玉钊, 王建华, 等. 幼龄反刍动物瘤胃微生物定植及其营养调控研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3296- 3304. |
ZHAO X , LING Y Z , WANG J H , et al. Research progress on rumen microbial colonization and nutritional regulation of young ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3296- 3304. | |
18 |
JAMI E , ISRAEL A , KOTSER A , et al. Exploring the bovine rumen bacterial community from birth to adulthood[J]. ISME J, 2013, 7 (6): 1069- 1079.
doi: 10.1038/ismej.2013.2 |
19 |
刘洁, 李伟, 李鑫, 等. 不同品种羔羊胃肠道微生物发育规律的比较研究[J]. 动物营养学报, 2023, 35 (10): 6475- 6496.
doi: 10.12418/CJAN2023.593 |
LIU J , LI W , LI X , et al. Comparative studies on developmental patterns of gastrointestinal microbiota of different breed lambs[J]. Chinese Journal of Animal Nutrition, 2023, 35 (10): 6475- 6496.
doi: 10.12418/CJAN2023.593 |
|
20 | 叶倩文, 陈卓, 李鑫, 等. 一月龄吮乳羔羊肠道菌群组成及其预测物质代谢功能的动态变化研究[J]. 畜牧兽医学报, 2023, 54 (3): 1095- 1108. |
YE Q W , CHEN Z , LI X , et al. Dynamic changes of gut microbiota composition and its predicted metabolism function in one-month-old sucking lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (3): 1095- 1108. | |
21 | 郭伟. 放牧牦牛瘤胃微生物发育模式研究[D]. 兰州: 兰州大学, 2021. |
GUO W. The development model of microbiota in the rumen of grazing Yak[D]. Lanzhou: Lanzhou University, 2021. (in Chinese) | |
22 |
YIN X J , DUAN C H , JI S K , et al. Average daily gain in lambs weaned at 60 days of age is correlated with rumen and rectum microbiota[J]. Microorganisms, 2023, 11 (2): 348.
doi: 10.3390/microorganisms11020348 |
23 |
王继文, 王立志, 闫天海, 等. 山羊瘤胃与粪便微生物多样性[J]. 动物营养学报, 2015, 27 (8): 2559- 2571.
doi: 10.3969/j.issn.1006-267x.2015.08.030 |
WANG J W , WANG L Z , YAN T H , et al. Diversity of ruminal and fecal microbiota of goat[J]. Chinese Journal of Animal Nutrition, 2015, 27 (8): 2559- 2571.
doi: 10.3969/j.issn.1006-267x.2015.08.030 |
|
24 | 李海琴, 贾建磊, 侯生珍. 不同断奶时间对羔羊瘤胃组织形态和真菌群落结构的影响[J]. 中国兽医学报, 2021, 41 (12): 2431- 2437. |
LI H Q , JIA J L , HOU S Z . Effects of different weaning time on rumen tissue morphology and fungal community structure of small tail Han sheep lambs[J]. Chinese Journal of Veterinary Science, 2021, 41 (12): 2431- 2437. | |
25 | MEALE S J , LI S C , AZEVEDO P , et al. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves[J]. Front Microbiol, 2016, 7, 582. |
26 | 王海英, 郭守玉, 黄满荣, 等. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性[J]. 中国科学: 生命科学, 2010, 40 (8): 731- 737. |
WANG H Y , GUO S Y , HUANG M R , et al. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota[J]. Sci China Life Sci, 2010, 53 (10): 1163- 1169. | |
27 | 李海琴, 贾建磊, 侯生珍, 等. 不同蛋白水平日粮对小尾寒羊羔羊瘤胃真菌群落多样性与结构的影响[J]. 中国兽医学报, 2021, 41 (11): 2256- 2262. |
LI H Q , JIA J L , HOU S Z , et al. Effects of different protein levels dietary on diversity and structure of rumen fungal community in small tail Han sheep lambs[J]. Chinese Journal of Veterinary Science, 2021, 41 (11): 2256- 2262. | |
28 | 王荣蛟. 不同质量粗饲料与精粗比日粮对奶水牛消化与瘤胃微生物的影响[D]. 昆明: 云南农业大学, 2022. |
WANG R J. Effects of different quality roughages and concentrate to roughage rations on nutrient digestion and rumen microorganisms in dairy buffaloes[D]. Kunming: Yunnan Agricultural University, 2022. (in Chinese) | |
29 |
陈雪静, 吾尔恩·阿合别尔迪, 木古丽·木哈西, 等. 不同年龄成年伊犁马粪便真菌群落结构的分析[J]. 家畜生态学报, 2022, 43 (5): 35- 40.
doi: 10.3969/j.issn.1673-1182.2022.05.007 |
CHEN X J , AKHBERDI O , MUHAXI M , et al. Analysis of the fungal community structure in faeces of mature Ili horse at different ages[J]. Acta Ecologae Animalis Domastici, 2022, 43 (5): 35- 40.
doi: 10.3969/j.issn.1673-1182.2022.05.007 |
|
30 |
王彩蝶, 李钰琪, 屯妮萨·麦提赛伊迪, 等. 醋酸棉酚对绵羊瘤胃液真菌多样性的影响[J]. 动物营养学报, 2019, 31 (7): 3374- 3382.
doi: 10.3969/j.issn.1006-267x.2019.07.051 |
WANG C D , LI Y Q , TUNNISA M , et al. Effects of gossypol acetic acid on rumen fungi diversity of sheep[J]. Chinese Journal of Animal Nutrition, 2019, 31 (7): 3374- 3382.
doi: 10.3969/j.issn.1006-267x.2019.07.051 |
|
31 | 张洁, 李娜, 郭婷婷, 等. ITS rDNA高通量测序研究不同饲养方式对滩羊瘤胃真菌菌群的影响[J]. 甘肃农业大学学报, 2019, 54 (5): 25- 34. |
ZHANG J , LI N , GUO T T , et al. Effects of different feeding methods on rumen fungus flora of Tan sheep by high-throughput sequencing of ITS rDNA[J]. Journal of Gansu Agricultural University, 2019, 54 (5): 25- 34. | |
32 | 韩旭峰. 日龄、日粮精粗比对陕北白绒山羊瘤胃微生物区系影响的研究[D]. 杨凌: 西北农林科技大学, 2015. |
HAN X F. Effects of age and dietary forage-to-concentrate ratio on rumen microbial flora of the Shaanbei white-cashmere goat[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
33 |
米见对, 廖新俤, 周建伟, 等. 反刍动物瘤胃微生物的建立过程与调控研究进展[J]. 家畜生态学报, 2019, 40 (7): 1- 8.
doi: 10.3969/j.issn.1673-1182.2019.07.001 |
MI J D , LIAO X D , ZHOU J W , et al. Progress in the establishment and manipulation of the rumen micribiota[J]. Acta Ecologae Animalis Domastici, 2019, 40 (7): 1- 8.
doi: 10.3969/j.issn.1673-1182.2019.07.001 |
|
34 | BEIMFORDE C , FELDBERG K , NYLINDER S , et al. Estimating the Phanerozoic history of the ascomycota lineages: combining fossil and molecular data[J]. Mol Phylogenet Evol, 2014, 78, 386- 398. |
35 | 马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤真菌群落的分布特征[J]. 干旱地区农业研究, 2021, 39 (3): 162- 170. |
MA X , LUO Z Z , ZHANG Y Q , et al. Distribution characteristics of soil fungal community in alfalfa field with different standing ages on the rain-fed Loess Plateau[J]. Agricultural Research in the Arid Areas, 2021, 39 (3): 162- 170. | |
36 |
ZHANG Y W , LI F Y , CHEN Y H , et al. Metatranscriptomic profiling reveals the effect of breed on active rumen eukaryotic composition in beef cattle with varied feed efficiency[J]. Front Microbiol, 2020, 11, 367.
doi: 10.3389/fmicb.2020.00367 |
37 |
GRUNINGER R J , PUNIYA A K , CALLAGHAN T M , et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiol Ecol, 2014, 90 (1): 1- 17.
doi: 10.1111/1574-6941.12383 |
38 |
BELANCHE A , DOREAU M , EDWARDS J E , et al. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation[J]. J Nutr, 2012, 142 (9): 1684- 1692.
doi: 10.3945/jn.112.159574 |
39 | 田久东. 发酵西兰花渣生产动物饲料的菌种筛选及其发酵工艺的研究[D]. 呼和浩特: 内蒙古农业大学, 2017. |
TIAN J D. Study on the screening of bacteria and fermenting process of fermented Broccoli Residue as an animal feed material[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese) | |
40 |
FLIEGEROVA K O , PODMIRSEG S M , VINZELJ J , et al. The effect of a high-grain diet on the rumen microbiome of goats with a special focus on anaerobic fungi[J]. Microorganisms, 2021, 9 (1): 157.
doi: 10.3390/microorganisms9010157 |
41 |
MAO S Y , HUO W J , ZHU W Y . Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model[J]. Environ Microbiol, 2016, 18 (2): 525- 541.
doi: 10.1111/1462-2920.12724 |
42 |
BOOTS B , LILLIS L , CLIPSON N , et al. Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet[J]. J Appl Microbiol, 2013, 114 (3): 626- 635.
doi: 10.1111/jam.12067 |
43 |
CHEN Y N , CHEN Y R , LI Y P , et al. Application of Fenton pretreatment on the degradation of rice straw by mixed culture of Phanerochaete chrysosporium and Aspergillus niger[J]. Ind Crops Prod, 2018, 112, 290- 295.
doi: 10.1016/j.indcrop.2017.12.005 |
44 |
ANASONTZIS G E , THUY N T , HANG D T M , et al. Rice straw hydrolysis using secretomes from novel fungal isolates from Vietnam[J]. Biomass Bioenergy, 2017, 99, 11- 20.
doi: 10.1016/j.biombioe.2017.02.008 |
45 | 赵聪聪. 放牧条件下黄牛、犏牛和牦牛瘤胃液生理生化指标及微生物组成比较研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHAO C C. Analysis of physiological and biochemical indexes and microbial composition of rumen liquid of cattle, Dzo and Yak under grazing conditions[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
46 | 杨顺, 杨婷, 林斌, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58 (2): 264- 273. |
YANG S , YANG T , LIN B , et al. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiologica Sinica, 2018, 58 (2): 264- 273. | |
47 |
CAO Y C , WANG L M , KE S L , et al. Fecal mycobiota combined with host immune factors distinguish clostridioides difficile infection from asymptomatic carriage[J]. Gastroenterology, 2021, 160 (7): 2328- 2339. e6.
doi: 10.1053/j.gastro.2021.02.069 |
48 | 孙倩, 吴宏亮, 陈阜, 等. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46 (11): 2963- 2972. |
SUN Q , WU H L , CHEN F , et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46 (11): 2963- 2972. | |
49 | SIGOILLOT J C , BERRIN J G , BEY M , et al. Fungal strategies for lignin degradation[J]. Adv Bot Res, 2012, 61, 263- 308. |
[1] | 李陇平, 李托, 曹培文, 朱海鲸, 张小玲, 张宸, 肖普辉, 董书伟, 冯平, 屈雷, 毕台飞. 饲粮不同能量水平对陕北白绒山羊断奶公羔瘤胃发酵特性和微生物组成的影响[J]. 畜牧兽医学报, 2024, 55(7): 3011-3023. |
[2] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[3] | 刘思佳, 郑楠, 王加启, 赵圣国. 红三叶草提取物对奶牛体外瘤胃发酵中微生物多样性及尿素分解的影响[J]. 畜牧兽医学报, 2024, 55(6): 2510-2518. |
[4] | 龙唐晖, 周江汇, 詹彦波, 张健, 赵向辉, 李艳娇, 欧阳克蕙, 邱清华. 反刍动物瘤胃微生物LuxS/AI-2群体感应研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1893-1903. |
[5] | 龙唐晖, 詹彦波, 廖观香, 陈新锋, 张健, 李艳娇, 欧阳克蕙, 邱清华. 饲粮添加赖氨酸对肉牛粪便发酵参数和微生物菌群结构的影响[J]. 畜牧兽医学报, 2024, 55(5): 2042-2049. |
[6] | 张帅, 陈奎蓉, 许迪, 江山, 王梦影, 张坤, 徐玉培, 雷国凤, 张志程, 郭猛, 赵云翔, 兰干球, 梁晶. 基于16S rRNA测序分析高低饲料转化率猪粪便微生物的组成差异[J]. 畜牧兽医学报, 2024, 55(4): 1605-1614. |
[7] | 常馨丹, 胡帆, 伍志武, 叶炳森, 刘铁海, 林杰, 贺志雄, 谭支良. 日粮添加高比例过瘤胃脂肪对生长肉用绵羊采食行为的影响[J]. 畜牧兽医学报, 2024, 55(3): 1077-1084. |
[8] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[9] | 范定坤, 张吉贤, 付域泽, 马涛, 毕研亮, 张乃锋. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
[10] | 吴志立, 姚军虎, 雷新建. 过瘤胃葡萄糖对围产期奶畜营养调控的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3173-3182. |
[11] | 马友记, 陈鹏飞, 马青, 吴怡. 不同运动量对滩羊瘤胃菌群多样性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3393-3405. |
[12] | 熊程坤, 张道亮, 杨悦, 丁红研, 赵杰, 李玉, 王希春, 冯士彬, 赵畅, 汤继顺, 吴金节. 芦丁对围产期湖羊瘤胃发酵、瘤胃菌群结构及抗氧化性能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2898-2909. |
[13] | 吴祎程, 冉涛, 周传社, 谭支良. 宏基因组学技术分析山羊瘤胃病毒的多样性[J]. 畜牧兽医学报, 2023, 54(7): 2932-2941. |
[14] | 赵威, Mahmoud M. Abdelsattar, 柴建民, 王昕, 刁其玉, 张乃锋. 瘤胃微生物移植及应用研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1792-1803. |
[15] | 王威皓, 段艳, 王宏迪, 窦露, 刘婷, 康乐天, 孙立娜, 敖特恒格日乐, 靳烨. 饲养方式对苏尼特羊生长性能、屠宰性能、肉品质和瘤胃菌群的影响[J]. 畜牧兽医学报, 2023, 54(3): 1085-1094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||